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ABSTRACT 
We develop a Markov state transition model of smartphone 
screen use. We collected use traces from real-world users 
during a 3-month naturalistic deployment via an app-store. 
These traces were used to develop an analytical model 
which can be used to probabilistically model or predict, at 
runtime, how a user interacts with their mobile phone, and 
for how long. Unlike classification-driven machine learning 
approaches, our analytical model can be interrogated under 
unlimited conditions, making it suitable for a wide range of 
applications including more realistic automated testing and 
improving operating system management of resources. 
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INTRODUCTION 
We present a probabilistic model that captures statistical 
properties of smartphone usage, and can make runtime 
probabilistic estimations. Specifically, we have created a 
Markov model variant that describes the probability of 
observing different events associated with interacting with a 
smartphone’s screen. Our model captures four important 
screen events that can be observed on smartphones: screen 
is turned on, turned off, locked or unlocked. 

Our model estimates the probability of observing one of 
these events based on the event that was most recently 
observed and how much time has elapsed. In addition, our 
model can take into account context: the varying battery 
levels, time of day, day of week, and 3 distinct user profiles 
in calculating its estimations. To develop our model, we re-
analysed data from a 3-month study whereby 218 users 

were observed using their smartphones on a daily basis in 
realistic settings [19]. 

Markov model variants, such as the one we present here, 
are typically used to describe systems that have a set of 
observable states or features that are mutually exclusive, 
and entail a notion of probability in how transitions 
between states take place. Such models consist of the 
“states” themselves (i.e., the smartphone screen events that 
Android broadcasts), and a transition matrix that defines 
the probabilities of moving between these states. Broadly 
speaking, the analysis of such models can offer insights into 
emergent system behaviour, and can help develop strategies 
in managing the systems. 

Due to the simplicity and power of this modelling approach, 
it has been very effective at modelling system behaviour 
across a variety of domains, and a very rich literature exists 
on using State Transition models. Such idealized models 
can capture many of the statistical regularities of complex 
systems. For example, the health of a population can be 
effectively modelled using Markov-based techniques, 
which can then be used in assessing health technology, 
developing clinical decision strategies, and conducting 
health-economic evaluation [40]. Most often, state-
transition models are used in the evaluation of risk factor 
interventions, diagnostic procedures, and disease 
management strategies. 

Markov models and their underlying matrix algebra have 
also been proposed as a means of evaluating usability at 
design-time [44,45]. These approaches typically model UI 
elements and forms as states, and using Markov modelling 
can measure usability by estimating the number of 
transitions necessary to complete tasks. However, while 
useful in developing evaluation strategies, not all models 
incorporate a strong notion of elapsed time. This is a key 
contribution we make, which enables us to model how the 
state of a smartphone’s screen evolves at runtime.  

Automated tools for smartphone testing already attempt to 
model interaction at runtime [9,28], but largely rely on 
deterministic test scripts rather than empirical data [19]. On 
the other hand, our model: 

• Can be used to develop realistic engines for automated 
smartphone testing. Our model can generate “synthetic” 
use traces that are highly representative of real-world use, 
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and can take into account contextual variables such as 
available battery, time of day, and user typology. 

• Can help optimize the system resources of a smartphone 
at runtime. The probabilistic nature of our model allows 
the system to make runtime decisions on screen-related 
resource optimisation. 

• Provides a theoretical basis for extending the model to 
describe which applications individuals use and for how 
long. 

Our model focuses on interaction with the screen, and not 
the specificities of applications, their content, the UI layout, 
and settings. While this is a drastic simplification of 
smartphones, it does capture important statistical properties 
about how the phone is used. It is within this broader use 
that specific applications are launched. Just as in the case of 
Markov models used to describe the statistical properties of 
large complex systems (health, ecosystems, economy), our 
model focuses on a particular aspect of smartphones: when, 
how, and for how long they are in use. 

RELATED WORK 
An increasing body of work has begun to look at traces of 
smartphone use in an attempt to construct models of human 
behaviour and performance. For example, previous work 
has looked at how much time people spend using 
applications on smartphones. This has revealed that users 
exhibit “micro-usage” behaviour, i.e. they tend to use 
individual applications in short bursts of roughly 15 
seconds [18], suggesting a strong temporal nature in 
smartphone use. Additionally, research has attempted to 
model from use traces how people touch the screen on 
smartphones [7,25], use the on-screen keyboard [10], and 
even develop keystroke-level modelling of application use 
[26]. An important application of this kind of work is to 
support rapid prototyping and testing of mobile 
applications. For instance, Holleis & Schmidt [27] 
developed a keystroke level model to help in estimating 
task completion times when prototyping smartphone apps. 

