
Modelling Smartphone Usage:
A Markov State Transition Model

Vassilis Kostakos, Denzil Ferreira, Jorge Goncalves, Simo Hosio
Center for Ubiquitous Computing, University of Oulu

Oulu, Finland
{vassilis; denzil.ferreira; jorge.goncalves; simo.hosio}@oulu.fi

ABSTRACT
We develop a Markov state transition model of smartphone
screen use. We collected use traces from real-world users
during a 3-month naturalistic deployment via an app-store.
These traces were used to develop an analytical model
which can be used to probabilistically model or predict, at
runtime, how a user interacts with their mobile phone, and
for how long. Unlike classification-driven machine learning
approaches, our analytical model can be interrogated under
unlimited conditions, making it suitable for a wide range of
applications including more realistic automated testing and
improving operating system management of resources.

Author Keywords
Markov chains; smartphone; model; prediction.

ACM Classification Keywords
E.1 [Data]: Data structures—Graphs and networks; H.5.2
[Information Interfaces and Presentation]: User
Interfaces—Theory and methods

INTRODUCTION
We present a probabilistic model that captures statistical
properties of smartphone usage, and can make runtime
probabilistic estimations. Specifically, we have created a
Markov model variant that describes the probability of
observing different events associated with interacting with a
smartphone’s screen. Our model captures four important
screen events that can be observed on smartphones: screen
is turned on, turned off, locked or unlocked.

Our model estimates the probability of observing one of
these events based on the event that was most recently
observed and how much time has elapsed. In addition, our
model can take into account context: the varying battery
levels, time of day, day of week, and 3 distinct user profiles
in calculating its estimations. To develop our model, we re-
analysed data from a 3-month study whereby 218 users

were observed using their smartphones on a daily basis in
realistic settings [19].

Markov model variants, such as the one we present here,
are typically used to describe systems that have a set of
observable states or features that are mutually exclusive,
and entail a notion of probability in how transitions
between states take place. Such models consist of the
“states” themselves (i.e., the smartphone screen events that
Android broadcasts), and a transition matrix that defines
the probabilities of moving between these states. Broadly
speaking, the analysis of such models can offer insights into
emergent system behaviour, and can help develop strategies
in managing the systems.

Due to the simplicity and power of this modelling approach,
it has been very effective at modelling system behaviour
across a variety of domains, and a very rich literature exists
on using State Transition models. Such idealized models
can capture many of the statistical regularities of complex
systems. For example, the health of a population can be
effectively modelled using Markov-based techniques,
which can then be used in assessing health technology,
developing clinical decision strategies, and conducting
health-economic evaluation [40]. Most often, state-
transition models are used in the evaluation of risk factor
interventions, diagnostic procedures, and disease
management strategies.

Markov models and their underlying matrix algebra have
also been proposed as a means of evaluating usability at
design-time [44,45]. These approaches typically model UI
elements and forms as states, and using Markov modelling
can measure usability by estimating the number of
transitions necessary to complete tasks. However, while
useful in developing evaluation strategies, not all models
incorporate a strong notion of elapsed time. This is a key
contribution we make, which enables us to model how the
state of a smartphone’s screen evolves at runtime.

Automated tools for smartphone testing already attempt to
model interaction at runtime [9,28], but largely rely on
deterministic test scripts rather than empirical data [19]. On
the other hand, our model:

• Can be used to develop realistic engines for automated
smartphone testing. Our model can generate “synthetic”
use traces that are highly representative of real-world use,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org. 	
UbiComp '16, September 12 - 16, 2016, Heidelberg, Germany  	
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-4461-6/16/09…$15.00  	
DOI: http://dx.doi.org/10.1145/2971648.2971669

and can take into account contextual variables such as
available battery, time of day, and user typology.

• Can help optimize the system resources of a smartphone
at runtime. The probabilistic nature of our model allows
the system to make runtime decisions on screen-related
resource optimisation.

• Provides a theoretical basis for extending the model to
describe which applications individuals use and for how
long.

Our model focuses on interaction with the screen, and not
the specificities of applications, their content, the UI layout,
and settings. While this is a drastic simplification of
smartphones, it does capture important statistical properties
about how the phone is used. It is within this broader use
that specific applications are launched. Just as in the case of
Markov models used to describe the statistical properties of
large complex systems (health, ecosystems, economy), our
model focuses on a particular aspect of smartphones: when,
how, and for how long they are in use.

