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Figure 1: Left: a user is typing on iText in an AR HMD. It uses an imaginary (invisible) keyboard and allows efficient text entry
in a hands-free and occlusion-free manner. Right: iText accepts user input through eye blinks, dwell, or head swipe gestures

and predicts the intended words from a statistical decoder.

ABSTRACT

Text entry is an important and frequent task in interactive devices
including augmented reality head-mounted displays (AR HMDs).
In current AR HMDs, there are still two main open challenges to
overcome for efficient and usable text entry: arm fatigue due to mid-
air input and visual occlusion because of their small see-through
displays. To address these challenges, we present iText, a technique
for AR HMDs that is hands-free and is based on an imaginary (in-
visible) keyboard. We first show that it is feasible and practical to
use an imaginary keyboard on AR HMDs. Then, we evaluated its
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performance and usability with three hands-free selection mech-
anisms: eye blinks (E-Type), dwell (D-Type), and swipe gestures
(G-Type). Our results show that users could achieve an average
text entry speed of 11.95, 9.03 and 9.84 words per minutes (WPM)
with E-Type, D-Type, and G-Type, respectively. Given that iText
with E-Type outperformed the other two selection mechanisms in
text entry rate and subjective feedback, we ran a third, 5-day study.
Our results show that iText with E-Type can achieve an average
text entry rate of 13.76 WPM with a mean word error rate of 1.5%.
In short, iText can enable efficient eyes-free text entry and can be
useful for various application scenarios in AR HMDs.
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1 INTRODUCTION

Augmented reality head-mounted displays (AR HMDs) have be-
come increasingly more practical and appealing due to a reduction
in their weight and size, and significant improvements in their
display and computing power. They provide virtual overlays that
augment the physical world and have the potential to help users
complete everyday tasks such as checking emails, browsing infor-
mation, and online chatting more effectively and conveniently [16].
However, efficient typing (or text entry) remains an important open
challenge in these scenarios, one that needs to be solved before this
vision can become a reality.

The state-of-the-art AR devices, such as HoloLens 2, require
users to perform pinch gestures to select keys on a mid-air keyboard.
However, due to the small see-through displays, virtual interfaces
(e.g., the virtual keyboard) can occlude users from seeing what
objects are behind the interface, either virtual and/or physical [14].
This occlusion and lack of awareness of their surroundings can
even cause physical injuries when users are standing and walking
[28]. Another challenge with pinch-based approaches is that the
hands may be unavailable for typing, because they are occupied
with other tasks, such as holding other items. Moreover, mid-air
input can easily lead to arm fatigue [10]. Due to these issues, current
techniques based on mid-air typing and visible virtual keyboards
are difficult to apply to everyday use scenarios for AR devices,
which are meant to give users the ability to move around.

The above challenges can be addressed by having a text en-
try technique that is hands-free and uses an imaginary (invisible)
keyboard. Typing on an imaginary keyboard, where the keys are
not shown on the display, affords users with almost full visibility
of physical environments [38]. Additionally, a technique that is
hands-free allows users to type even when their hands are occu-
pied. Therefore, integrating hands-free and an imaginary keyboard
is a promising solution for text entry in AR systems.

In this paper, we present iText, a technique that is hands-free and
uses an imaginary keyboard for efficient text entry for AR systems.
The final implementation of iText is the result of an iterative design
process. In a first study, we used a Wizard of Oz approach [3] to
explore the feasibility of hands-free text entry on an imaginary key-
board. We explored two types of selection mechanisms: (1) D-Type
(short for dwell type) that allows users to select letters discretely
by hovering the cursor on the keys, and (2) G-Type (short for ges-
ture type) which allows text entry by making continuous gestures.
Our results show that it is feasible to use hands-free input with an
imaginary keyboard as users could recall imaginary key positions
accurately. Based on the statistical decoders derived from the first
study, iText was implemented with three selection mechanisms
(D-Type, G-Type, and E-Type), where E-Type (short for eye type)
uses eye blinks to trigger selections. E-Type was included since
recent research [17] showed that eye blinks are an efficient and
usable hands-free technique for virtual reality HMDs. We evaluated
their effectiveness and usability through a second user study with
18 participants. Our results show that iText with E-Type, D-Type
and G-Type can reach an average text entry speed of 11.95, 9.03
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and 9.84 words per minute (WPM). As E-Type showed superior
performance and higher user preference, we ran a third 5-day study
to understand text entry speed, error rate, learning curve and eye
fatigue levels of iText with E-Type based on longer-term use of the
technique. Our results show that iText with E-Type achieved an
average of 13.76 WPM on the last day of deployment. Furthermore,
induced eye fatigue was low, and user performance and usability
of iText was barely affected.

The main contributions of the paper include: (1) iText, a novel
efficient hands-free text entry technique for AR HMDs that uses an
imaginary keyboard; (2) an empirical study to show the feasibility
of hands-free text entry on an imaginary keyboard in AR HMDs; (3)
an implementation and comparative evaluation of three hands-free
selection mechanisms (blinking, dwell, and gesture) on imaginary
keyboards; and (4) a long-term evaluation of iText with blinking as
input. As a hands-free technique that uses a non-visible keyboard,
iText addresses two important issues: occlusion and arm fatigue.

2 RELATED WORK

In this section we present our review of the literature on text entry
techniques for AR/VR, invisible/imaginary interfaces, and hands-
free approaches for text entry.

2.1 Text Entry Techniques in AR HMDs

Several techniques have been proposed to enable text entry in AR
HMDs. For example, VISAR [4] allows users to input text via a
visualised input surface with mid-air hand typing. To avoid visual
occlusion, VISAR minimizes the visual clutter by only showing
the outlines and labels of the keys. In the final experiment, VISAR
was reported to achieve an average of 17.75 WPM text entry speed.
HIBEY [15] employs a one-line keyboard layout and allows users
to browse through or select a key via mid-air gestures, and was
proposed as a viable solution for text entry in a constrained AR
screen. A long-term user study showed that HIBEY led to a mean
typing rate of 9.95 WPM over an eight-day study. Both VISAR and
HIBEY were implemented in HoloLens 1, which afforded a limited
size of field of view (FOV = 34 degrees [8]). Xu et al. [33] evaluated
eight text entry techniques with four input mechanisms (controller,
head, hand and hybrid) with two selection methods (tap and swipe)
in AR HMDs. The results indicated that controller-based typing
techniques were better than other techniques in terms of text entry
performance and subjective feedback. However, the above mid-air
text entry techniques were reported to have a common issue of
hand/arm fatigue during the experiments. To our knowledge, no
hands-free text entry technique has been investigated in AR HMDs
for scenarios where users’ hands are busy with other tasks.

