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ABSTRACT
A major challenge in human activity recognition over long
periods with multiple sensors is clock synchronization of
independent data streams. Poor clock synchronization can
lead to poor data and classifiers. In this paper, we propose a
hybrid synchronization approach that combines NTP (Net-
work Time Protocol) and context markers. Our evaluation
shows that our approach significantly reduces synchroniza-
tion error (20 ms) when compared to approaches that rely
solely on NTP or sensor events. Our proposed approach can
be applied to any wearable sensor where an independent
sensor stream requires synchronization.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing.
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1 INTRODUCTION
Multiple wearable and ubiquitous sensors are often used to
collect and interpret participants’ behavior, activities, as well
as sense the surrounding context. One of the main challenges
for multiple sensor systems is clock synchronization [1, 6].
Precise clock synchronization is important during training
and deployment[12]. Furthermore, as the internal clocks do
not run at the same rate, accumulated clock drift over time
can cause synchronization misalignment across multiple
sensors leading to reduced modeling capabilities [4, 6].
In this paper, we demonstrate an approach to synchro-

nize clocks among multiple wearable devices to enable more
accurate data collection. Our approach uses a combination
of NTP (Network Time Protocol) and context markers. We
define context markers to be identifiable physical actions
that are known to have been simultaneously detected by
multiple sensors. We then evaluate the performance of each
method separately and in combination on multiple Myo arm-
bands1. Our results show that our hybrid approach reduces
the accumulating error to around 20 ms over 15 hours, out-
performing the performance of standalone NTP (250 ms) and
standalone context markers (1312 ms). Our method is appli-
cable to other types of wearable devices and for scenarios
where data synchronization is required.

2 RELATEDWORK
Clock synchronization is a well-known problem within the
UbiComp community[6, 10]. One of the widely adopted syn-
chronization methods is based on message passing and time
distribution protocols, including the Network Time Protocol
(NTP) [7] and Precision Time Protocol (PTP) [2]). In their
work, Sundararaman et al. [12] state that these network-
based clock synchronization technologies exchange specific
messages to align clocks of distributed sensors. However,
these protocols increase the overhead of sensor network
communications and sensors’ energy consumption.

1https://support.getmyo.com/hc/en-us
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Whereas many devices (e.g., laptops, smartphones) have
internal clocks and do not need receivers to assign an abso-
lute timestamp, a wide range of wearable equipment (e.g.,
Myo armband, Empatica E4 2 wristband) requires a receiver
to assign such a timestamp during data collection. For these
cases, Bannach et al. [1] propose an event-based approach
to synchronize data streams by periodically performing pre-
defined synchronization context markers (e.g., ‘clap’, ‘push-
release’ and ‘shake’), which can be automatically detected
and used for clock synchronization across multiple wearable
sensors. The authors suggest using well-defined automated
synchronization context markers to identify stream synchro-
nizations (e.g., accelerometer, sound, force, motion tracking),
and achieve a synchronization error of 300 ms for more than
80% of the stream.
However, this synchronizing approach requires partici-

pants to perform predefined synchronization context mark-
ers throughout the experiments, which may result in inter-
ruptions. Unlike Bannach et al. [1], in our work we limit our
event to one sequence of context markers – hitting the table
with the fist several times in sequence – which we perform
at the beginning of the experiment (not periodically through-
out the experiment). We use these context markers to create
a sequence of pulses for detecting synchronization points
before the Myo armbands are placed on the user. This helps
us eliminate missing inserted events as well as temporal
jitter [1].

3 PROPOSED APPROACH
Our proposed clock synchronization approach consists of
three steps. In the first step, we use NTP to record the re-
ceivers’ time drift over a 15-hour time period. This step is
performed only once throughout the whole experiment and
requires Internet access, while Step 2 and 3 are performed
offline. In the second step, we generate a sequence of context
markers (‘hitting on the table with the fist’) before starting
the data collection procedure. In the last step, we use the
context marker (Step 2) to align clocks across multiple sen-
sors, and the NTP records (Step 1) to maintain the clock
synchronization over long periods.