RELATED WORK
An increasing body of work has begun to look at traces of
smartphone use in an attempt to construct models of human
behaviour and performance. For example, previous work
has looked at how much time people spend using
applications on smartphones. This has revealed that users
exhibit “micro-usage” behaviour, i.e. they tend to use
individual applications in short bursts of roughly 15
seconds [18], suggesting a strong temporal nature in
smartphone use. Additionally, research has attempted to
model from use traces how people touch the screen on
smartphones [7,25], use the on-screen keyboard [10], and
even develop keystroke-level modelling of application use
[26]. An important application of this kind of work is to
support rapid prototyping and testing of mobile
applications. For instance, Holleis & Schmidt [27]
developed a keystroke level model to help in estimating
task completion times when prototyping smartphone apps.

Such understanding and modelling of smartphone usage has
allowed researchers to create intelligent launchers that
reorder the applications not based on frequency of use, but
by users’ context, e.g., location, calendar, time of day
[39,41,49], and infer call-availability [37]. However, these
models are fine tuned to a broad set of variables which are
often challenging to obtain simultaneously for practical use
and are therefore not trivial to evaluate or test.

The increasing availability of performance data is helping
us understand better how smartphones are used, but so far a
practical runtime model of smartphone use has not been
developed. Such a model would allow us to improve
resource allocation in smartphones at runtime [35], and also
develop more realistic automated testing. While many
automated testing tools do exist, they suffer from lack of
interaction realism as we describe next.

Automated testing tools
As mobile phones begun to increase in popularity, testing of
applications for phones was largely conducted in closed
settings usually by manufacturers themselves [1]. Similarly,
as application stores have become more popular recently,
and so have their associated software development kits,
new opportunities and challenges for mobile application
developers emerged. For instance, mobile devices exhibit a
rapid evolution and use of multiple standards, protocols and
network technologies, while applications increasingly are
deployed to a variety of platforms and hardware.
Furthermore, documentation is often incomplete, and
market trends change frequently.

To overcome these challenges, it is necessary to create
models, tools and techniques to evaluate mobile
applications in a more realistic and contextual manner.
Previous work has proposed methods to collect the context
of application usage directly from the users [3,30], which
can then drive application development and testing. An
alternative is the use of logging software on mobile devices
to capture users’ application and device usage [20].
Although useful, these techniques require time, resources
and recruiting potential application users. This motivates
the need for tools that support automated usability
evaluations and testing [27].

The automated testing of user interfaces is not a novel
concept. There exist a variety of suites for testing desktop
usability [31], desktop content adaptation [15], mobile
content adaptation [32], and web interfaces [4]. Beyond the
desktop, for mobile form factors it has been suggested that
automated tests are a cheaper and quicker alternative to
field tests [29]. Some previous work has focused on
facilitating UI testing on mobile platforms. For instance,
Satoh’s framework [38] emulated a mobile device at the
application-level by implementing a mobile agent that
simulates various network conditions. Kostiainen et al. [33]
provide a framework for comparative usability testing,
useful to test the optimal sequence to perform a certain task.
Similarly, MobileTest [9] is a tool for automatic black box
test of software on mobile devices. It adopts an event-based
testing approach to simplify the design of test cases and
provides reusability of tests using software agents.

These approaches, however, require source-code
modification, and effort to manage the multitude of
handsets required for testing. A recent popular approach has
been the development of online services that offer to
conduct automated testing on a variety of hardware devices
[28]. While these services offer a very realistic hardware
platform for these tests, they still mostly rely on automation
scripts that are either:

• deterministic: they perform a predetermined sequence of
“touches” on a device,

• brute-force: they try to “touch” every single component
on any given screen until the software crashes, or

• random: they generate software events in a random
fashion, or allow testers to define which type of events to
generate (pseudo-random) [2].

Thus, we argue that while automated testing systems have
greatly matured in terms of hardware realism, they are still
lacking in terms of modelling realistic interaction and
usage. An important contribution of our work is to begin to
model such an interaction between a user and a device on a
high-level: modelling how users turn on and off their
phone, and especially modelling the temporal dynamics of
this interaction, which previous work has shown to be
temporally skewed [18]. This aspect of the interaction is
crucial because it is within these boundaries that users
actually use the applications on their phone – i.e. they do
not use it when it is off.