2.2 Hands-free Text Entry Techniques

Speech recognition is a feasible way to achieve hands-free text entry.
Ruan et al. [29] used a state-of-art speech recognition system and
compared it with a mobile touchscreen typing method. The study
revealed that transcribing phrases using speech was nearly three
times faster than on a touchscreen keyboard. Although speech al-
lowed speedy text entry in transcribing tasks, Foley et al. [5] stated
that speech was no better than typing on a touchscreen for compos-
ing tasks, and people were more inclined to choose a touchscreen
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keyboard according to their subjective feedback. In addition, there
are two major disadvantages of speech techniques: (1) they require
a relatively quiet environment for speech recognition techniques
to work properly; and (2) they can lead to privacy concerns. These
issues prevent speech text entry to be used in many public spaces
like libraries, restaurants, malls, etc.

Besides speech recognition, a few techniques allow users to enter
texts through head/eye movements. Dwell-based input [24, 26] is a
prevalent solution for selecting one target key at a time (character-
level text entry), in which a user gazes at a target key for a certain
time (so called dwell time) to trigger the selection. Eyes-S [27] allows
users to draw letters on 9 pre-determined regions based on a 400ms
dwell time and enables users to reach a text entry speed of 6.8 WPM
on average. Majaranta et al. [20] conducted a long-term user study
that allowed the users to personalize the dwell time. Their results
showed that the mean typing speed increased to 19.9 WPM after
some practice. Mott et al. [22] proposed a dwell-based text entry
with a cascading dwell time. This approach led to a mean typing
speed of 12.39 WPM. Instead of eye gazing, Yu et al. [37] indicated
that it is possible to reach 10.59 WPM with a constant 400ms dwell
time for VR HMDs using a head-based typing technique. However,
dwell-based approaches have inherent limitations—a long dwell
time can decrease user performance and a short dwell time is likely
to ‘push’ users to select keys quickly, which could increase the
likelihood of false-positive selections. Dwell-free techniques can
overcome the shortcomings of using a dwell time and allow users to
have more control of their typing speed. RingText [34], for example,
provides users with a circular keyboard to type in a dwell-free
fashion in VR HMDs. Experts were able to reach an average typing
speed of 13.24 WPM after 90 minutes of training. BlinkType [17]
is an alternative dwell-free approach, where users enter text by
blinking their eyes. An experiment showed that BlinkType was
more efficient (13.47 WPM) and preferred by users compared to a
dwell-based approach.

Some dwell-free techniques may also allow word-level text en-
try (i.e., entering a word each time rather than a character). With
EyeSwipe [13], users select the first and last characters of a word
by reverse-crossing and glancing through the vicinity of the middle
characters. Candidate words were displayed when performing the
gesture. EyeSwipe reached a typing rate of 11.7 WPM after 30 min-
utes of practice. In Filteryedping [25], users looked at characters
in the same order of a required word, then the system automat-
ically filtered out unwanted words and ranked candidate words
according to their length and frequency. This technique reached
a mean text entry speed of 15.95 WPM. In addition to gaze-based
typing methods, a head-based technique called GestureType [37]
has been shown to achieve a typing speed of 19.04 WPM in VR en-
vironments. However, GestureType was not completely hands-free
since controller buttons were used to indicate the start and end of
drawing.

It should be noted that common eye-tracking systems are highly
sensitive to noise, and gaze-based text entry normally suffer from a
low typing speed and high error rates. In order to correctly obtain
the selections, a gaze-based keyboard usually requires a large key
size (e.g., one key occupies about 90px in EyeSwipe [13]). Therefore,
controlling the pointer movement through users’ head with head-
based selection techniques (e.g., head-based dwelling, head-based
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gestures, head movement + blink selection [17]) can potentially
lead to more robust results.

2.3 Imaginary Keyboard

To type on an imaginary keyboard, users have to recall key positions
of the QWERTY layout. Zhu et al. [38] investigated an imaginary
keyboard on a smartphone, where virtual keys were hidden to save
screen space. Users were reported to reach an average text entry
speed of 37.9 WPM after 3 days of practice. Their results indicated
that users could recall key positions correctly, and the typing para-
digm based on imaginary keyboards was easy to learn. Imaginary
keyboards have also been explored in eyes-free conditions, where
users enter text without looking at the keyboard while receiving
text feedback from a distant display. BlindType [18] leverages the
thumb’s muscle memory to type on a touchpad and can lead to a
typing rate of 17-23 WPM. Their work also reported that a classical
decoding algorithm was capable of hands-free text entry. i’sFree
[39] is a word-level eyes-free text entry technique. It decodes ges-
tures drawn on a remote control device and was reported to reach a
text entry speed of 23 WPM. Xu et al. [35, 36] presented text entry
on a fingertip keyboard using thumb-tip gestures. With a bimanual
fingertip keyboard, this technique approached an average typing
speed of 23.4 WPM. From our literature review, we argue that the
imaginary keyboard can be successfully adapted from smartphones
to AR HMDs without losing any of its remaining advantages.

2.4 Summary

Based on our review, we highlight that dwell-based and dwell-
free gesture-based selection mechanisms are viable candidates for
hands-free text entry on imaginary keyboards based on a QWERTY
layout. Therefore, dwell (D-Type) and gesture (G-Type) were the
two selection mechanisms chosen for the feasibility study. We then
introduced eye blinking (E-Type) as an alternative input mechanism
for discrete, character-level text entry (as an alternative to the dwell-
based approach) because of the high usability and efficiency of using
eye blinks for character selection and the relatively cheap cost for
eye blink detection (rather than gaze tracing) [17].

3 DESIGN OF ITEXT
3.1 Keyboard Layout

The keyboard was placed one meter away at the center of the user’s
view. The size of the keyboard was 40*20cm and one key-width
was set as 3.4cm. The keys were hidden and the panel was 30%
transparent, which could be adjusted based on user preference. The
last row of the keyboard is slightly more visible for indicating (from
left to right) a space key, delete key and function key for moving to
the next phrase. The cursor is controlled by users’ head movements.
The most likely suggested letter predicted via our statistical decoder
appears close to the pointer.

3.2 The Three Selection Mechanisms: D-Type,
G-Type, and E-Type
These three selection mechanisms were inspired from our literature

review. D-Type allows users to enter text by hovering the cursor
over a key for a predefined dwell time. We conducted a pilot test
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Figure 2: Three illustrations (from left to right) that represent D-Type, G-Type and E-Type, the three techniques that enable
hands-free text entry on an imaginary keyboard in AR environments. (a) The user dwells the pointer over a location for a
certain time to trigger a selection. (b) The user draws the letters in sequence to enter a word. (c) The user blinks their eyes to
trigger a selection. Note that the transparency level of the imaginary keyboard area does not affect the functionality of iText:

(a) and (b) show two levels of transparency while in (c) the keyboard area is fully transparent.

to determine a suitable range of dwell time. At the end, we set the
dwell time to be 600ms which represented an appropriate trade-off
between speed and unintentional selections. A red circular progress
bar (Figure 2.a) is used to indicate the dwell time, and a light beep
sound to help users know whether the character has been selected.
One issue for dwell-based text entry is that users may dwell on the
same key after selecting it as they search for the next key. Because
of this, dwell time is set to be 800ms after a key is activated. The
dwell time refreshes if the cursor moves more than 1.7cm, which is
suitable according to our pilot studies.