Such understanding and modelling of smartphone usage has 
allowed researchers to create intelligent launchers that 
reorder the applications not based on frequency of use, but 
by users’ context, e.g., location, calendar, time of day 
[39,41,49], and infer call-availability [37]. However, these 
models are fine tuned to a broad set of variables which are 
often challenging to obtain simultaneously for practical use 
and are therefore not trivial to evaluate or test. 

The increasing availability of performance data is helping 
us understand better how smartphones are used, but so far a 
practical runtime model of smartphone use has not been 
developed. Such a model would allow us to improve 
resource allocation in smartphones at runtime [35], and also 
develop more realistic automated testing. While many 
automated testing tools do exist, they suffer from lack of 
interaction realism as we describe next. 

Automated testing tools    
As mobile phones begun to increase in popularity, testing of 
applications for phones was largely conducted in closed 
settings usually by manufacturers themselves [1]. Similarly, 
as application stores have become more popular recently, 
and so have their associated software development kits, 
new opportunities and challenges for mobile application 
developers emerged. For instance, mobile devices exhibit a 
rapid evolution and use of multiple standards, protocols and 
network technologies, while applications increasingly are 
deployed to a variety of platforms and hardware. 
Furthermore, documentation is often incomplete, and 
market trends change frequently. 

To overcome these challenges, it is necessary to create 
models, tools and techniques to evaluate mobile 
applications in a more realistic and contextual manner. 
Previous work has proposed methods to collect the context 
of application usage directly from the users [3,30], which 
can then drive application development and testing. An 
alternative is the use of logging software on mobile devices 
to capture users’ application and device usage [20]. 
Although useful, these techniques require time, resources 
and recruiting potential application users. This motivates 
the need for tools that support automated usability 
evaluations and testing [27]. 

The automated testing of user interfaces is not a novel 
concept. There exist a variety of suites for testing desktop 
usability [31], desktop content adaptation [15], mobile 
content adaptation [32], and web interfaces [4]. Beyond the 
desktop, for mobile form factors it has been suggested that 
automated tests are a cheaper and quicker alternative to 
field tests [29]. Some previous work has focused on 
facilitating UI testing on mobile platforms. For instance, 
Satoh’s framework [38] emulated a mobile device at the 
application-level by implementing a mobile agent that 
simulates various network conditions. Kostiainen et al. [33] 
provide a framework for comparative usability testing, 
useful to test the optimal sequence to perform a certain task. 
Similarly, MobileTest [9] is a tool for automatic black box 
test of software on mobile devices. It adopts an event-based 
testing approach to simplify the design of test cases and 
provides reusability of tests using software agents.  

These approaches, however, require source-code 
modification, and effort to manage the multitude of 
handsets required for testing. A recent popular approach has 
been the development of online services that offer to 
conduct automated testing on a variety of hardware devices 
[28]. While these services offer a very realistic hardware 
platform for these tests, they still mostly rely on automation 
scripts that are either: 

• deterministic: they perform a predetermined sequence of 
“touches” on a device, 

• brute-force: they try to “touch” every single component 
on any given screen until the software crashes, or 



• random: they generate software events in a random 
fashion, or allow testers to define which type of events to 
generate (pseudo-random)  [2]. 

Thus, we argue that while automated testing systems have 
greatly matured in terms of hardware realism, they are still 
lacking in terms of modelling realistic interaction and 
usage. An important contribution of our work is to begin to 
model such an interaction between a user and a device on a 
high-level: modelling how users turn on and off their 
phone, and especially modelling the temporal dynamics of 
this interaction, which previous work has shown to be 
temporally skewed [18]. This aspect of the interaction is 
crucial because it is within these boundaries that users 
actually use the applications on their phone – i.e. they do 
not use it when it is off. 

Time-sensitive state transition models 
In our attempt to provide an analytical model of smartphone 
screen use, we have adapted Markov chains.  Since 
Hamilton’s seminal application of Markov models to U.S. 
real Gross National Product growth and the well-known 
NBER business cycle classification [23], time-sensitive 
Markov approaches has been more widely adopted. 
Initially, Diebold et al. [14] and Filardo [21] showed that 
the assumption of a static transition matrix leads to very 
restrictive models for many empirical settings. They 
extended the basic Markov switching model by allowing 
transition probabilities to vary over time. This was 
achieved by incorporating observable covariates, including 
explanatory variables and lagged values of the dependent 
variable. While this approach can be very useful, it does not 
take into account continuous time [6], but rather implicitly 
allows for time to vary the transition probabilities.  