Time-sensitive state transition models
In our attempt to provide an analytical model of smartphone
screen use, we have adapted Markov chains. Since
Hamilton’s seminal application of Markov models to U.S.
real Gross National Product growth and the well-known
NBER business cycle classification [23], time-sensitive
Markov approaches has been more widely adopted.
Initially, Diebold et al. [14] and Filardo [21] showed that
the assumption of a static transition matrix leads to very
restrictive models for many empirical settings. They
extended the basic Markov switching model by allowing
transition probabilities to vary over time. This was
achieved by incorporating observable covariates, including
explanatory variables and lagged values of the dependent
variable. While this approach can be very useful, it does not
take into account continuous time [6], but rather implicitly
allows for time to vary the transition probabilities.

Extending this work, continuous-time Markov chains were
developed [34]. These make an attempt to replace the
transition matrix (which entails static probabilities) with
functions. Their aim is to model how much time a model
spends in a particular state. This is very relevant to our own
work, since we are interested in modelling how much time
the phone screen will spend in a particular state, before
changing states. However, continuous-time Markov models
assume an exponential density distribution regarding the
time spent at each state. We are interested in non-standard
probability distributions, which we derive empirically.

Very recently there has there been work on developing
time-varying transition probabilities for Markov regime
switching models. Bazzi et al. [6] recently proposed a new,
dynamic approach to model time variation in transition
probabilities in Markov switching models. In their model,
the transition probabilities vary over time as specific
transformations of the lagged observations, and they are not
limited to exponential probability distributions. Hence, they
have extended the observation driven approach to time
varying parameter models [11]. For the specification of the
dynamics of the transition matrix, they adopted the
generalized autoregressive score dynamics of Creal et al.

[13]; similar dynamic score models have been proposed by
Creal et al. [12] and Harvey [24]. In our case, the dynamics
are derived empirically, by analysis of data logs from
hundreds of users with more than 270,000 observed screen
state transitions.

State transition models in literature
There has been work that directly uses Markov models to
measure usability and improve design [44,45], although
without incorporating a strong notion of elapsed time.
Previous work models User Interfaces as a Markov state
transition model by identifying the possible states that a
system can be in (e.g., a microwave cooker may be in one
of 6 different states), and identifying how pressing various
items of an interface cause a transition to another state.

To measure usability, Thimbleby et al. [45] define the
notions of “Designer’s” and “Knowledge-free” transition
matrices. For a given task (e.g. transition from state 1 to
state 2), the designer’s matrix has 1’s on the correct
transitions and 0’s on the incorrect transitions, thus
indicating zero chance of making a wrong transition. A
knowledge-free matrix assumes that all transitions are
equiprobable, and thus describes a process where buttons
are pressed randomly. It is proposed that a measure of task
performance is to calculate the expected number of steps
needed to complete a task, and a user’s knowledge can be
affected by providing hints at the interface (e.g. to avoid
pressing some buttons), thus bringing their expected
behaviour closer to the designer’s matrix.

This previous work makes important practical contributions
towards optimising user interface design. For example, the
settings menu of a smartphone can be represented as a
Markov model, and it is possible to calculate the estimated
number of steps required to complete a variety of tasks. The
menu can then be restructured, for example by moving
options or making some buttons less prominent, until the
expected number of steps is minimised.

In our work we apply many of the same techniques, but
instead of optimising UI design and layout, we are
interested in developing a realistic model of smartphone use
that can make runtime estimations about what will happen
next and when, and can be interrogated under a variety of
conditions. The software running on today’s phones is not
monolithic anymore, but highly modular: applications can
be added and removed at runtime, thus being in a constant
state of flux that designers cannot a-priori analyse. As
suggested by Thimbleby et al. [45], we have collected a
large volume of usage data in order to realistically model
smartphone usage.

However, due to the complexity and variety of modern
smartphone interfaces, we have decided to make a
simplification akin to those used when studying large
complex systems like health. Specifically, we model
interaction on a very high level by studying how people
interact with the screen [46].

This simplification has allowed us to build a model that can
make runtime probabilistic predictions that have a strong
notion of elapsed time. In other words, while we model
interaction on a very abstract level, we can be precise about
when transitions are likely to occur, and also take into
account contextual variables such as the battery level, day
and time, and user profile.

