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ABSTRACT
We propose a context-free semantic localisation approach
to visualise and analyse indoor movements. We focus on
settings where indoor location or rooms have strongly asso-
ciated semantics, such as hospitals. We describe an approach
that can work with different localisation systems, with lit-
tle knowledge of the physical space properties, and with
minimal bootstrapping required. We propose a movement
representation that consists of time-encoded strings, and
discuss how our approach can be used for analysing and
visualising longitudinal indoor localisation data.

CCS CONCEPTS
• Human-centered computing → Empirical studies in
HCI; • Human-centered computing → Ubiquitous and
mobile computing; •Human-centered computing → Smart-
phones.
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1 INTRODUCTION
Understanding people’s movements in relation to their envi-
ronments is essential for both researchers and workplaces.
Humans spend a big portion of their time in buildings where
often each room or space has associated semantics in the con-
text of people’s flow. In Universities, for example, libraries,
laboratories, and canteens have different meanings, and sim-
ilarly hospitals have a reception, operating rooms, recovery
rooms, etc. Traditionally, indoor localisation research has
focused on improving the accuracy of localisation systems,
developing a multitude of technologies that can accurately
pin-point assets in space. Yet, independently of the actual
localisation system used, indoor movement often happens
between rooms or spaces on a map, and analysing longitudi-
nal data in terms of those rooms is not straightforward. We
currently lack a movement-centered representation that is
flexible enough to work with a variety of localisation sys-
tems, and also allows researchers to study people’s flow
across indoor spaces and rooms.
In this paper we present such a room-centered approach

to analyse and represent longitudinal indoor localisation
data, by representing the rooms’ semantics. Our goal is
a technology-agnostic representation that abstracts move-
ments from the physical space and its coordinates, and turns
those into rooms and their semantics. Deploying a locali-
sation system can often involve a long and tedious process
which often requires on-site surveys and a training phase.
Our aim is to build a context-free semantic localisation sys-
tem which can work with different underlying localisation
systems, which requires no training and a minimal knowl-
edge of the physical space. Our approach is based on the
idea of strongly typed spaces, where every room has a very
specific role in people’s or an organisation’s flow. There-
fore we expect our approach to be better-suited for envi-
ronments where rooms can be represented as classes rather
than coordinates. Themotivation for our approach is to allow
researchers to utilise data from an underlying localisation
system, and focus more on the semantic visualisation and
analysis of indoor spaces and people’s flow between them.

We validate our approach on data collected at the Northern
Health hospital in Melbourne. We deployed a Bluetooth Low

https://doi.org/10.1145/3341162.3349329
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Energy (BLE) indoor localisation system that uses proximity
to detect the presence of people in rooms. Unconvention-
ally, our system adopts a flipped scenario where beacons
are carried by users and phones are anchored to walls. The
collected RSSI values are first smoothed out, grouped and
finally encoded to identify the presence of people in rooms,
and subsequently their movement between rooms. We en-
code movements as a discrete time series of characters, and
the resulting string effectively represents the time spent
in each room. We measure the accuracy of our system by
comparing the encoded sensor data with on-site collected
ground truth using string similarity algorithms. Our results
show that even with a simple proximity based localisation
system, our approach can accurately detect and represent
movement through rooms. We discuss how a string-based
representation enable researchers to use existing string anal-
ysis algorithms used for pattern detection.

2 RELATEDWORK
Indoor localisation[4] has been an active area of research
for decades. Although there is currently no commercially
technological standard for indoor localisation, many of the
applications rely on radio signals and RSSI values[7]. Most of
the research aims at either developing new Indoor Position-
ing Systems (IPS) or improving the existing ones’ accuracy.
Stemming from the system design and accuracy, there is a
multitude of applications: People and asset tracking[3, 14],
proximity-based services such as location-based advertise-
ments or museum guides[18], indoor navigation both for
people and robots[5]. Although these applications address a
wide range of challenges, there are few systems that analyse
and study the way people move around in indoor environ-
ments.

Indoor Localisation and Mobility
Yassin et al.[26] provide an extensive overview of the current
available techniques. Most of the techniques use signals such
as Infrared (IR) or Radio Frequency (RF) coupled with metrics
such as: Time of Arrival (ToA), Time Difference of Arrival
(TDoA), Received Signal Strength (RSS) and Angle of Arrival
(AoA) to compute the location. Thesemetrics are usually then
analysed with techniques such as trilateration to determine
the position in relation to other nodes.