G-Type lets users enter text by drawing a path through letters
of a word in order. G-Type is semi dwell-based, which means the
gesture starts or ends from a cursor hovering on a certain place for
a dwell time. To be consistent with D-Type, a dwell time of 600ms
indicates the start and 800ms indicates the end of the gesture. In
addition to a red circle that represents dwell time and a beep sound
to indicate a selection, a short red tail is used to help users visualize
the cursor movement (Figure 2.b). The dwell time refreshes once
the cursor moves more than 1.7cm. Furthermore, users can select a
single letter or a suggested word by keeping the pointer on a target
place (within 1.7cm) during the period of drawing a gesture.

E-Type allows users to enter text using eye blinks. A recent paper
[17] showed that blinking with both eyes resulted in much higher
accuracy (~100%) compared to left eye blinking (79.5%) and right eye
blinking (69.4%). Therefore, E-Type also uses the blinking of both
eyes to trigger selections. We set 400ms as the minimum gap time
between double-blinking entries. To avoid false-positive selections
caused by unintended eye blinks, users are allowed to look at any
space outside the keyboard to reset their eyes temporarily (Figure
2.c). Eye trackers produced by different vendors provide distinct
mechanisms to detect eye blinks. In this research, we use a HoloLens
2 which supports an API to identify if the headset is receiving the
eye tracking data successfully. We enforced a rule that the system
recognizes an eye blink once the headset loses eye tracking data
(which happens when eyes are closed) for more than 150ms.

4 USERSTUDY 1

This experiment aimed to investigate typing behaviors of D-Type
and G-Type on an imaginary keyboard. It was carried out with three
goals: 1) To understand whether users can transfer their memory

of the location of the keys to AR environments and type with an
imaginary keyboard in AR HMDs; 2) To understand whether users
can perform hands-free text entry on an imaginary keyboard; and
3) To capture and compare endpoint distributions of D-Type and
G-Type.

4.1 Participants and Apparatus

We recruited 16 participants aged from 19 to 23. The average score
of the familiarity with the QWERTY keyboard layout (1: novice; 5:
expert) was 4, with a minimum of 3. The average score of confidence
of typing without looking at the keyboard (1: not confident; 5:
confident) was 3, only one participant gave a rating of 1. Nine
participants also reported having limited exposure to AR HMDs.
The experiment was conducted with a HoloLens 2, which afforded
a diagonal field of view (FOV) of 52 degrees. We developed the
experimental environment with Unity3D.

4.2 Experiment Design and Procedure

Since users perform different typing patterns under gesture-like
(G-Type) and tap-like (D-Type and E-Type) methods according to
prior studies [18, 39], we only captured typing behaviors from two
input modalities (D-Type and G-Type) in this study. That is, we
did not include E-Type because D-Type and E-Type were likely
to have similar endpoint distributions, given that they are both
characterized by head pointing and character-level entry (i.e., text
entry is done character by character). We designed a Wizard of Oz
experiment to collect users’ unbiased typing behaviors, and no de-
coding algorithms were employed. Wizard of Oz is an experimental
approach in which participants interact with a computer system
(in our case, via a keyboard interface) that they believe to be au-
tonomous and functional but it is actually pre-defined or operated
by an unseen human [3]. Participants were required to transcribe
phrases using D-Type or G-Type. The system always displayed the
correct text no matter where the pointer hit.

The experiment followed a within-subjects design. The inde-
pendent variable was Selection Mechanism (D-Type and G-Type).
Their order was counterbalanced to avoid carryover effects. At the
beginning of the experiment, each participant was briefed with the
details of the selection mechanism and the AR HMD they would use.
Participants were instructed to complete two tasks, one for each
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Figure 3: Imaginary key distributions on D-Type (a) and G-
Type (b) covered by 95% confidence ellipses.

mechanism. Participants were given 5 phrases to get them familiar
with each of the two mechanisms. We instructed participants to
complete the warm-up session or until they got comfortable us-
ing the keyboard, which happened at a different pace for different
participants. Each task consisted of 4 blocks, and each block had 6
phrases. The phrases were randomly generated from the MacKen-
zie phrase set [19]. Participants could take a short break between
blocks and review the real QWERTY keyboard if they wanted to.
Participants were instructed to provide the endpoints as accurately
and naturally as possible. The experiment took around 50 minutes
for each participant.

4.3 Results

4.3.1 Data Pre-processing. It is not straightforward to obtain imag-
inary key positions directly from a gesture which is made up of
continuous points. We employed the method used in i’sFree [39]
to infer users’ imaginary key positions. Their method was based
on a dynamic time warping (DTW) algorithm [1]. The key idea is
to compare the input gesture with the templates from the corpus
(both sampled into 100 equidistant points), and then find the opti-
mal match. The imaginary key has the shortest DTW distance to
the corresponding key position in the template.

We used endpoint distribution to illustrate the results, which
is formed by multiple intersection points of the selection ray (as
controlled by the head) and the virtual keyboard when a key selec-
tion happens. The endpoints made by D-Type and G-Type can be
regarded as "Touch Down/Up" and "Swipe" events on a touchscreen.
At the end, we collected a total of 20370 number of endpoints from
the experiment, 9397 with D-Type and 10973 with G-Type. In order
to reduce the effect of outliers, we dropped the points that are far
away (more than three standard deviations) from the key centroids.
This process led to the removal of 1354 outliers (6.65%).

4.3.2  Variances. Figure 3 shows that the mean standard devia-
tions across imaginary keys, which are 3.94cm and 2.44cm in the
x-axis, and 2.90cm and 1.46cm in the y-axis for G-Type and D-Type,
respectively. One-way ANOVA tests showed that Selection Mecha-
nism had significant effects on mean standard deviations (F(y 50) =
36.056, p < 0.001 for the x-axis; F(1,50) =69.092, p < 0.001 for the
y-axis). A repeated-measures ANOVA with Greenhouse-Geisser
correction showed that the mean standard deviations significantly
differed between the axes (F(1,50) = 115.176, p < 0.001). The mean
standard deviation in the x-axis was 0.99cm greater than the y-axis.
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4.3.3  Offsets. The horizontal (x-axis) and vertical (y-axis) offsets
were calculated by (xt,yr) — (x0, Yo), Where (x;,y;) represents
the coordinate of the imaginary key position, and (xy, y,) is the
coordinate of the target key. The positive and negative value of the
offset indicate that the imaginary key is located above or below
the key center. The mean horizontal offset across keys is -1.65cm
(SD = 1.30) for D-Type and -3.31cm (SD = 2.20) for G-Type. D-
Type and G-Type yielded 0.16cm (SD = 0.46) and 2.71cm (SD =
1.45) vertical offsets, respectively. One-Way ANOVA tests revealed
that selection methods had a significant effect on offsets (F(1 50) =
10.921, p < 0.002 for the x-axis; F(q50) = 72.974,p < 0.001 for the
y-axis).