METHOD
We have obtained and reanalysed a dataset which originates
from a free and open application called Securacy [19]. The
application allows users to monitor network activity on
their mobile phones. Securacy does not affect the screen
functionality and therefore its operational state. The dataset
was collected from opt-in volunteers all over the world, and
contains screen state events with precise timespans.

We analysed screen usage events that were broadcast by the
Android operating system (and recorded): turning the
screen on, turning the screen off, locking the screen,
unlocking the screen. In addition, the dataset also contains
application usage and battery logs. The application logs
were useful to monitor the KeyguardManager process to
detect instances of screen activity without explicit user
actions – a notification or incoming call – which might turn
on the screen automatically.

For example, when the user receives a phone call, the
screen turns on, but the KeyguardManager remains locked.
In Table 1 we show the four distinct events that were
recorded (on, off, locked, and unlocked). Each event occurs
at a distinct and non-overlapping point in time (thus
satisfying Markov’s model Mutually Exclusive &
Collectively Exhaustive requirement). This is a crucial
semantic detail: while conceptually a phone screen may be
ON and LOCKED at the same time, the events triggered by
the operating system are mutually exclusive and non-
overlapping.

When the Securacy software detected one of these events, it
logged the event along with the current clock reading of the
phone, the unique ID of the device, and the current battery
level. Because each event has an associated timestamp, the
events can be sorted in terms of the time in which they
occurred, and from this sequence of events we can infer
state transitions on the phone.

States Description
0: Off Power to the screen has stopped
1: On Power to the screen has been activated
2: Lock Screen locked (to avoid accidental input)
3: Unlock Screen unlocked (input is enabled)
Table 1. A list of the operating system states that was

logged.

RESULTS
The dataset sample spans 90 days, between March and May
2014. In total 218 participants took part in the original
study, but 21 were discarded because they had contributed
incomplete data (e.g., no application logs). All participants

used Android phones, and therefore the state transitions we
captured are consistent across our sample. In total, we
retrieved 271,832 state transitions.

Basic Markov model
We first present a summary of all data. We calculate the
probability of transitioning from one state to the next, as
shown in Table 2. To calculate these probabilities, we
classify our 278,832 state transitions into one of the 16 cells
in this table, and then calculate the probabilities across each
row. Thus, each row sums to 100%. The values on the
diagonal are close to zero but not all zero, because these are
events that may occur when abrupt events happen (e.g., the
phone reboots, battery depletes).
From \ To 0: Off 1: On 2: Lock 3: Unlock
0: Off 0.50 33.03 59.40 7.05

1: On 45.32 2.03 0 52.64
2: Lock 2.83 95.64 0 1.53
3: Unlock 80.50 13.58 0 5.92

Table 2. The Markov chain transition matrix for all
states. Values are shown in percentages across each row.

To exemplify, in Figure 1 we provide a visual
representation of the state transition table, and for each
transition we provide a textual description of what it
signifies, what may have triggered it, or what happened
immediately before the transition (see Table 3).

There are multiple transitions that our model takes into
account. Some of them may be counter-intuitive, but the
reader should keep in mind two important details. First,
today’s phones typically have a physical power button that
turns off the screen. In addition, some may have an “auto-
lock” function on their phone, which locks the screen
whenever it turns off or after an idle timeout. Pressing the
power button of a phone may not lock it but instead turns
off the screen. A small number of users opt to disable the
auto-lock option, thus turning off their phone screen
without necessarily locking it.

Figure 1. The four states of a smartphone’s display,

and what the transitions between them signal.

OFF
0

ON
1

UNLOCKED
3

LOCKED
2

Phone was off/not used

Interaction with the lock screen

Phone is unlocked from lock screen

Auto-lock after pressing power button

Phone sleeps after looking at lockscreen

Phone call received

User is trying to unlock the phone

Phone was off/not used

Using apps normaly
Phone switched on

It is important to note that our model is built to describe
screen events. Since these are the tokens of our analysis, we
have modelled them as “states” in a state transition model.
Clearly, a smartphone may be in a variety of states, but for
our purposes we are effectively treating a screen event as a
state. This key shift in our perspective will allow us to
incorporate more variables in our analysis, as we describe
next.