One of the earliest projects on indoor localisation with sen-
sor networks was by Want et al.[23], with the Active Badge
where users carried a badge which emitted unique IR signals
picked up by sensors deployed in predefined locations. Active
Bat1 [10] and Cricket Location Support System[17] applied
ultrasound technology to substantially increase in the over-
all accuracy in measuring distance and inferring location.

1The BAT Ultrasonic Location System. http://www.uk.research.att.com/bat/

With the proliferation of Radio Frequency (RF) transmitters,
mobile computing devices and local-area wireless networks
(LANs), the need for additional infrastructure was greatly
overcome. Systems such as RADAR[1] and LANDMARC[16]
relied on existing infrastructure and Wi-Fi Access Points to
collect Received Signal Strength (RSS) values from RF- based
devices carried by users. However, some systems focused
more on indoor mobility. Hnat et al.[12] mounted ultrasonic
range finders on doorways to detect people moving through
them and infer their presence in the room.
In recent years Bluetooth became pervasively available

on consumer devices, which can be used to locate people
indoor through small Bluetooth tags placed throughout a
building[27].
Bluetooth localisation is based on RSSI and techniques

such as fingerprinting [20] or triangulation [22]. Most of the
RSSI-based analysis use a path loss equation and RSSI values
in time to estimate the distance [19]: PL = PLd0 + 10n ×

loд10(
d
d0
) + Xσ where PLd0 is the RSSI value at the distance

d0 used as reference. For simplicity, usually d0 assumes the
value of 1, meaning that PLd0 would be the RSSI value at the
distance of 1m from the receiver. Finally, d represents the
actual distance from the receiver and n is the path loss expo-
nent which depends on the environment: Free space, indoor
open-floor, or indoor with obstructions. Previous studies
investigated the feasibility of using BLE beacons in indoor
localisation [8], and found out that RSSI greatly varies ac-
cording to the environment and to the amount of deployed
beacons. Usually, more beacons correlates with an improved
accuracy.
The recent Bluetooth Low Energy (BLE) subsystem and

Apple’s own implementation, iBeacon [15] helped reduce
battery consumption and maintenance costs through small
and inexpensive devices. Tests[9] show benefits in using BLE
technology with an error < 2.6m in 95% of measurements for
a dense BLE network and up to an error of < 4.8m for a more
sparse deployment, an improvement WiFi based systems.
Unfortunately, conditions are not always ideal and dif-

ferent obstacles and materials make RSSI readings not re-
liable enough and need some further processing. The pre-
processing step usually adopts the usage of smoothing al-
gorithms. Deak et al.[6] compared smoothing algorithms
for RSSI and localisation such as Fast Smoothing, Median
Filtering, and Kalman Filtering. The 1-dimensional median
filtering scored the lowest average error due to its ability to
nullify small signal’s variations.

Considering the performance of BLE and the low cost for
BLE beacons, we adopted this technology in our localisa-
tion system. Additionally, due to our requirements of having
minimal knowledge of the physical space, we decided to not

http://www.uk.research.att.com/bat/
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rely on the path loss model. Instead, we used a median fil-
tering on a proximity based RSSI system. Although beacons
are usually mounted on the walls and user as anchor nodes
for fingerprinting or trilateration, we use an inverted ap-
proach where people carry BLE beacons and active trackers
are mounted on the walls.

Spatial models
Our approach is based on the notion of "strongly typed"
rooms or locations that can be represented as a class instead
of a set of coordinates. Once we obtain the RSSI values and
infer the presence of a person in a room, we then represent
this data in a semantic manner. In the literature, spaces are
often represented as graphs and analysed through algorithms
based on graph theory.
Becker et al.[2] summarise existing models for indoor

spaces. Two classes of coordinates can be identified, geomet-
ric and symbolic. Geometric location models define positions
in terms of coordinate tuples and geometric figures, and
can provide information about the distance to be traveled
to move across rooms. Geometric models often require an
accurate modeling of the building’s spaces.
On the other hand, proximity and fingerprinting based

localisation systems provide information in terms of abstract
symbols such as sensor identifiers (WiFi AP, BLE beacons
or smartphones identifier). Symbolic location models ab-
stract from the spatial properties and only take into account
the relationships between spaces. Graph-based models are
a type of symbolic model which use vertices as symbolic
coordinates representing the rooms and edges to represent
a connection between two rooms. Graph-based models are
the only ones that support the definition of "connected to",
making them suitable for modeling user movement. Graph
models are often coupled with proximity analysis [11] to
detect the presence of devices in rooms. Jensen et al.[13]
modeled people’s movements through a graph based model
representing room relative locations and accessibility, and a
graph of deployed nodes.
Analytics based on movements from indoor localisation