Extending this work, continuous-time Markov chains were 
developed [34]. These make an attempt to replace the 
transition matrix (which entails static probabilities) with 
functions. Their aim is to model how much time a model 
spends in a particular state. This is very relevant to our own 
work, since we are interested in modelling how much time 
the phone screen will spend in a particular state, before 
changing states. However, continuous-time Markov models 
assume an exponential density distribution regarding the 
time spent at each state. We are interested in non-standard 
probability distributions, which we derive empirically. 

Very recently there has there been work on developing 
time-varying transition probabilities for Markov regime 
switching models. Bazzi et al. [6] recently proposed a new, 
dynamic approach to model time variation in transition 
probabilities in Markov switching models. In their model, 
the transition probabilities vary over time as specific 
transformations of the lagged observations, and they are not 
limited to exponential probability distributions. Hence, they 
have extended the observation driven approach to time 
varying parameter models [11]. For the specification of the 
dynamics of the transition matrix, they adopted the 
generalized autoregressive score dynamics of Creal et al. 

[13]; similar dynamic score models have been proposed by 
Creal et al. [12] and Harvey [24]. In our case, the dynamics 
are derived empirically, by analysis of data logs from 
hundreds of users with more than 270,000 observed screen 
state transitions. 

State transition models in literature 
There has been work that directly uses Markov models to 
measure usability and improve design [44,45], although 
without incorporating a strong notion of elapsed time. 
Previous work models User Interfaces as a Markov state 
transition model by identifying the possible states that a 
system can be in (e.g., a microwave cooker may be in one 
of 6 different states), and identifying how pressing various 
items of an interface cause a transition to another state. 

To measure usability, Thimbleby et al. [45] define the 
notions of “Designer’s” and “Knowledge-free” transition 
matrices. For a given task (e.g. transition from state 1 to 
state 2), the designer’s matrix has 1’s on the correct 
transitions and 0’s on the incorrect transitions, thus 
indicating zero chance of making a wrong transition. A 
knowledge-free matrix assumes that all transitions are 
equiprobable, and thus describes a process where buttons 
are pressed randomly. It is proposed that a measure of task 
performance is to calculate the expected number of steps 
needed to complete a task, and a user’s knowledge can be 
affected by providing hints at the interface (e.g. to avoid 
pressing some buttons), thus bringing their expected 
behaviour closer to the designer’s matrix.  

This previous work makes important practical contributions 
towards optimising user interface design. For example, the 
settings menu of a smartphone can be represented as a 
Markov model, and it is possible to calculate the estimated 
number of steps required to complete a variety of tasks. The 
menu can then be restructured, for example by moving 
options or making some buttons less prominent, until the 
expected number of steps is minimised.  

In our work we apply many of the same techniques, but 
instead of optimising UI design and layout, we are 
interested in developing a realistic model of smartphone use 
that can make runtime estimations about what will happen 
next and when, and can be interrogated under a variety of 
conditions. The software running on today’s phones is not 
monolithic anymore, but highly modular: applications can 
be added and removed at runtime, thus being in a constant 
state of flux that designers cannot a-priori analyse. As 
suggested by Thimbleby et al. [45], we have collected a 
large volume of usage data in order to realistically model 
smartphone usage. 

However, due to the complexity and variety of modern 
smartphone interfaces, we have decided to make a 
simplification akin to those used when studying large 
complex systems like health. Specifically, we model 
interaction on a very high level by studying how people 
interact with the screen [46]. 



This simplification has allowed us to build a model that can 
make runtime probabilistic predictions that have a strong 
notion of elapsed time. In other words, while we model 
interaction on a very abstract level, we can be precise about 
when transitions are likely to occur, and also take into 
account contextual variables such as the battery level, day 
and time, and user profile. 

METHOD 
We have obtained and reanalysed a dataset which originates 
from a free and open application called Securacy [19]. The 
application allows users to monitor network activity on 
their mobile phones. Securacy does not affect the screen 
functionality and therefore its operational state. The dataset 
was collected from opt-in volunteers all over the world, and 
contains screen state events with precise timespans. 

We analysed screen usage events that were broadcast by the 
Android operating system (and recorded): turning the 
screen on, turning the screen off, locking the screen, 
unlocking the screen. In addition, the dataset also contains 
application usage and battery logs. The application logs 
were useful to monitor the KeyguardManager process to 
detect instances of screen activity without explicit user 
actions – a notification or incoming call – which might turn 
on the screen automatically.  