Time-varying Markov model
For every sequential pair of screen events we recorded
during the study we can calculate the actual time between
them. This effectively tells us how much time was spent at
each state in our model. In other words, we can define a
time-varying Markov model to describe all transitions. To
characterise the temporal distribution of all transitions, our
first step is to generate a Gaussian kernel density estimation
of the amount of time between subsequent events
(Figure 2). Thus, across all devices in the dataset we
consider how much time they spent in-between states, and
subsequently we aggregate all temporal data across all
devices. The distribution shown in Figure 2 is multimodal,
and the most prominent local maxima are indicated on the
x-axis.

There are multiple noticeable temporal signatures in
Figure 2, which we attempt to further decompose. To
achieve this, we plot the kernel density estimation for each
unique transition (Figure 3), i.e., for each pair of states. In
other words, the kernel density distribution for transition
ON-OFF is shown in the strip labelled “1-0”. In Figure 3,
we are able to see that the different transitions in our model
are preceded by varying time periods.

Figure 3. Gaussian kernel density estimation for each
distinct transition (right y-axis strip). The left y-axis
indicates the probability that the transition will take

place after a certain amount of time (x-axis).

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0−1
0−2

0−3
1−0

1−3
2−0

2−1
2−3

3−0
3−1

1.3 5 10 20 30 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

Pr
ob

ab
ilit

y

From\To 0: Off 1: On 2: Locked 3: Unlocked

0: Off n/a The phone was off and the user
took action to activate the screen.

If a phone is configured to
auto-lock, then when it is
turned off it will quickly and
automatically lock itself.

This can happen when a
phone-call is received.

1: On The user was interacting with the
lock-screen (e.g. checking time) and
then turned off the phone. This
transition helps us measure how long
people glance at their lock-screen

n/a n/a - to become locked, the
screen needs to be turned off
first.

The user was interacting with
the lock-screen and then
unlocked the phone. This
transition helps us measure
how quickly people unlock
their phone

2: Locked The user is interacting with the lock
screen and then leaves the phone
untouched until power-saving turns
off the screen automatically.

The phone was not used (i.e. off
and locked) and the user pressed
the power button to turn the
screen on.

n/a Happens when the phone is
locked (but the screen is on)
and then unlocked again.

3: Unlocked The user was using apps, and then
pressed the power button to turn off
the screen.

The screen turned off (but did not
lock the phone) and then the user
took action to turn on the screen.

n/a - to become locked, the
screen needs to be turned off
first.

n/a

Table 3. Explanation of what various transitions mean. For each transition we describe what actions happened before
the transition was made.

Figure 2. Gaussian kernel density estimation,

indicating the probability (y-axis) that a subsequent
screen event will take place after a certain amount

of time (x-axis).

0.00

0.05

0.10

0.15

0.5 1.3 5 10 2030 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

Pr
ob

ab
ilit

y

We interpret Figure 3 as follows. Assuming the phone is
currently in state 1, we wish to investigate the probability of
transitioning to another state. One possibility is that the
phone may transition to state 0, and therefore we look at the
strip “1-0” and determine that there is an increased chance
this transition would happen 10 or 30 seconds after arriving
to state 1. Another possibility is that the phone transitions to
state 3, and looking at the strip “1-3” we determine that this
transition is likely to happen within 5 seconds of arriving to
state 1. There is 0 probability of transitioning to state 2.
From this example analysis we obtain the intuitive
understanding that once the phone arrives to state 1, the
first few seconds are moments where there is high
probability of transitioning to state 3, but after 5 seconds or
so it becomes much more likely to transition to state 0.

Incorporating context into the model
Next, we proceed to further unpack each strip from Figure 3
in multiple ways. We first break it down by the hour of day
in which this transition was observed (Figure 4 top), as well
as the day of week in which this transition was observed
(Figure 4 bottom). These two figures show a heat map
visualisation of when a particular transition is most likely to
occur (hour of day, day of week), and how much time is
likely to precede it.

We interpret Figure 4 as follows. Assuming that we are
interested in the transition from state 1 to state 0, we can
look at Figure 4a to see at which times this transition is
likely to happen. For instance, we observe that this
transition is most likely to happen after 10 or 30 seconds,
but we also see how this varies for different times of the
day. Thus, we find that between 2am and 7am there is a
reduced probability of this transition being observed.
Similarly, we can look at strip “1-0” in Figure 4 to
determine the day of the week where this transition is likely
to occur. We observe that on Sunday this transition is
slightly less probable.