are not new, but it is often based on occupancy data which
can differ with different localisation systems. Wang et al.[21]
propose a way to infer indoor location from occupancy data
and note how occupancy datamay not preserve privacy. Yaeli
et al.[25] at IBM applied indoor localisation to understand
customers behaviour by tracking shoppers and matching
their data with POS data. Similarly, Yada [24] studied cus-
tomer behaviour in stores through RFID technology, repre-
senting patterns as a character-encoded time series, parsed
with the EBONSAI parsing system. The movement data is
encoded with two attributes: a character representing the
shop section, and a number representing the ratio of time

spent by the customer in each section on the total time spent
in the store.
For instance, a customer x who spent 11 minutes in the

store, visiting section A for 2 minutes, then section B for
3 minutes, section C for 4 minutes, and finally section B
again for 2 minutes can be represented asABCB, where each
character encodes the ratio over the total time spent in the
shop.
To the best of our knowledge, the literature focuses on

either location accuracy or time spent in each room without
considering the rooms and the building as a whole. In some
cases such as Doorjamb, the room presence is inferred by
non-tracking sensors and might not be applicable to envi-
ronments with large or even absent doorways. Typically, we
find that rooms are considered as a proxy for people’s flow,
and analyses tend to shift the focus on their connection and
how people move between them. Little work has considered
how people’s movement captures, enacts, or deviates from
operational processes or business processes that may actu-
ally drive people’s movement. The work by Yada focuses
on short trips and a single room, while we hope to apply
a revision of this representation to a larger scale, sensing
room-scale presences over long-term periods.

(a) Beacons (b) Beacons size

(c) Android phones
Figure 1: Android devicesmounted to the walls, and beacons
handed out to users.

3 PROPOSED APPROACH
We developed and deployed an indoor localisation system in
a hospital setting to study the way staff (nurses, surgeons,
doctors) and patients move throughout the building. The
hospital setting provides a set of challenges which heavily
impacted our design of the underlying localisation system:

• Nurses, surgeons or patients might not be carrying
their phones at all times due to both privacy and hy-
giene concerns. This is challenging since most of the
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localisation systems rely on the deployment of beacons
(or any kind of signal broadcasting device) as fixed an-
chor nodes, and smartphones as active trackers.

• Hospitals are critical environments where efficiency is
essential. The carried tracking device should therefore
be small, non-invasive and lightweight.

• Due to the nature of hospitals, deploying additional
infrastructure would disrupt the hospital’s workflow.
WiFi-based localisation systems rely on the deploy-
ment of a dense network or WiFi Access Points.

After considering these issues and challenges we opted
for an inverted BLE-based localisation system. In our system
(Fig. 1) users such as nurses or patients carry a RadBeacon
Dot, a BLE-based beacon that broadcasts its signal at config-
urable intervals and strength. We deployed Android phones
as anchor nodes in each room of the floor and developed a
custom Android app to continuously scan the surroundings
for BLE beacons. The beacons use Apple’s iBeacon standard.

Preliminary tests
The advertisement rate and transmission power of the bea-
cons play an important role in the beacon’s battery life. For
this reason we ran a preliminary test to assess trade-off in
terms of battery life and frequency of advertisements. We
positioned 9 beacons with a combination of distance (at 1,2
and 5 meters from the tracker) and transmission rate (at 1,5
and 10 Hz), and a transmission power of -12 dBm. The re-
sults in Fig. 2 show how packets’ inter-arrival time greatly
increases at low advertisement rates even at close distance.
On the other hand, a higher advertisement rate translates
to shorter inter-arrival times also due to a shorter interval
between possible missing packets. From this figure we iden-
tify a sweet-spot between 5 and 10 Hz, which can achieve
a constant stream of high frequency packets even at longer
distances.
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Figure 2: Advertisements per delta time (scaled)

We conducted a test at the hospital to see how the trans-
mission power influences the maximum tracking distance.
Results showed a high variance in the tracking distance,
ranging between 3-6 meters with a transmission power of -9

dBm. Finally, considering an average walking speed of 1.4
m/s, we opted for a transmission rate of 5 Hz, to ensure that
even in case of emergency a person wearing a beacon would
not be missed by trackers in-range.

4 EVALUATION
We deployed a total of 16 phones in each room of the surgery
ward (Fig. 3), with one per room except for larger rooms (with
one side larger than 3 meters, which could potentially lose
packets). We also deployed 20 beacons to 20 staff members
who carried beacons for a total of 2 weeks. In addition we
conducted our own independent validation of the system by
having our researchers carry tags and walk throughout the
ward while manually recording their trip details.