4.3.4 Discussion. During the experiment, we found that most of
the participants did not complete the practice sessions and went di-
rectly to the formal task; in particular, they practiced fewer phrases
in D-Type compared to G-Type. Moreover, most participants did
not need to review the layout of the keys on a real keyboard after
the second break. The confidence ellipses revealed that the centers
of the imaginary keys almost match those of the keys in a standard
QWERTY keyboard layout. This shows that participants could recall
key positions on the imaginary keyboard in AR environments (Goal
1). Similarly, the results show that they can perform hands-free text
entry on the imaginary keyboard based on the QWERTY layout
(Goal 2). We also observed that G-Type resulted in larger mean
standard deviations across keys, which was about 1.5cm greater
than D-Type in both axes. These results indicate that D-Type is
more stable with smaller standard deviation of key positions (Goal
3). Despite this, the mean standard deviation of G-Type is about
one key-width, which is still acceptable. The offsets showed that
imaginary keys with the two typing mechanisms were likely to be
located on the upper left of the key centers (Goal 3). Our results
also show that G-Type shifted nearly one-key width to the left and
D-Type barely shifted in the y-axis.

4.4 Deriving Typing Decoders

We used the data to implement a statistical decoder with an adapted
spatial model to suggest words to the users. Normally, the statistical
decoder [6] consists of a spatial model which gives the probability
distributions with regard to key locations on the keyboard, and a
language model that decides the prior probabilities of words based
on the corpus. We adapted a spatial model to fit the imaginary key-
board [38]. At the end, the decoder could infer the most likely letters
according to the spatial model once the user triggers a selection
according to the following equation:

C* = P(x,y|C 1
arg max (x,ylC) (1)

where A is comprised of 26 letters of the English alphabet on the
keyboard, (x, y) represents the endpoint coordinate the user hits on
the keyboard, C is one character belonging to the alphabet, and C*
is the predicted character. Equation 1 was used to produce the most
likely character under the current selection endpoint (as shown in
Figure 2). Then, we assume that each selection is independent and
P(x,y|C) follows a bivariate Gaussian distribution. Based on this,
the decoder suggests the words with high probabilities calculated
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with the following equation:

W* = arg $%)]EP(S|W)P(W) 2)

where L is the language corpus which has a lexicon of 10k words
from the American National Corpus [11], W represents a particular
word in the corpus, and S is the input. In this case, P(S|W) is
calculated from the adapted spatial model with parameters collected
from Study 1 and P(W) is from a language model.

For G-Type, since a dwell-based like mechanism is used to indi-
cate the start/end of a gesture, we employed Equation 1 to recognize
the corresponding letters. We also applied the gesture recognition
algorithm reported in previous research [12, 21, 37]. The algorithm
infers the most probable word by measuring the similarities of the
shapes. The words in the corpus are transformed into templates in
the form of lines that connect the center of each letter of a word
in order. Then, the input gesture and templates are sampled into
100 equidistant points. The algorithm prunes the corpus by remov-
ing the templates whose start/end positions are more than 1-key
width away from the input’s start/end positions. The similarity
is calculated by the sum of the Euler distance between points on
the gesture and the template. The word that leads to the minimum
Euler distance is the best candidate word based on the gesture.

5 USER STUDY 2

We conducted a second study to evaluate the effectiveness of the
three hands-free selection mechanisms on an imaginary keyboard.
Our aim was to explore typing speed, error rate, learning rate, and
subjective feedback and usability issues.

5.1 Participants and Apparatus

We recruited another 18 participants from a university campus, 6
for each technique. The participants were aged between 19 to 23
years (mean=21). No participant was involved in the previous study.
The average score of their familiarity with QWERTY keyboards (1:
naive; 5: expert) was 4. The average score of confidence of typing
without looking at the keyboard (1: not confident; 5: confident) was
3. The experiment was conducted with the same device as Study 1.

5.2 Experiment Design and Procedure

The experiment followed a between-subjects design to avoid cross-
learning effects. Participants were asked to provide their demo-
graphic information before the experiment. Then, they were briefed
with the details of the hands-free text entry mechanisms and imag-
inary keyboard interface. At the beginning of the task, participants
were given 5 phrases to get them familiar with the system. Then, a
total of 40 phrases were randomly generated for each participant
from the MacKenzie phrase set [19]. The phrases were divided into
5 blocks evenly. Participants were allowed to have a short break
between the blocks. After they completed the task, participants
were asked to fill out a NASA-TLX [9] and a short version of User
Experience Questionnaire (UEQ-S) [31] to provide their subjec-
tive feedback. The whole experiment took about 50 minutes per
participant.
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Figure 4: Mean text entry speeds of E-Type, D-Type and G-
Type across 5 blocks. Error bars indicate the standard error.
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Figure 5: Word error rates of E-Type, D-Type and G-Type
across 5 blocks. Error bars indicate the standard error.

5.3 Results

To analyze the data collected in this study, we employed repeated-
measures ANOVAs (RM-ANOVAs) and Bonferroni-adjusted pair-
wise comparisons with Block (blocks 1-6) as the within-subjects
factor and Selection Mechanism (D-Type, G-Type and E-Type) as
the between-subjects factor.

Text entry speed was measured in Words Per Minutes (WPM):

IS—1] 1

X< ®3)

where S is the length of the transcribed string in characters and T
is the elapsed time in minutes timed from the first keystroke to the
last keystroke for one phrase.

The word error rate [2, 32, 38] was measured by Minimum Word
Distance (MWD) because the keyboard employed word-level cor-
rections. The MWD was the smallest number of word deletions,
insertions, or replacements needed to transform the transcribed
string into the desired string. The word error rate is defined as:

_ MWD(S, P)
|P|
where MWD(S, P) represents the MWD between the transcribed

phrase S and the target phrase P, and |P| denotes the number of
words in P.

WPM =

X 100% (4)

5.3.1 Text Entry Speed. RM-ANOVA tests yielded a significant
effect of Block (F(40) = 88.385,p < 0.001) and Selection Mech-
anism (F(y15) = 6.829,p < 0.008) on text entry speed. E-Type
was the fastest mechanism as pairwise comparisons showed that
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Table 1: UEQ scales in terms of pragmatic, hedonic and overall quality.