For example, when the user receives a phone call, the 
screen turns on, but the KeyguardManager remains locked. 
In Table 1 we show the four distinct events that were 
recorded (on, off, locked, and unlocked). Each event occurs 
at a distinct and non-overlapping point in time (thus 
satisfying Markov’s model Mutually Exclusive & 
Collectively Exhaustive requirement). This is a crucial 
semantic detail: while conceptually a phone screen may be 
ON and LOCKED at the same time, the events triggered by 
the operating system are mutually exclusive and non-
overlapping. 

When the Securacy software detected one of these events, it 
logged the event along with the current clock reading of the 
phone, the unique ID of the device, and the current battery 
level. Because each event has an associated timestamp, the 
events can be sorted in terms of the time in which they 
occurred, and from this sequence of events we can infer 
state transitions on the phone. 

States Description 
0: Off Power to the screen has stopped 
1: On Power to the screen has been activated 
2: Lock Screen locked (to avoid accidental input) 
3: Unlock Screen unlocked (input is enabled) 
Table 1. A list of the operating system states that was 

logged. 

RESULTS 
The dataset sample spans 90 days, between March and May 
2014. In total 218 participants took part in the original 
study, but 21 were discarded because they had contributed 
incomplete data (e.g., no application logs). All participants 

used Android phones, and therefore the state transitions we 
captured are consistent across our sample. In total, we 
retrieved 271,832 state transitions. 

Basic Markov model 
We first present a summary of all data. We calculate the 
probability of transitioning from one state to the next, as 
shown in Table 2. To calculate these probabilities, we 
classify our 278,832 state transitions into one of the 16 cells 
in this table, and then calculate the probabilities across each 
row. Thus, each row sums to 100%. The values on the 
diagonal are close to zero but not all zero, because these are 
events that may occur when abrupt events happen (e.g., the 
phone reboots, battery depletes). 
From \ To 0: Off 1: On 2: Lock 3: Unlock 
0: Off 0.50 33.03 59.40 7.05 

1: On 45.32 2.03 0 52.64 
2: Lock 2.83 95.64 0 1.53 
3: Unlock 80.50 13.58 0 5.92 

Table 2. The Markov chain transition matrix for all 
states. Values are shown in percentages across each row. 

To exemplify, in Figure 1 we provide a visual 
representation of the state transition table, and for each 
transition we provide a textual description of what it 
signifies, what may have triggered it, or what happened 
immediately before the transition (see Table 3).  

There are multiple transitions that our model takes into 
account. Some of them may be counter-intuitive, but the 
reader should keep in mind two important details. First, 
today’s phones typically have a physical power button that 
turns off the screen. In addition, some may have an “auto-
lock” function on their phone, which locks the screen 
whenever it turns off or after an idle timeout.  Pressing the 
power button of a phone may not lock it but instead turns 
off the screen. A small number of users opt to disable the 
auto-lock option, thus turning off their phone screen 
without necessarily locking it. 

 
Figure 1. The four states of a smartphone’s display, 

and what the transitions between them signal. 
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It is important to note that our model is built to describe 
screen events. Since these are the tokens of our analysis, we 
have modelled them as “states” in a state transition model. 
Clearly, a smartphone may be in a variety of states, but for 
our purposes we are effectively treating a screen event as a 
state. This key shift in our perspective will allow us to 
incorporate more variables in our analysis, as we describe 
next. 

Time-varying Markov model 
For every sequential pair of screen events we recorded 
during the study we can calculate the actual time between 
them. This effectively tells us how much time was spent at 
each state in our model. In other words, we can define a 
time-varying Markov model to describe all transitions. To 
characterise the temporal distribution of all transitions, our 
first step is to generate a Gaussian kernel density estimation 
of the amount of time between subsequent events 
(Figure 2). Thus, across all devices in the dataset we 
consider how much time they spent in-between states, and 
subsequently we aggregate all temporal data across all 
devices. The distribution shown in Figure 2 is multimodal, 
and the most prominent local maxima are indicated on the 
x-axis. 

There are multiple noticeable temporal signatures in 
Figure 2, which we attempt to further decompose. To 
achieve this, we plot the kernel density estimation for each 
unique transition (Figure 3), i.e., for each pair of states. In 
other words, the kernel density distribution for transition 
ON-OFF is shown in the strip labelled “1-0”.  In Figure 3, 
we are able to see that the different transitions in our model 
are preceded by varying time periods. 

 
Figure 3. Gaussian kernel density estimation for each 
distinct transition (right y-axis strip). The left y-axis 
indicates the probability that the transition will take 

place after a certain amount of time (x-axis). 
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From\To 0: Off 1: On 2: Locked 3: Unlocked 

0: Off n/a The phone was off and the user 
took action to activate the screen. 

If a phone is configured to 
auto-lock, then when it is 
turned off it will quickly and 
automatically lock itself. 