Next, our analysis considers the battery level of the phone
when a state transition takes place. In other words, at the
moment a transition was recorded by our software, we also
noted the battery level at that moment. In Figure 5 we see
the Gaussian kernel estimation densities of time between
events (similar to Figure 2), but now color-coded to reflect
4 possible battery levels. They represent four quartiles of
battery level as follows:

• q1 indicates the battery level is between 100%-75%,
• q2 indicates 74%-50%,
• q3 indicates 49%-25%, and
• q4 indicates 24%-0%.
In addition, we break down each of the four quartile sets
estimations into hour of day (Figure 6 top), and day of week
(Figure 6 bottom). We interpret this figure just like Figure
4. Therefore, we observe that when the battery of the phone
is above 75% (i.e. in q1) then screen transitions are most
likely during work hours (Figure 6 top, strip 1), while when

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu
Fri

Sat
Sun

0−1
0−2

0−3
1−0

1−3
2−0

2−1
2−3

3−0
3−1

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

Da
y o

f w
ee

k

100
200
300
400count

0

12

23
0

12

23
0

12

23
0

12

23
0

12

23
0

12

23
0

12

23
0

12

23
0

12

23
0

12

23

0−1
0−2

0−3
1−0

1−3
2−0

2−1
2−3

3−0
3−1

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

Ho
ur

 of
 da

y

50
100
150count

Figure 4. Heatmaps showing the frequency (colour)
of observing state transitions (right y-axis strip) at
certain hours (y-axis top) or days (y-axis bottom)

and the amount of time that preceded them (x-axis).

Figure 5. Individual quartiles of battery level (100%-
75%-50%-25%) Gaussian kernel density estimation.

Shows the probability (y-axis) that a subsequent
state transition will occur after a certain amount of

time (x-axis) given a battery level (colour).

0.00

0.05

0.10

0.15

0.20

1.3 5 10 2030 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

P
ro

ba
bi

lit
y Battery level

quartile
1
2
3
4

the battery level is below 25% (i.e. in q4) then screen
transitions are more likely outside work hours (Figure 6 top,
strip 4).

Incorporating user typology into the model
Each user exhibited a distinct usage of their smartphone
screen, with varying temporal signatures in their transitions.
For instance, in Figure 7 we show the Gaussian kernel
density estimation for three different devices in our dataset.
We observe that their use varies considerably.

Figure 7. For 3 devices (colour) we show the Gaussian

kernel density estimation. This indicates the probability
(y-axis) that a subsequent state transition will take place

after a certain amount of time (x-axis).

Given this diversity, we investigated whether user
typologies can be identified through clustering. Thus, we
next proceed to determine whether different users exhibit

varying behaviour in how they transition between screen
states. We first visualise the unique “footprint” of each
participant in terms of transitioning between states, using a
scatterplot heatmap (Figure 8).

Figure 8. The heatmap visualises the behaviour of each
device. Each point represents for each particular device
(y-axis) its propensity (colour) to wait a certain amount

of time (x-axis) between screen state transitions.

From Figure 8 we extract an array of frequency values for
each device (one row corresponds to one device), which are
effectively a histogram. Each device is one row in this
figure, and for each row we have the same bins, and a
frequency for each bin. Using these frequency values we
can apply k-means clustering iteratively for varying cluster
numbers, and use the elbow method to generate Figure 9.
Applying heuristics to this graph, we deduced that the
optimum number of clusters is 3, each containing 39, 87
and 70 devices respectively.

Figure 9. An elbow graph showing how varying the

numbers of device clusters affects the within groups sum
of squares.

0.00

0.05

0.10

0.15

0.20

1.3 5 10 2030 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

Pr
ob

ab
ilit

y

Device ID
18
113
127

0

50

100

150

200

5 10 20 30 60 2m 5m 10m 8h
Time between events (seconds or minutes or hours)

D
ev

ic
e_

id

100
200
300
400

count

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10 12 14

40
0

45
0

50
0

55
0

60
0

65
0

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

0

12

23
0

12

23
0

12

23
0

12

23

1
2

3
4

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

H
ou

r o
f d

ay

40
80
120
160count

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Sun

1
2

3
4

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

D
ay

 o
f w

ee
k

100
200

count

Figure 6. Heatmaps showing the frequency (colour)
of observing a state transition after a certain amount
of time (x-axis) for a given battery level (right y-axis

strip), hour (y-axis top), and day (y-axis bottom).