Figure 3: Hospital floor plan and deployed phones

The Android smartphones run a custom developed appli-
cation that constantly scans the surrounding for beacons,
capturing the follwing data and periodically uploading it to
a server:

• Timestamp: The epoch time at which a beacon’s packet
was received.

• ID: The iBeacon minor and major are used to identify
the beacon.

• RSSI
• UUID and IMEI of the phone that received the packet.

Filtering
We designed the localisation system to detect the presence of
beacons in each room by using proximity with RSSI values
over time. Drawing from the existing literature [6], tests
showed the median filter as an accurate smoothing algorithm
when compared to our collected ground truth Fig.4a.

The Median filter allows us to retain time-encoded infor-
mation while discarding the noise caused by the Bluetooth
signal fluctuations. In our deployment, we are more inter-
ested in correctly classifying the room-level position of the
beacon, making sure it is correctly detected in the room it
which it was at the time. Due to the limited space on the



Towards context-free Semantic Localisation UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom

Holding

OR2

OR4

OR3

OR1

Hallway

DPU1

Recovery1

DPU2

Recovery2

Reception

Anaes1

Anaes4

Anaes3

Anaes2

15:08 15:09 15:10 15:11 15:12 15:13 15:14 15:15 15:16 15:17 15:18 15:19 15:20 15:21
Time

R
oo

m

−100

−90

−80

−70

−60

−50

−40
RSSI

RSSI

−100

−90

−80

−70

−60

−50

−40

(a) Raw RSSI and ground truth (grey line)
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(b) Filtered RSSI (points) and reconstructed trip (in blue)
Figure 4: Reconstructing the movement of a surgeon through the surgery ward (x-axis: time. y-axis: location)

rooms walls, it is often the case that two phones can be
mounted on the shared wall in different rooms. From our
tests, signals from beacons in one room can be picked up
by phones mounted on the shared wall in an adjacent room,
with a weaker RSSI. We smoothed the RSSI values through
the median filter per room, to ensure rooms do not influ-
ence each other. Finally, we select the room where a beacon
was most likely to be by selecting the maximum median
RSSI in each time window across all rooms. In extreme cases
where two or more rooms reported the maximum median
RSSI in the same time frame, we relied on packet counting
and selected the room which received the highest amount
of packets in the time frame. The results in Fig. 4b show the
final smoothed signal and the reconstructed trip (blue line)
compared with the collected ground truth (grey line).

To reconstruct people’s movements we used a Run-Length
Encoding (RLE) to join the resulting smoothed data points in
a time-series. The maximum RSSI values from the previous
step are connected with at least 2 consecutive values from
the same room. For instance, if the maximum RSSI for a
beacon B was detected in room R for a period of 10 minutes,
the resulting RLE would return a single observation that
contains the start and end times where B was deemed to be
in room R, and then presumably move to another room.

We empirically identified certain thresholds and heuristics
to filter the resulting trips:

• Trips to the same room which are not separated by
trips in different rooms can be merged into a single
trip if the distance between the end of the first and the
beginning of the second one is shorter than 5 minutes.
This is due to the size of the hospital floor and the size
of the rooms.

• If a beacon was nowhere to be tracked and there are
no trips in any room in the last 5 minutes since the last
trip, we consider the beacon as lost as no assumptions
can be made about its location.

Movement and pattern analysis
We propose to represent the movement over time as a string
of time-encoded characters so that it can be analysed by var-
ious string and pattern-matching techniques. Additionally, a
string representation allows the use of Regular Expressions
to define and detect patterns in the resulting string. For in-
stance, consider the trip shown in Table 1. We can represent
this trip as a string in which each letter defines the presence
of the beacon in a τ time window. In this example, if the
time window is of size w = 5 minutes, we can rewrite the
movements as a string:

AABBBBBBCCCCCCCCAAAAAA____DDDDDDBBBB

Performance
Our results show that the reconstructed trips from the raw
RSSI data closely match the collected ground truth. We quan-
tify errors as the measure of distance between the ground
truth and our result, using string similarity algorithms such
as Levenshtein and Optimal String Alignment. The error is
computed as the ratio between the string distance and the
total length of the string. The results shown in Fig. 5 show
the effect of the median time window size (used during fil-
tering) over the RSSI readings. The disparity between the
ground truth (as collected by researcher walking around the
hospital) and the estimated trip (as inferred by our system)
increases as the time window increases. This suggests that

Table 1: String representation of a trip. Each character rep-
resents a period of 5 minutes.