Technique Pragmatic Hedonic Overall
E-Type 1.67 (Good) 1.29 (Above Average) 1.48 (Good)
D-Type 1.21 (Above Average) 1.04 (Below Average) 1.13 (Above Average)
G-Type 0.38 (Bad) 0.88 (Below Average) 0.63 (Below Average)
8 . .
mE-Type m D-Type G-Type 5.4 Discussion
7 Results from this study confirm the feasibility of the three hands-
0 free text entry approaches (that is, dwell-based, dwell-free and
S5 1 | gesture-based) with an imaginary keyboard.
a I I
x4 I E-Type is the most promising solution in terms of text entry
% 3 I speed and user experience feedback. Compared to G-Type and D-
g ) Type, E-Type is around 2-3 WPM faster. G-Type and D-Type have
similar text entry speeds. E-Type is faster probably because it does
1 not require any dwell time before a selection. While there was
0 no significant difference of Selection Mechanism on word error
MD PD ™ Pe Ef Fr

Figure 6: NASA-TLX ratings of E-Type, D-Type and G-Type
in terms of Mental Demand (MD), Physical Demand (PD),
Temporal Demand (TD), Performance (Pe), Effort (Ef) and
Frustration (Fr). Error bars indicate the standard error.

E-Type was significantly faster than D-Type (p = 0.014) and G-
Type (p = 0.023). Participants achieved an average of 7.77 WPM
(SD = 1.45) in the first block, and the typing speed increased to
11.95 WPM (SD = 1.30) in the final block. D-Type was faster than
G-Type in the first two blocks. However, G-Type achieved an aver-
age of 9.84 WPM (SD = 1.37) in the final block, which was faster
than D-Type (M = 9.03 WPM, SD = 1.15).

5.3.2  Error Rate. The word error rate was low in the final block
among the three mechanisms, with E-Type, D-Type and G-Type
having 4.6%, 3.7% and 2.3% respectively. G-Type yielded a relatively
low error rate through the five blocks; it dropped below 3.0% in
the last two blocks. With E-Type, the error rate dropped from the
first block of 6.9% to the fifth block of 4.6%. The mean error rate of
D-Type in the first block was 5.3%, and decreased to 3.7% in the last
block. RM-ANOVA tests did not reveal a significant effect on word
error rate (F(y15) = 2.215,p = 0.144).

5.3.3  Subjective Feedback. One-way ANOVAs showed that Selec-
tion Mechanism had a significant main effect on the "Complicated-
Easy" subscale of UEQ (F(5,17) = 13.280, p < 0.001). Post-hoc tests
showed that the G-Type was significantly more complicated than
E-Type (p < 0.001). No other significant effects were found. Table
1 shows the summary of UEQ-S ratings. E-Type was considered as
the most pragmatic and hedonic mechanism compared to the other
two. G-Type was rated lower in the pragmatic value than E-Type.

Figure 6 shows the NASA-TLX subscale ratings for Mental De-
mand (MD), Physical Demand (PD), Temporal Demand (TD), Per-
formance (Pe), Effort (Ef) and Frustration (Fr). One-way ANOVAs
did not show any significant effect of Selection Mechanism on MD
(p = 0.267), PD (p = 0.632), TD (p = 0.494), Pe (p = 0.368), Ef
(p = 0.753), or Fr (p = 0.234).

rate, G-Type showed a slight advantage in error rate while E-Type
led to a slightly higher error rate. This is because G-Type requires
users to type by selecting suggested words other than character-by-
character which offers an alternative way to enter text in characters.
This mechanism forces users to be conscious of selecting correct
words. Unintended eye blinks are probably the main reason that
made E-Type have a slightly higher error rate.

The subjective feedback shows that E-Type had a higher prefer-
ence score, based on both pragmatic and hedonic measures. G-Type
was rated low in pragmatic because of its complexity. Though
participants successfully recalled key positions of the QWERTY
keyboard and results from prior research [39] have shown that a
G-Type selection on an imaginary keyboard using hands was faster
than on a visible keyboard, our results show that drawing a word
trace based on head motions is not easy for users as the head is not
a common input method and is not as natural and conventional as
using hands.

The results also show that the typing speed of G-Type was lower
compared to previous studies (e.g., 15.58 WPM in [37]). This could
be due to the following reasons: (1) The HoloLens 2 used in this
experiment affords only half the FOV of a Samsung Gear VR (52 vs
96 degrees), which resulted in a much smaller keyboard size and
constrained the speed of drawing traces. (2) Participants could have
faced additional challenges when they had to continuously recall
key positions in real-time when performing head-based gestures.
(3) Our implementation of G-Type is fully hands-free where the
start/end of a gesture is decided by a dwell time. On the other hand,
the head-based gesture typing in the previous study [37] is not
entirely hands-free given that the start/end of the head gesture is
triggered by pressing a button using hands.

Because E-Type showed an obvious advantage in text entry speed
and user preference, we wanted to explore further its performance
over a longer use period and see how long users would need to
reach peak entry rates and whether there could be eye fatigue and
its effect on performance and usability.
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Figure 7: Means of text entry speed of 5 participants across
5 days with E-Type.
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Figure 8: Word error rates of 5 participants across 5 days
with E-Type.

6 USER STUDY 3

We conducted a third 5-day user study to examine the long-term
usage of iText with E-Type as its only selection mechanism. Since
Study 2 revealed that E-Type was the most efficient and preferred
by participants, this last study aimed to explore the potential per-
formance (in terms of typing speed and word error rate), learning
rate and eye fatigue of iText with E-Type. Five participants were
recruited from the same campus, aged between 20 to 22 years
(mean=21). These participants were not involved in the previous
two studies. The average score of their familiarity with QWERTY
keyboards (1: naive; 5: expert) was 4. The average score of confi-
dence of typing without looking at the keyboard (1: not confident;
5: confident) was 3. The apparatus used was the same as in the two
previous studies.

6.1 Experiment Design and Procedure

The study consisted of 5 continuous days. Participants were in-
structed to complete two blocks, each block consisted of 8 phrases
randomly generated from the MacKenzie phrase set [19]. Partici-
pants were able to have a rest between blocks. Over 5 days, partici-
pants were given two phrases to warm up before the actual task
and were asked to rate their eye fatigue (1: very low; 7: very high)
after the task.

6.2 Results

6.2.1 Text Entry Speed. A one-way ANOVA revealed a significant
main effect of Day on text entry speed (F(449) = 17.018, p < 0.001).
Post-hoc comparisons showed significant differences between Day
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1 vs. Day 3 (p = 0.003), Day 1 vs. Day 4 (p < 0.001), Day 1 vs.
Day 5 (p < 0.001), Day 2 vs. Day 4 (p = 0.002), Day 2 vs. Day 5
(p < 0.001), Day 3 vs. Day 5 (p = 0.020). Participants achieved
average text entry rates of 13.04 and 13.77 WPM on Day 4 and Day
5, respectively.