This can happen when a 
phone-call is received. 

1: On The user was interacting with the 
lock-screen (e.g. checking time) and 
then turned off the phone. This 
transition helps us measure how long 
people glance at their lock-screen 

n/a n/a - to become locked, the 
screen needs to be turned off 
first. 

The user was interacting with 
the lock-screen and then 
unlocked the phone. This 
transition helps us measure 
how quickly people unlock 
their phone 

2: Locked The user is interacting with the lock 
screen and then leaves the phone 
untouched until power-saving turns 
off the screen automatically. 

The phone was not used (i.e. off 
and locked) and the user pressed 
the power button to turn the 
screen on. 

n/a Happens when the phone is 
locked (but the screen is on) 
and then unlocked again. 

3: Unlocked The user was using apps, and then 
pressed the power button to turn off 
the screen. 

The screen turned off (but did not 
lock the phone) and then the user 
took action to turn on the screen. 

n/a - to become locked, the 
screen needs to be turned off 
first. 

n/a 

Table 3. Explanation of what various transitions mean. For each transition we describe what actions happened before 
the transition was made. 

 

 
Figure 2. Gaussian kernel density estimation, 

indicating the probability (y-axis) that a subsequent 
screen event will take place after a certain amount 

of time (x-axis). 
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We interpret Figure 3 as follows. Assuming the phone is 
currently in state 1, we wish to investigate the probability of 
transitioning to another state. One possibility is that the 
phone may transition to state 0, and therefore we look at the 
strip “1-0” and determine that there is an increased chance 
this transition would happen 10 or 30 seconds after arriving 
to state 1. Another possibility is that the phone transitions to 
state 3, and looking at the strip “1-3” we determine that this 
transition is likely to happen within 5 seconds of arriving to 
state 1. There is 0 probability of transitioning to state 2.  
From this example analysis we obtain the intuitive 
understanding that once the phone arrives to state 1, the 
first few seconds are moments where there is high 
probability of transitioning to state 3, but after 5 seconds or 
so it becomes much more likely to transition to state 0. 

Incorporating context into the model  
Next, we proceed to further unpack each strip from Figure 3 
in multiple ways. We first break it down by the hour of day 
in which this transition was observed (Figure 4 top), as well 
as the day of week in which this transition was observed 
(Figure 4 bottom). These two figures show a heat map 
visualisation of when a particular transition is most likely to 
occur (hour of day, day of week), and how much time is 
likely to precede it. 

We interpret Figure 4 as follows. Assuming that we are 
interested in the transition from state 1 to state 0, we can 
look at Figure 4a to see at which times this transition is 
likely to happen. For instance, we observe that this 
transition is most likely to happen after 10 or 30 seconds, 
but we also see how this varies for different times of the 
day. Thus, we find that between 2am and 7am there is a 
reduced probability of this transition being observed.  
Similarly, we can look at strip “1-0” in Figure 4 to 
determine the day of the week where this transition is likely 
to occur. We observe that on Sunday this transition is 
slightly less probable. 

Next, our analysis considers the battery level of the phone 
when a state transition takes place. In other words, at the 
moment a transition was recorded by our software, we also 
noted the battery level at that moment. In Figure 5 we see 
the Gaussian kernel estimation densities of time between 
events (similar to Figure 2), but now color-coded to reflect 
4 possible battery levels. They represent four quartiles of 
battery level as follows:  

• q1 indicates the battery level is between 100%-75%,  
• q2 indicates 74%-50%,  
• q3 indicates 49%-25%, and  
• q4 indicates 24%-0%. 
In addition, we break down each of the four quartile sets 
estimations into hour of day (Figure 6 top), and day of week 
(Figure 6 bottom). We interpret this figure just like Figure 
4. Therefore, we observe that when the battery of the phone 
is above 75% (i.e. in q1) then screen transitions are most 
likely during work hours (Figure 6 top, strip 1), while when 
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Figure 4. Heatmaps showing the frequency (colour) 
of observing state transitions (right y-axis strip) at 
certain hours (y-axis top) or days (y-axis bottom) 

and the amount of time that preceded them (x-axis). 

Figure 5. Individual quartiles of battery level (100%-
75%-50%-25%) Gaussian kernel density estimation. 

Shows the probability (y-axis) that a subsequent 
state transition will occur after a certain amount of 

time (x-axis) given a battery level (colour). 
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the battery level is below 25% (i.e. in q4) then screen 
transitions are more likely outside work hours (Figure 6 top, 
strip 4). 

Incorporating user typology into the model 
Each user exhibited a distinct usage of their smartphone 
screen, with varying temporal signatures in their transitions. 
For instance, in Figure 7 we show the Gaussian kernel 
density estimation for three different devices in our dataset. 
We observe that their use varies considerably. 