Room Ch. Start End Dur. String
Preparation A 0 10 10 AA
Anaesthesia B 10 40 30 BBBBBB

Operating Room C 40 80 40 CCCCCCCC
Preparation A 80 110 30 AAAAAA
Unknown _ 110 130 20 ____
Recovery D 130 160 30 DDDDDD

Anaesthesia B 160 180 20 BBBB
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the granularity level of the collected ground truth plays an
important role in the measurement error. Furthermore, a
larger time window would not be able to represent room
stays shorter than the time window itself.

In our observations we notice that patients tend to spend a
larger portion of their time in a single room while nurses reg-
ularly move between rooms. Given this range of behaviours,
we observe that a window size of 24 seconds provides the
best results with our collected ground truth. Fig. 6 shows
how the error changes as the time window for each character
in the string increases. A larger time window per character
in the string representation also impacts the string length. If
trips are shorter than the time window, we only report the
first room during that period. The choice of the string time
window has a lower impact compared to the median time
window.
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tering) on observation errors. As the time window increases,
the error (distance from the ground truth) increases.
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5 DISCUSSION AND CONCLUSION
The flexibility of our proposed approach can be highlighted
if we consider ways in which the collected data can help
organizations understand and analyze people’s movements
inside bulidings. For example, we refer back to the trip shown
in Table 1. Given the string that represents this trip, we can
define a regular expression to detect patterns. For instance
if we define the following pattern: /C{5}A+_∗D/д we can

detect a pattern of 5Cs in the string followed by at least one
A, some or no empty characters, and ending with a D. By
running this regular expression over our string we can then
identify the presence of the pattern:

AABBBBBBCCCCCCCCAAAAAA____DDDDDDBBBB

Considering the window sizew , the pattern we were look-
ing for identifies the following amount of time spent in each
room:

• 25 minutes in the Operating Room (C), followed by
• at least 5 minutes in the Preparation room (A), and
• 5 minutes in the Recovery room (D).

Our example shows how representing movement as a
string enables us to use string processing algorithms and
techniques – such as Regular Expressions – to define and
even query trips in the whole data-set of reconstructed move-
ments. Effectively, this allow us to describe the processes
in a building, and identify instances that match or deviate
from a process. For example, in our discussions with hospital
administrators and surgeons, we have come to understand
that a hospital expects that after a patient is anaesthetized
they move immediately into the operating room. Hence, we
can search and identify those segments of traces where a
patient spent more than 5 minutes in the anaesthesia room
but did not subsequently go to the operating room. That
would be one example of operating room "down-time", and
hospital managers who seek to improve operations would
love to have statistics and information on how often this
happens, for which patients, over long periods of time. In
our case, once we identify all instances matching this pattern,
we would be able to provide aggregate summaries of when,
why and how the down-time occurred, and present them to
hospital administration for taking action and setting policies.
Furthermore, having access to real-world logs from hospi-
tals would allow us to further improve our system accuracy,
comparing our operating room down-time results with the
data collected manually by the hospital.

Beyond the use of Regular Expressions, it is interesting to
note that a Context-Free Grammar may be a useful tool to
analyse this data. While regular expressions can detect the
presence on a pattern, it is hard to identify deviations from
expected patterns. Using a context-free grammar, we can
define business processes as a set of rules, and then searching
through the string-encoded trips we can identify where and
when we have deviations from the expected patterns. This is
akin to a parser complaining about a syntax error in a source
code: it is possible to identify which rule is broken and at
which point in the text. This presents an additional direction
that we are considering for our future work. It should be
noted that a Context-Free Localisation is not directly related
to the use Context-Free grammar: A context-free localisation
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system aims at detecting movements without training or
without site-specific parameters, and a context-free grammar
is one of the ways to achieve that.

In this paper we propose a way to analyse RSSI proximity
data to detect indoor movements across rooms. Additionally,
we propose a string-based representation for capturing and
analysing indoor movement. We deployed a BLE localisation
system in an hospital which uses an inverted design where
people cannot carry their smartphones at all times, which are
instead mounted on the rooms walls. Using RSSI proximity
and a median filter we can then localise the carried beacons
in each room. Our representation can be used with other
indoor localisation systems as it works on a middle layer of
abstraction and it is not based on coordinates. We compared
the reconstructed movements with our collected ground
truth by using string similarity algorithms. Our results show
that this representation can be accurate and can be used
together with existing string and pattern analysis algorithms
to study indoor mobility and flow.
In the future we will aim to develop tools for further

analysing longitudinal indoor mobility datasets, querying
those datasets, and visualising them. We also aim to use our
string-based representation with other underlying localisa-
tion technologies such as WiFi. Finally, we plan on compar-
ing our representation with existing graph-based models,
and study the feasibility of using this model for pattern de-
tection and machine learning algorithms.
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