Next, for each cluster we plot the respective Gaussian
kernel density estimation (Figure 10). This figure provides
a summary description of the transition behaviour for users
in each cluster. As a result, we are also able to visualise the
differences between each cluster. For instance, we observe
that the red line is below other lines when time is less than
2 mines, and above other lines when time is above 2
minutes. This means that users in cluster 1 are less likely to
have short transition (e.g., at 5, 30 or 60 seconds), and more
likely to have longer transitions (e.g. above 2 minutes).

Figure 10. For each of the 3 device clusters we show the
Gaussian kernel density estimation. This indicates the
probability (y-axis) that a subsequent event will take

place after a certain amount of time (x-axis) depending
on the device cluster (colour).

In addition, we are able to break down the density
estimation for each device cluster depending on the hour of
day (Figure 11 top) and day of week (Figure 11 bottom).
Just like in the previous day/week heatmaps, we are able to
visually observe the behaviour of each cluster of devices at
different times of day / week. We observe that devices in
cluster 2 are more likely to make screen transitions during
work hours (Figure 11 top, strip 2), and workdays (Figure
11 bottom, strip 2).

DISCUSSION
We first present a worked example of how the analytical
model we have described so far can be interrogated to make
runtime probabilistic estimations about a smartphone’s
screen state. We then reflect on our findings in light of prior
work.

Interrogating the model at runtime
We have presented an extensive analysis that has enabled
us to define a time-variant transition matrix of screen use.
Through a variety of visualisations and graphs we have
shown how empirical data can be used to augment our
transition model to take into account: granular definition of
time, a notion of calendar time (hour of day and day of
week), battery level, and user archetype. Underlying all the
visualisations and charts we have presented is a model that
entails the notion of time between transitions. We now
demonstrate how our model can be used for making
runtime predictions for multiple purposes. Our examples
are not exhaustive, but should be sufficient to bootstrap
future application development.

Our model allows mobile operating systems, or interaction
simulators, to make runtime probabilistic estimations about

the near future, and in doing so make decisions that can
help optimise its resources. For instance, an operating
system can interrogate our model to answer the following
arbitrary questions:

• How much time, on average, do we spend at each state?
• Starting in state 3, how much time (on average) does it

take to reach either state 2 or 1?

• If the user turns on the phone (state 1), what is the
probability that the phone remains in that state for 20
seconds? For 120 seconds? How does this change with
context?

We now illustrate how our model can answer the latter
question. The solutions we describe here can be verified
and replicated using the R code included with this paper.

We begin by answering: If we arrive to state 1 (screen ON),
what is the probability that we are still in state 1 after 20
seconds? To calculate the answer, we need to calculate the
probabilities that a transition to any other state will be made

0.00

0.05

0.10

0.15

0.20

1.3 5 10 2030 60 2m 5m10m 8h
Time between events (seconds or minutes or hours)

Pr
ob

ab
ilit

y

Device cluster
1
2
3

0

12

23
0

12

23
0

12

23

1
2

3

1.3 5 10 2030 60 2m 5m 10m 8h
Time before a transition (seconds or minutes or hours)

H
ou

r o
f d

ay

50
100
150

count

Figure 11. Heatmaps with the frequency (colour) of
observing a state transition after a certain amount of
time (x-axis) for a given device cluster (right y-axis
strip), hour (y-axis top), and day (y-axis bottom).

in less than 20 seconds. Thus, the solution to the question
is:

= 1 - (
probability we move to state 0 in less than 20 seconds +
probability we move to state 2 in less than 20 seconds +
probability we move to state 3 in less than 20 seconds)

First, we rewrite the equation in a more useful form:

= 1 - (
prob. we move to state 0 * (integral 0<t<20 for 1è0) +
prob. we move to state 2 * (integral 0<t<20 for 1è2) +
prob. we move to state 3 * (integral 0<t<20 for 1è3))

Then, using Table 2 to obtain transition probabilities, we
have:

= 1 - (0.4532 * (integral 0<t<20 for 1è0) +
 (0 * (integral 0<t<20 for 1è2) +
 (0.5264 * (integral 0<t<20 for 1è3))