 
Figure 7. For 3 devices (colour) we show the Gaussian 

kernel density estimation. This indicates the probability 
(y-axis) that a subsequent state transition will take place 

after a certain amount of time (x-axis). 

Given this diversity, we investigated whether user 
typologies can be identified through clustering. Thus, we 
next proceed to determine whether different users exhibit 

varying behaviour in how they transition between screen 
states. We first visualise the unique “footprint” of each 
participant in terms of transitioning between states, using a 
scatterplot heatmap (Figure 8).  

 
Figure 8. The heatmap visualises the behaviour of each 
device. Each point represents for each particular device 
(y-axis) its propensity (colour) to wait a certain amount 

of time (x-axis) between screen state transitions. 

From Figure 8 we extract an array of frequency values for 
each device (one row corresponds to one device), which are 
effectively a histogram. Each device is one row in this 
figure, and for each row we have the same bins, and a 
frequency for each bin. Using these frequency values we 
can apply k-means clustering iteratively for varying cluster 
numbers, and use the elbow method to generate Figure 9. 
Applying heuristics to this graph, we deduced that the 
optimum number of clusters is 3, each containing 39, 87 
and 70 devices respectively.  

 
Figure 9. An elbow graph showing how varying the 

numbers of device clusters affects the within groups sum 
of squares. 

0.00

0.05

0.10

0.15

0.20

1.3 5 10 2030 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

Pr
ob

ab
ilit

y

Device ID
18
113
127

0

50

100

150

200

5 10 20 30 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

D
ev

ic
e_

id

100
200
300
400

count

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10 12 14

40
0

45
0

50
0

55
0

60
0

65
0

Number of Clusters

W
ith

in
 g

ro
up

s 
su

m
 o

f s
qu

ar
es

0

12

23
0

12

23
0

12

23
0

12

23

1
2

3
4

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

H
ou

r o
f d

ay

40
80
120
160count

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

1
2

3
4

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

D
ay

 o
f w

ee
k

100
200

count

Figure 6. Heatmaps showing the frequency (colour) 
of observing a state transition after a certain amount 
of time (x-axis) for a given battery level (right y-axis 

strip), hour (y-axis top), and day (y-axis bottom). 



Next, for each cluster we plot the respective Gaussian 
kernel density estimation (Figure 10). This figure provides 
a summary description of the transition behaviour for users 
in each cluster. As a result, we are also able to visualise the 
differences between each cluster. For instance, we observe 
that the red line is below other lines when time is less than 
2 mines, and above other lines when time is above 2 
minutes. This means that users in cluster 1 are less likely to 
have short transition (e.g., at 5, 30 or 60 seconds), and more 
likely to have longer transitions (e.g. above 2 minutes).  

 
Figure 10. For each of the 3 device clusters we show the 
Gaussian kernel density estimation. This indicates the 
probability (y-axis) that a subsequent event will take 

place after a certain amount of time (x-axis) depending 
on the device cluster (colour). 

In addition, we are able to break down the density 
estimation for each device cluster depending on the hour of 
day (Figure 11 top) and day of week (Figure 11 bottom). 
Just like in the previous day/week heatmaps, we are able to 
visually observe the behaviour of each cluster of devices at 
different times of day / week. We observe that devices in 
cluster 2 are more likely to make screen transitions during 
work hours (Figure 11 top, strip 2), and workdays (Figure 
11 bottom, strip 2). 

DISCUSSION 
We first present a worked example of how the analytical 
model we have described so far can be interrogated to make 
runtime probabilistic estimations about a smartphone’s 
screen state. We then reflect on our findings in light of prior 
work. 

Interrogating the model at runtime 
We have presented an extensive analysis that has enabled 
us to define a time-variant transition matrix of screen use. 
Through a variety of visualisations and graphs we have 
shown how empirical data can be used to augment our 
transition model to take into account: granular definition of 
time, a notion of calendar time (hour of day and day of 
week), battery level, and user archetype. Underlying all the 
visualisations and charts we have presented is a model that 
entails the notion of time between transitions. We now 
demonstrate how our model can be used for making 
runtime predictions for multiple purposes. Our examples 
are not exhaustive, but should be sufficient to bootstrap 
future application development. 

Our model allows mobile operating systems, or interaction 
simulators, to make runtime probabilistic estimations about 

the near future, and in doing so make decisions that can 
help optimise its resources. For instance, an operating 
system can interrogate our model to answer the following 
arbitrary questions: 

• How much time, on average, do we spend at each state? 
• Starting in state 3, how much time (on average) does it 

take to reach either state 2 or 1?  