6.2.2  Word Error Rate. There was no significant effect of Day on
word error rate (F(449) = 0.677, p = 0.611). Overall, the word error
rate was low for most of the study. All participants had an error rate
under 3.0% in the last two days (M = 0.9% in Day 4, M = 1.5% in Day
5). While P1 (M = 3.0%, SD = 1.2%) and P2 (M = 2.3%, SD = 0.9%)
had a relatively higher error rate compared to the other participants
over 5 days, they performed text entry with high speed (M = 13.33
and M = 12.16, respectively).

6.2.3 Subjective Ratings. One-way ANOVA tests revealed a main
effect of Day on eye fatigue (F(424) = 4.875, p = 0.007). Post-hoc
comparisons showed that there is a significant difference between
Day 1 and Day 5 (p = 0.005). The mean rates dropped 60% from
Day 1 (M =3.00,SD = 1.0) to Day 5 (M = 1.20,SD = 0.45). 4 par-
ticipants rated 1 in eye fatigue in the last day. The results indicated
that eye fatigue decreased along with users getting familiar with
the blinking mechanism.

7 DISCUSSION AND POTENTIAL
APPLICATION SCENARIOS

The results of the three studies lead to three main findings. First,
the distributions (Figure 3) of imaginary key positions indicate that
users can transfer their memory of the QWERTY keyboard to an
imaginary keyboard in AR. They can recall the positions of keys
correctly with both discrete selection (D-Type) and continuous se-
lection (G-Type) mechanisms. While dwell-based selection shows
a closer match of key locations with small standard deviations,
gesture-based selection is still viable on an imaginary keyboard.
This result paves the path for exploring further imaginary key-
boards in AR HMDs (and potentially for VR HMDs as well). Second,
E-Type outperforms D-Type and G-Type in terms of text entry
speed and subjective feedback. While our results show that E-Type
is practical and easy to learn and use, D-Type and G-Type are both
practical and feasible mechanisms for text selection on imaginary
keyboards. Third, a 5-day user study shows that E-Type can achieve
a text entry rate of 13.77 WPM with a word error rate below 3%.
Moreover, self-reported ratings indicate that entering text via eye
blinks only causes slight eye fatigue (4 of 5 participants rated eye
fatigue as very low in the last day). While E-Type is promising and
works very well with iText, it requires an eye tracker which may not
be available for all AR HMDs. However, eye tracking technology
is becoming cheaper [7, 30] and is integrated into more AR HMDs
including HoloLens 2 and Magic Leap, and also VR HMDs such as
HTC VIVE Pro Eye, HP Reverb G2 Omnicept Edition, and Pico Neo
2 Eye. As such, we believe that eye tracking will likely be a standard
feature of these devices. Overall, we recommend that E-Type gets
priority for iText type of text entry techniques when eye tracking
is available; otherwise, D-Type and G-Type are feasible alternatives
when eye trackers are not available.

We envision that iText could be applied to various scenarios.
Below, we propose three potential application scenarios.
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You've received a message
Reply

Figure 9: Three potential application scenarios for iText. (a) a user is walking with his hands occupied. With iText he could
enter text while walking and still seeing the surrounding objects clearly. (b) a user is sitting and making a concept map while
listening to a lecture. He could use iText to search for a key concept on a search engine without losing sight of the speaker. (c)
a user is playing a game in a VR HMD and a message comes in. He could reply quickly using iText without stopping the game.

o Mobile augmented reality is intended to be used for interact-
ing with mid-air interfaces on the go. Some existing research
has explored the use of AR HMDs while users are walk-
ing [14, 23]. Both of these studies have indicated issues of
users lacking awareness of their physical surroundings. By
leveraging the advantages of hands-free and an imaginary
keyboard interface, iText could be an effective solution for
text entry while users are walking while at the same time
being able to see clearly nearby surrounding objects, which
should lead to a safer and more comfortable experience (see
Figure 9.a).

o iText makes it possible to achieve text entry on an overlap-

ping interface and as such it is suitable for switching among

interfaces in a more seamless way, while still having a clear

view of the environment. For example, let’s imagine that a

user is attending a lecture talk. With their hands occupied

making a concept map of the content of the talk, they want
to search for a definition of a concept that the lecturer is
talking about. With a standard keyboard, it will be likely
that the keyboard will cause occlusion. On the other hand,
with iText, the occlusion will be reduced and the user could
type in the search keyword and still be able to have a good

view of the lecturer and the hall (see Figure 9.b).

iText could also be implemented in VR HMDs. As using eye

blinks as a hands-free selection mechanism has been shown

to work well in VR HMDs already [17] and these devices
can capture head motions, iText in VR can provide a similar
level of performance and user experience. iText in VR can
open the door for some interesting uses and possibilities
not possible with a visible keyboard, for example allowing
users to play games and respond to text messages without
significantly interrupting the game (see Figure 9.c) .

8 LIMITATIONS AND FUTURE WORK

Our research has some limitations which can represent directions
for future work. First, we did not explore how keyboard size af-
fects the text entry performance and usability. Smaller key sizes

could speed up the movement of the pointer across keys. How-
ever, because the experiments were already lengthy (~ 50 minutes),
adding more independent variables would introduce fatigue issues.
Therefore, our work focused on comparing the performance of
the three hands-free selection mechanisms with a single keyboard
size. Future work can explore different keyboard sizes which may
affect user performance. Moreover, even with the state-of-art AR
HMDs, their FOV is limited. As such, it is difficult to have large
or small keyboards in these devices. When newer HMDs come
with expanded FOV, issues related to key sizes and gaps between
keys could be explored further for non-visible keyboards. Second,
although the keyboard area in the experiments is shown as trans-
parent, it was only tested with a clean background inside a closed
door lab environment (see Figure 2). It will be useful to explore
the performance of iText in other environmental backgrounds and
with users performing other tasks (like walking or running).

9 CONCLUSION

In this paper, we have presented iText, a novel hands-free text
entry technique on an imaginary keyboard for augmented reality
head-mounted displays (AR HMDs). Being hands-free and using
an imaginary keyboard overcomes usability issues related to arm
fatigue due to mid-air input and occlusion of objects (both virtual
and physical) because of their small see-through display. To develop
iText, we first showed via a user study the feasibility of using hands-
free for text entry on an imaginary keyboard, as users were able to
recall key positions with relatively high accuracy. From the data
collected, we were able to then derive adapted statistical decoders
suggesting words in iText. In our second study, we evaluated the
performance of iText with three hands-free selection mechanisms:
E-Type that uses eye blinks, D-Type that is based on dwell, and
G-Type that relies on swipe gestures. Our results show that users
could achieve average text entry rates of 11.95, 9.03 and 9.84 WPM,
respectively. A third, five-day study with iText plus E-Type showed
that users can achieve an average typing speed of 13.76 WPM with
a low word error rate and negligible eye fatigue. Overall, iText is
a novel technique that allows for efficient hands-free text entry
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via an imaginary keyboard and has great potential to be applied in
mobile AR HMDs and be integrated with other applications.