Network Time Protocol (NTP)
Prior research demonstrates that an NTP service is able to
provide time offsets between clients and Coordinated Uni-
versal Time (UTC) [8]. However, network congestion and
asymmetric routes may cause errors in excess of 100 ms [8].
In addition, time drift between wearable sensors and their re-
ceivers is another issue that cannot be overlooked, as it drifts
for more than 1000 ms per day and leads to accumulation of

2https://www.empatica.com/en-int/research/e4/

Figure 1: 15-hour NTP records from one Myo armband re-
ceiver observed in three different days

Figure 2: Signal pattern of ‘hitting the tablewith the fist’ con-
text marker from accelerometer (X-axis)

errors [12]. Based on these constraints, we use the ntplib3
Python library to record the changes of time offset from each
Myo armband receiver (as each of the receivers has differ-
ent clock drifts) and the NTP service is called every 10,000
ms over a 15-hour time period, while clock synchronization
services from receivers are turned off. From Figure 1, we ob-
serve that interpreted clock drift rate from one Myo armband
receiver is linear, which is in line with prior research [9].

Detecting Synchronization Context Markers
It is common to use context markers to align clocks between
multiple sensors. For example, Bannach et al. [1] proposed
3https://pypi.org/project/ntplib/
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three predefined synchronization context markers, including
‘clap’, ‘push-release’ of a button and ‘shake’. Based on ‘clap’
and ‘push-release’ context markers, whose signal patterns
have a stable silence and are followed by a fast pulse, we
adopt a new context marker of ‘hitting the table with the fist’
and show its signal pattern in Figure 2. To perform a ‘hitting’
context marker, we place all armbands close to each other on
a table (to ensure that the starting point of the context marker
is the same for all the devices), and hit the table with the fist
to create short pulses. We used ‘hitting the table with the fist’
context markers for aligning clocks between multiple Myo
armbands, because it is easily detected by accelerometers of
the devices. The synchronization point is determined as the
start point of the signal.

Combining NTP and Context Markers
After collecting a sequence of ‘hitting the table with the fist’
context markers, we first try to match these synchronization
points across the individual data streams. As the armbands
are placed close to each other on the table, a sequence of
synchronization context markers A = {a1, . . . ,an} can be
sensed simultaneously and paired easily. Also, since the sig-
nal itself travels at the speed of more than 1.5km/sec, the
error is negligible due to this placement.

The time difference between paired context markers from
different Myo sensors can be calculated as di = t(ai ) − t(bi ),
where ai and bi refer to the same context marker received
by Myo armband a and b. Ideally, these time differences are
equal (d1 = d2 = · · · = dn ). However, due to communication
latency and packet loss, time differences can vary. We as-
sume the time differences D follow a Gaussian probability
distribution, and if time differences are not in 90% confidence
interval, we consider them as outliers and remove themwhen
calculating average time differences.

We process NTP records using a Theil-Sen Linear Regres-
sion [11, 13] to minimize the influence of network status. We
then use the slope obtained from the generated Theil-Sen esti-
mator to predict the clock drift of the Myo armband receivers.
The synchronization formula for converting a timestamp of
receiver A to that of receiver B is :

Convert(ta) = tA − D + (ta − tA) ×
1 − slopeb
1 − slopea

≈ tb (1)

4 EVALUATION
We compare the performance of NTP and event-based syn-
chronization approaches with our proposed hybrid approach.

As we did not have ground truth on the true drift for NTP
records, we followed recommendations proposed by Li and
Sinha [5] and Luo et al. [6]. Hence, we applied linear regres-
sion to model true drift. We calculated the synchronization
error of NTP records as a difference between the predicted
values and observed values.

Table 1: Summary of NTP records from three different Myo
armband receivers

Receivers Error (ms, max) Clock Drifts (ms, daily)

Macbook Pro (2015) 220 3130
Alienware 15R3 260 320
Alienware 15R4 80 1050

Table 2: Synchronization error for event-based approach and
proposed hybrid approach

Hour Event-based (ms) Proposed Approach (ms)

0 0.3 0.3
1 99 16
2 246 9
3 329 18
4 408 21
5 531 21
6 627 19
15 1310 18

Table 1 gives the summary of NTP records from three dif-
ferent Myo armband receivers, whose daily time drifts vary
between 300 ms and 3130 ms. Due to inconsistent network
latency and network congestion, the NTP records contain
noise and the maximum error reached 260 ms over the 15-
hour experiment, which is less than reported in literature
(1800 ms [6]).