• If the user turns on the phone (state 1), what is the 
probability that the phone remains in that state for 20 
seconds? For 120 seconds? How does this change with 
context?  

We now illustrate how our model can answer the latter 
question. The solutions we describe here can be verified 
and replicated using the R code included with this paper. 

We begin by answering: If we arrive to state 1 (screen ON), 
what is the probability that we are still in state 1 after 20 
seconds? To calculate the answer, we need to calculate the 
probabilities that a transition to any other state will be made 
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Figure 11. Heatmaps with the frequency (colour) of 
observing a state transition after a certain amount of 
time (x-axis) for a given device cluster (right y-axis 
strip), hour (y-axis top), and day (y-axis bottom). 



in less than 20 seconds. Thus, the solution to the question 
is: 

= 1 - ( 
probability we move to state 0 in less than 20 seconds +  
probability we move to state 2 in less than 20 seconds + 
probability we move to state 3 in less than 20 seconds) 

First, we rewrite the equation in a more useful form:  

= 1 - (  
prob. we move to state 0 * (integral 0<t<20 for 1è0) + 
prob. we move to state 2 * (integral 0<t<20 for 1è2) + 
prob. we move to state 3 * (integral 0<t<20 for 1è3)) 

Then, using Table 2 to obtain transition probabilities, we 
have: 

= 1 - ( 0.4532 * (integral 0<t<20 for 1è0) + 
        ( 0          * (integral 0<t<20 for 1è2) + 
        ( 0.5264 * (integral 0<t<20 for 1è3)) 

Finally, calculating the integrals from Figure 3 to obtain 
probabilities regarding time we obtain 

= 1 - (0.4532 * 0.6659034 + 0 + 0.5264 * 0.9705692)  
= 0.187 

Thus, the probability of staying in state 1 for at least 20 
seconds is 18.7%. Following the same process, we can 
make estimations for other arbitrary cases. For example, we 
calculate that the probability of staying in state 1 for at least 
120 seconds drops to 6.9%. Furthermore, we can take 
additional variables into consideration. The probability of 
staying in State 1 for 20 seconds – when the battery is 
above 75% – is 19%, and drops to 17.7% if the battery is 
below 25%. Finally, the probability of staying in that state 
for 20 seconds when it is 2pm is 17.5%, while it goes up to 
18.4% at 4am. The R code included with this paper works 
through these examples to arrive at our reported values. 

We evaluated the precision of our model’s estimations 
against a different dataset that we obtained and re-analysed 
[46]. This independent dataset contained 34,169 screen 
transitions, application and battery logs from a different 
population (n=17) collected during 2015. We validate the 
estimations of our model by manually analysing the 
transitions observed in this independent dataset. The RMSE 
is approximately 7.8%. 

Question Model Observed 
State 1 for 20 s. 18.7% 10.5% 
State 1 for 120 s. 6.9% 4.5% 
State 1 for 20 s. (battery > 75%) 19.0% 10.9% 
State 1 for 20 s. (battery < 25%) 17.7% 10.8% 
State 1 for 20 s. (2pm) 17.5% 10.8% 
State 1 for 20 s. (4am) 18.4% 6.6% 

Table 4. Comparison of the estimations made by our 
model vs. observed transitions in an independent 

dataset. 

In addition, using solely the data from Table 2 it is possible 
to apply traditional Markov modelling analysis, for instance 
to study how the system state evolves over time [44,45]. An 
important contribution of our work is that instead of using a 
static transition matrix, it can effectively generate a 
dynamic transition matrix based on the contextual variables 
we take into account. 

Finally, the analysis can be enriched by incorporating a 
virtual clock (day and hour), battery status (4 distinct 
quartiles of battery charge level), and one of 3 user 
behaviour strategies. Incorporating these additional 
variables effectively means using a different probability 
distribution to determine the amount of time to wait before 
making a certain transition. To incorporate these variables 
simultaneously, the multiple probability distributions for 
each possible combination of the variables are aggregated 
to derive a single probability distribution. 

Towards context-rich interaction models  
Our analysis demonstrates 3 ways in which analytical 
models of interaction can be enriched by incorporating 
context. We show that day and time, battery level, and user 
type, have a substantial effect on the transition probabilities 
of certain events, but not all.  

Incorporating battery into the model showed that as the 
battery depletes, the overall usage begins to decline, as 
expected. We also note a jump in the frequency of events 
between 10-20 seconds when the battery level is in the 
lowest quartile (less than 25% charge). This suggests that 
users are more likely to use their phone in such short bursts 
when they are running out of battery, most likely to 
preserve energy. Previous work has shown that mobile 
users are battery-conscious both about use [17] and 
charging [16]. The fact that our model incorporates this 
behaviour is additional evidence about its fidelity. 