ACKNOWLEDGMENTS

The authors want to thank the participants for their time and the
reviewers for their helpful feedback. The work was supported in
part by Xi’an Jiaotong-Liverpool University (XJTLU) Key Special
Fund (#KSF-A-03).

REFERENCES

[1] Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to
find patterns in time series. In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining. AAAI Press, 359-370.

[2] Xiaojun Bi, Shiri Azenkot, Kurt Partridge, and Shumin Zhai. 2013. Octopus:

evaluating touchscreen keyboard correction and recognition algorithms via. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

Association for Computing Machinery, 543-552. https://doi.org/10.1145/2470654.

2470732

Nils Dahlbéck, Arne Jénsson, and Lars Ahrenberg. 1993. Wizard of Oz stud-

ies—why and how. Knowledge-based systems 6, 4 (1993), 258-266. https:

//doi.org/10.1016/0950-7051(93)90017-N

[4] John J. Dudley, Keith Vertanen, and Per Ola Kristensson. 2018. Fast and Precise

Touch-Based Text Entry for Head-Mounted Augmented Reality with Variable

Occlusion. 25, 6 Interact. (2018), Article 30. https://doi.org/10.1145/3232163

Margaret Foley, Géry Casiez, and Daniel Vogel. 2020. Comparing Smartphone

Speech Recognition and Touchscreen Typing for Composition and Transcription.

In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.

Association for Computing Machinery, 1-11. https://doi.org/10.1145/3313831.

3376861

[6] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage modeling for soft keyboards. In Proceedings of the 7th international confer-
ence on Intelligent user interfaces. Association for Computing Machinery, 194-195.
https://doi.org/10.1145/502716.502753

[7] Simone Guasconi, Marco Porta, Cristiano Resta, and Carlo Rottenbacher. 2017.
A low-cost implementation of an eye tracking system for driver’s gaze analysis.
In 2017 10th International Conference on Human System Interactions (HSI). IEEE,
264-269. https://doi.org/10.1109/HS1.2017.8005043

[8] Ramy Hammady and Minhua Ma. 2019. Designing spatial ui as a solution of the

narrow fov of microsoft hololens: Prototype of virtual museum guide. Springer,

217-231. https://doi.org/10.1007/978-3-030-06246-0_16

Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In

Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.

Sage publications Sage CA: Los Angeles, CA, 904-908. https://doi.org/10.1177/

154193120605000909

[10] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang

Irani. 2014. Consumed endurance: a metric to quantify arm fatigue of mid-
air interactions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, 1063-1072. https:
//doi.org/10.1145/2556288.2557130

[11] Nancy Ide and Catherine Macleod. 2001. The american national corpus: A

standardized resource of american english. In Proceedings of corpus linguistics,

Vol. 3. Citeseer, 1-7.

Per-Ola Kristensson and Shumin Zhai. 2004. SHARK: a large vocabulary short-

hand writing system for pen-based computers. In Proceedings of the 17th annual

ACM symposium on User interface software and technology. Association for Com-

puting Machinery, 43-52. https://doi.org/10.1145/1029632.1029640

[13] Andrew Kurauchi, Wenxin Feng, Ajjen Joshi, Carlos Morimoto, and Margrit

Betke. 2016. EyeSwipe: Dwell-free Text Entry Using Gaze Paths. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, 1952-1956. https://doi.org/10.1145/2858036.2858335
[14] Wallace S. Lages and Doug A. Bowman. 2019. Walking with adaptive augmented
reality workspaces: design and usage patterns. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces. Association for Computing
Machinery, 356-366. https://doi.org/10.1145/3301275.3302278

[15] Lik Hang Lee, Kit Yung Lam, Yui Pan Yau, Tristan Braud, and Pan Hui. 2019. Hibey:
Hide the keyboard in augmented reality. In 2019 IEEE International Conference on
Pervasive Computing and Communications (PerCom. IEEE, 1-10. https://doi.org/
10.1109/PERCOM.2019.8767420

[16] Feiyu Lu, Shakiba Davari, Lee Lisle, Yuan Li, and Doug A Bowman. 2020. Glance-

able AR: Evaluating Information Access Methods for Head-Worn Augmented

Reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

IEEE, 930-939. https://doi.org/10.1109/VR46266.2020.00113

Xueshi Lu, Difeng Yu, Hai-Ning Liang, Wenge Xu, Yuzheng Chen, Xiang Li, and

Hasan Khalad. 2020. Exploration of Hands-free Text Entry Techniques for Virtual

[3

[5

[9

=

[12

(17

[18

[19

)
=

[21

[22

[23

[24

[25

[26]

[28

[20

[30

(31

(32]

[34

[35

Xueshi Lu, Difeng Yu, Hai-Ning Liang, and Jorge Goncalves

Reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR). IEEE, 344-349. https://doi.org/10.1109/ISMAR50242.2020.00061

Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and Shengdong Zhao. 2017. BlindType:
Eyes-Free Text Entry on Handheld Touchpad by Leveraging Thumb’s Muscle
Memory. 1, 2 Wearable Ubiquitous Technol. (2017), Article 18. https://doi.org/
10.1145/3090083

L. Scott MacKenzie and R. William Soukoreff. 2003. Phrase sets for evaluating text
entry techniques. In CHI '03 Extended Abstracts on Human Factors in Computing
Systems. Association for Computing Machinery, 754-755. https://doi.org/10.
1145/765891.765971

Piivi Majaranta, Ulla-Kaija Ahola, and Oleg Spakov. 2009. Fast gaze typing with
an adjustable dwell time. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, 357-360.
https://doi.org/10.1145/1518701.1518758

Anders Markussen, Mikkel Rgnne Jakobsen, and Kasper Hornbeek. 2014. Vulture:
a mid-air word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. Association for Computing Machinery,
1073-1082. https://doi.org/10.1145/2556288.2556964

Martez E. Mott, Shane Williams, Jacob O. Wobbrock, and Meredith Ringel Morris.
2017. Improving Dwell-Based Gaze Typing with Dynamic, Cascading Dwell
Times. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, 2558-2570. https://doi.org/10.
1145/3025453.3025517

Florian Miiller, Martin Schmitz, Daniel Schmitt, Sebastian Giinther, Markus Funk,
and Max Miithlhduser. 2020. Walk The Line: Leveraging Lateral Shifts of the
Walking Path as an Input Modality for Head-Mounted Displays. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, 1-15. https://doi.org/10.1145/3313831.3376852
Christian Miiller-Tomfelde. 2007. Dwell-based pointing in applications of hu-
man computer interaction. In IFIP Conference on Human-Computer Interaction.
Springer, 560-573. https://doi.org/10.1007/978-3-540-74796-3_56

Diogo Pedrosa, Maria Da Graca Pimentel, Amy Wright, and Khai N. Truong.
2015. Filteryedping: Design Challenges and User Performance of Dwell-Free Eye
Typing. 6, 1 Comput. (2015), Article 3. https://doi.org/10.1145/2724728