For the event-based synchronization approach, the pro-
posed ‘hitting the table with the fist’ context marker is per-
formed once at the beginning of the experiment to synchro-
nize clocks between two Myo armbands. Due to the different
clock drifts of different armband receivers, the accumulated
error increases dramatically with time, and Table 2 shows
the error increase from 0.3 ms (at the time of synchroniza-
tion (0)) to 1310 ms (after 15-hour time duration) as compare
to ground truth data. Ground truth data in this case is the
timestamp from receiver B mentioned in Equation (1).
Compared to the NTP and the Event-based models, the

hybrid model has stable performance, and Table 2 shows
that the accumulating error is reduced to 20 ms during the
15-hour time period. Figure 3 shows the performance of the
event-based model and our hybrid model as compared to
ground truth data.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a method for clock synchronization
for multiple wearable sensors. We focus on Myo armbands
in particular; however, we argue that our method is also
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Figure 3: Performance of event-based approach and pro-
posed combined approach as compared to ground truth

applicable to other wearable sensors. We use a combination
of NTP and Event-based clock synchronization approaches to
minimize the clock drift between multiple sensors and their
receivers. During a 15-hour experiment, we show that the
error is significantly lower when compared to the individual
approaches, and appears saturated. Although, we run our
experiment for a short time period (15 hours), we argue
and demonstrate that it is enough to register clock drifts.
Furthermore, running the experiment for longer time period
will not increase synchronization error, as clock drift rates
are constant [9].
In the future, we will focus on applying our combined

approach on other wearable devices (e.g., Empatica E4 wrist-
band). We also plan to use other clock synchronization meth-
ods (e.g., clock synchronization with GPS [3] or Precision

Time Protocol (PTP) [2]) to further reduce the synchroniza-
tion error.

ACKNOWLEDGMENTS
Chaofan Wang is supported by a PhD scholarship provided
by the Australian Commonwealth Government Research
Training Program.

REFERENCES
[1] David Bannach, Oliver Amft, and Paul Lukowicz. 2009. Automatic

Event-Based Synchronization of Multimodal Data Streams from Wear-
able and Ambient Sensors. In Smart Sensing and Context, Payam Bar-
naghi, Klaus Moessner, Mirko Presser, and Stefan Meissner (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 135–148.

[2] John Eidson and Kang Lee. 2002. IEEE 1588 standard for a precision
clock synchronization protocol for networked measurement and con-
trol systems. In Sensors for Industry Conference, 2002. 2nd ISA/IEEE.
IEEE, 98–105.

[3] Elliott Kaplan and Christopher Hegarty. 2005. Understanding GPS:
principles and applications. Artech house.

[4] CA Latha and HL Shashidhara. 2010. Clock synchronization in dis-
tributed systems. In 2010 5th International Conference on Industrial and
Information Systems. IEEE, 475–480.

[5] Dong Li and Prasun Sinha. 2012. Rbtp: Low-power mobile discovery
protocol through recursive binary time partitioning. IEEE Transactions
on Mobile Computing 13, 2 (2012), 263–273.

[6] Chu Luo, Henri Koski, Mikko Korhonen, Jorge Goncalves, Theodoros
Anagnostopoulos, Shin’Ichi Konomi, Simon Klakegg, and Vassilis
Kostakos. 2017. Rapid clock synchronisation for ubiquitous sensing
services involving multiple smartphones. In Proceedings of the 2017
ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2017 ACM International Symposium on
Wearable Computers. ACM, 476–481.

[7] D. L. Mills. 1991. Internet time synchronization: the network time
protocol. IEEE Transactions on Communications 39, 10 (Oct 1991),
1482–1493. https://doi.org/10.1109/26.103043

[8] David L Mills. 2012. Executive summary: computer network time
synchronization. University of Delaware, Newark, DE, USA, Tech. Rep
(2012).

[9] Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis. 2000.
Continuous clock synchronization in wireless real-time applications.
In Proceedings 19th IEEE symposium on reliable distributed systems
SRDS-2000. IEEE, 125–132.

[10] Prakash Ranganathan and Kendall Nygard. 2010. Time synchronization
in wireless sensor networks: a survey. International journal of ubicomp
1, 2 (2010), 92–102.

[11] Pranab Kumar Sen. 1968. Estimates of the regression coefficient based
on Kendall’s tau. Journal of the American statistical association 63, 324
(1968), 1379–1389.

[12] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. 2005.
Clock synchronization for wireless sensor networks: a survey. Ad Hoc
Networks 3, 3 (2005), 281 – 323. https://doi.org/10.1016/j.adhoc.2005.
01.002

[13] Henri Theil. 1992. A rank-invariant method of linear and polynomial
regression analysis. In Henri Theil’s contributions to economics and
econometrics. Springer, 345–381.

https://doi.org/10.1109/26.103043
https://doi.org/10.1016/j.adhoc.2005.01.002
https://doi.org/10.1016/j.adhoc.2005.01.002

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	Network Time Protocol (NTP)
	Detecting Synchronization Context Markers
	Combining NTP and Context Markers

	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