Additionally, our analysis identified 3 types of usage. Type 
2 exhibits strong scheduling in terms of hour and day. Type 
3 exhibits strong scheduling in terms of time, but not in 
terms of day. Finally, Type 1 does not exhibit a substantial 
scheduling. The cluster sizes (39, 87, 70) indicate the 
relative popularity of each archetype. 

Previous work has used the Experience Sampling Method 
to collect rich in-situ data on why and how people use their 
mobile devices [18], and our model implicitly quantifies the 
different strategies that users exhibit. This classification can 
be used as a basis for establishing optimisation profiles for 
state switching.  

For instance, a device manufacturer that is able to 
longitudinally determine the archetype of different users 
can incorporate state switch predictions already into the 
operating system. This can be used to shorten the idle times 
when a phone is just waiting for the auto shut-off and 
locking of the display, leading into enhanced battery 
performance. Finally, it is possible to treat each user as their 
own cluster, making it possible to design even more 



efficient, runtime optimisations by using our model driven 
by each user’s own data [50]. 

Markov chains & mobile devices 
In the context of mobile computing, Markov chains have 
been used to improve the reliability of cloud computing 
environments [36], or optimizing menu structures [43]. 
Recently, Markov chains have also been utilised in 
combating sophisticated malware: Suarez-Tangil et al. 
generated malware trigger-conditions for individual mobile 
users, based on their unique phone use patterns [42]. 
Finally, Markov models have been used to predict the next 
used application [22]. 

This latter approach can readily be incorporated into our 
model: each application can represent a phone state, and 
therefore analysis of state transitions could become richer. 
However, it is challenging to account for applications that 
may be removed (thus affecting transition probabilities), or 
newly installed applications for which the model may not 
have enough data to incorporate. In addition to modelling 
interaction, such an approach could be used to identify 
flaws in the system. A recent review on the topic [8] 
suggests that use of Markov chains in software testing has 
already resulted in uncovering critical flaws in complex 
industrial systems and can significantly improve testing 
processes in general.  

In our case, understanding and optimizing the use of mobile 
devices is an increasingly relevant challenge due to the 
widespread popularity and increasing fragmentation of 
these devices. There have already been some studies that 
attempt to systematically collect real-world usage data from 
such devices. For example, the Device Analyzer project 
collected in-depth contextual data from over 16,000 mobile 
devices in 175 countries and made the data set publicly 
available for the research community to reuse [47]. Another 
framework, AWARE, is openly available for researchers, 
developers and individuals alike, and is used to capture 
hardware-, software-, and human-based data from Android 
powered smart phones [5]. The rich data collected by the 
framework can then be freely used in e.g. optimising the 
battery life of mobile devices [16] and understanding 
application use [18]. 

Limitations 
We should point out a number of limitations of our work. 
First, our study collected data from Android devices only 
and it is very likely that for different operating systems the 
results may differ. In addition, it is questionable whether 
the Google Play app store can reach a representative sample 
of the smartphone users, since there are smartphone users 
who are not active users of app stores. As a result, the 
model we have presented may prove to be inaccurate for a 
segment of the population. As we discussed, it is possible to 
treat each user as a cluster of their own, therefore attempt to 
create a model solely from their behaviour. This, however, 
could require a substantial amount of time, and may not 
accurately capture rare events. Finally, users may change 

the patterns how they use their mobile devices rapidly [47], 
and therefore the model may become outdated. 

CONCLUSION 
Gartner predicts that in 2016 alone closer to 2 billion 
mobile devices will be shipped [48], even optimisations that 
intuitively appear insignificant can yield highly positive 
network effects. Our work improves our understanding of 
mobile phone use by modelling the wider context of screen 
state transitions. The model we present does not consider 
details of individual applications – it is app-agnostic and 
considers the entire “session.” Since different applications 
have different usage patterns [18], we point out that these 
patterns take place within a single usage session that lasts 
from the moment the phone is turned on until it is turned off 
and auto-locked.  

While application use has a key role in phone state 
transitions, empirical knowledge about the typical sessions 
enveloping the application usage can help, inter alia, 
develop simulators for testing purposes or optimizing 
mobile operating systems. The work we present allows for 
modelling of screen state transitions based on empirical 
data. Our simplest model can be used to guide a basic 
simulation of phone use, generate realistic “use traces”, or 
runtime prediction. However, we argue that it also offers a 
solid and practical foundation for further developing 
rigorous modelling of interaction with mobile devices. 
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