Abdul Moiz Penkar, Christof Lutteroth, and Gerald Weber. 2012. Designing for
the eye: design parameters for dwell in gaze interaction. In Proceedings of the 24th
Australian Computer-Human Interaction Conference. Association for Computing
Machinery, 479-488. https://doi.org/10.1145/2414536.2414609

Marco Porta and Matteo Turina. 2008. Eye-S: a full-screen input modality for
pure eye-based communication. In Proceedings of the 2008 symposium on Eye
tracking research & applications. Association for Computing Machinery, 27-34.
https://doi.org/10.1145/1344471.1344477

Romain Pourchon, Pierre-Majorique Léger, Elise Labonté-LeMoyne, Sylvain Séné-
cal, Frangois Bellavance, Marc Fredette, and Frangois Courtemanche. 2017. Is
augmented reality leading to more risky behaviors? An experiment with Pokemon
Go. In International Conference on HCI in Business, Government, and Organizations.
Springer, 354-361. https://doi.org/10.1007/978-3-319-58481-2_27

Sherry Ruan, Jacob O. Wobbrock, Kenny Liou, Andrew Ng, and James A. Landay.
2018. Comparing Speech and Keyboard Text Entry for Short Messages in Two
Languages on Touchscreen Phones. 1, 4 Wearable Ubiquitous Technol. (2018),
Article 159. https://doi.org/10.1145/3161187

Thiago Santini, Wolfgang Fuhl, David Geisler, and Enkelejda Kasneci. 2017. Ey-
eRecToo: Open-source Software for Real-time Pervasive Head-mounted Eye
Tracking. In 12th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP 2017). 96-101.
https://doi.org/10.5220/0006224700960101

Martin Schrepp, Andreas Hinderks, and Jérg Thomaschewski. 2017. Design and
Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S).
Ijimai 4, 6 (2017), 103-108. https://doi.org/10.9781/ijimai.2017.09.001

R. William Soukoreff and I. Scott MacKenzie. 2001. Measuring errors in text
entry tasks: an application of the Levenshtein string distance statistic. In CHI
’01 Extended Abstracts on Human Factors in Computing Systems. Association for
Computing Machinery, 319-320. https://doi.org/10.1145/634067.634256

Wenge Xu, Hai-Ning Liang, Angi He, and Zifan Wang. 2019. Pointing and
selection methods for text entry in augmented reality head mounted displays.
In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 279-288. https://doi.org/10.1109/ISMAR.2019.00026

Wenge Xu, Hai-Ning Liang, Yuxuan Zhao, Tianyu Zhang, Difeng Yu, and Diego
Monteiro. 2019. Ringtext: Dwell-free and hands-free text entry for mobile head-
mounted displays using head motions. IEEE transactions on visualization and
computer graphics 25, 7, 2513-2513.  https://doi.org/10.1109/TVCG.2019.2913518
Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong,
Sicheng Yin, Jialun Zhai, and Xing-Dong Yang. 2020. BiTipText: Bimanual Eyes-
Free Text Entry on a Fingertip Keyboard. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. Association for Computing Machinery,
1-13. https://doi.org/10.1145/3313831.3376306


https://doi.org/10.1145/2470654.2470732
https://doi.org/10.1145/2470654.2470732
https://doi.org/10.1016/0950-7051(93)90017-N
https://doi.org/10.1016/0950-7051(93)90017-N
https://doi.org/10.1145/3232163
https://doi.org/10.1145/3313831.3376861
https://doi.org/10.1145/3313831.3376861
https://doi.org/10.1145/502716.502753
https://doi.org/10.1109/HSI.2017.8005043
https://doi.org/10.1007/978-3-030-06246-0_16
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/2858036.2858335
https://doi.org/10.1145/3301275.3302278
https://doi.org/10.1109/PERCOM.2019.8767420
https://doi.org/10.1109/PERCOM.2019.8767420
https://doi.org/10.1109/VR46266.2020.00113
https://doi.org/10.1109/ISMAR50242.2020.00061
https://doi.org/10.1145/3090083
https://doi.org/10.1145/3090083
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/1518701.1518758
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1145/3313831.3376852
https://doi.org/10.1007/978-3-540-74796-3_56
https://doi.org/10.1145/2724728
https://doi.org/10.1145/2414536.2414609
https://doi.org/10.1145/1344471.1344477
https://doi.org/10.1007/978-3-319-58481-2_27
https://doi.org/10.1145/3161187
https://doi.org/10.5220/0006224700960101
https://doi.org/10.9781/ijimai.2017.09.001
https://doi.org/10.1145/634067.634256
https://doi.org/10.1109/ISMAR.2019.00026
https://doi.org/10.1109/TVCG.2019.2913518
https://doi.org/10.1145/3313831.3376306

iText: Hands-free Text Entry on an Imaginary Keyboard for Augmented Reality Systems

[36]

[37]

Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala,
Xiaojun Bi, Jirgen Steimle, Hongbo Fu, Kening Zhu, and Xing-Dong Yang. 2019.
TipText: Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology. Association
for Computing Machinery, 883-899. https://doi.org/10.1145/3332165.3347865

Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and Yuanchun Shi.
2017. Tap, Dwell or Gesture? Exploring Head-Based Text Entry Techniques for
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, 4479-4488. https://doi.org/10.

[38

[39

UIST ’21, October 10-14, 2021, Virtual Event, USA

1145/3025453.3025964

Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, Paper 439. https:
//doi.org/10.1145/3173574.3174013

Suwen Zhu, Jingjie Zheng, Shumin Zhai, and Xiaojun Bi. 2019. i’sFree: Eyes-
Free Gesture Typing via a Touch-Enabled Remote Control. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, Paper 448. https://doi.org/10.1145/3290605.3300678


https://doi.org/10.1145/3332165.3347865
https://doi.org/10.1145/3025453.3025964
https://doi.org/10.1145/3025453.3025964
https://doi.org/10.1145/3173574.3174013
https://doi.org/10.1145/3173574.3174013
https://doi.org/10.1145/3290605.3300678

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text Entry Techniques in AR HMDs
	2.2 Hands-free Text Entry Techniques
	2.3 Imaginary Keyboard
	2.4 Summary

	3 Design of iText
	3.1 Keyboard Layout
	3.2 The Three Selection Mechanisms: D-Type, G-Type, and E-Type

	4 User Study 1
	4.1 Participants and Apparatus
	4.2 Experiment Design and Procedure
	4.3 Results
	4.4 Deriving Typing Decoders

	5 User Study 2
	5.1 Participants and Apparatus
	5.2 Experiment Design and Procedure
	5.3 Results
	5.4 Discussion

	6 User Study 3
	6.1 Experiment Design and Procedure
	6.2 Results

	7 Discussion and Potential Application Scenarios
	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References