Finally, calculating the integrals from Figure 3 to obtain
probabilities regarding time we obtain

= 1 - (0.4532 * 0.6659034 + 0 + 0.5264 * 0.9705692)
= 0.187

Thus, the probability of staying in state 1 for at least 20
seconds is 18.7%. Following the same process, we can
make estimations for other arbitrary cases. For example, we
calculate that the probability of staying in state 1 for at least
120 seconds drops to 6.9%. Furthermore, we can take
additional variables into consideration. The probability of
staying in State 1 for 20 seconds – when the battery is
above 75% – is 19%, and drops to 17.7% if the battery is
below 25%. Finally, the probability of staying in that state
for 20 seconds when it is 2pm is 17.5%, while it goes up to
18.4% at 4am. The R code included with this paper works
through these examples to arrive at our reported values.

We evaluated the precision of our model’s estimations
against a different dataset that we obtained and re-analysed
[46]. This independent dataset contained 34,169 screen
transitions, application and battery logs from a different
population (n=17) collected during 2015. We validate the
estimations of our model by manually analysing the
transitions observed in this independent dataset. The RMSE
is approximately 7.8%.

Question Model Observed
State 1 for 20 s. 18.7% 10.5%
State 1 for 120 s. 6.9% 4.5%
State 1 for 20 s. (battery > 75%) 19.0% 10.9%
State 1 for 20 s. (battery < 25%) 17.7% 10.8%
State 1 for 20 s. (2pm) 17.5% 10.8%
State 1 for 20 s. (4am) 18.4% 6.6%

Table 4. Comparison of the estimations made by our
model vs. observed transitions in an independent

dataset.

In addition, using solely the data from Table 2 it is possible
to apply traditional Markov modelling analysis, for instance
to study how the system state evolves over time [44,45]. An
important contribution of our work is that instead of using a
static transition matrix, it can effectively generate a
dynamic transition matrix based on the contextual variables
we take into account.

Finally, the analysis can be enriched by incorporating a
virtual clock (day and hour), battery status (4 distinct
quartiles of battery charge level), and one of 3 user
behaviour strategies. Incorporating these additional
variables effectively means using a different probability
distribution to determine the amount of time to wait before
making a certain transition. To incorporate these variables
simultaneously, the multiple probability distributions for
each possible combination of the variables are aggregated
to derive a single probability distribution.

Towards context-rich interaction models
Our analysis demonstrates 3 ways in which analytical
models of interaction can be enriched by incorporating
context. We show that day and time, battery level, and user
type, have a substantial effect on the transition probabilities
of certain events, but not all.

Incorporating battery into the model showed that as the
battery depletes, the overall usage begins to decline, as
expected. We also note a jump in the frequency of events
between 10-20 seconds when the battery level is in the
lowest quartile (less than 25% charge). This suggests that
users are more likely to use their phone in such short bursts
when they are running out of battery, most likely to
preserve energy. Previous work has shown that mobile
users are battery-conscious both about use [17] and
charging [16]. The fact that our model incorporates this
behaviour is additional evidence about its fidelity.

Additionally, our analysis identified 3 types of usage. Type
2 exhibits strong scheduling in terms of hour and day. Type
3 exhibits strong scheduling in terms of time, but not in
terms of day. Finally, Type 1 does not exhibit a substantial
scheduling. The cluster sizes (39, 87, 70) indicate the
relative popularity of each archetype.

Previous work has used the Experience Sampling Method
to collect rich in-situ data on why and how people use their
mobile devices [18], and our model implicitly quantifies the
different strategies that users exhibit. This classification can
be used as a basis for establishing optimisation profiles for
state switching.

For instance, a device manufacturer that is able to
longitudinally determine the archetype of different users
can incorporate state switch predictions already into the
operating system. This can be used to shorten the idle times
when a phone is just waiting for the auto shut-off and
locking of the display, leading into enhanced battery
performance. Finally, it is possible to treat each user as their
own cluster, making it possible to design even more

efficient, runtime optimisations by using our model driven
by each user’s own data [50].

Markov chains & mobile devices
In the context of mobile computing, Markov chains have
been used to improve the reliability of cloud computing
environments [36], or optimizing menu structures [43].
Recently, Markov chains have also been utilised in
combating sophisticated malware: Suarez-Tangil et al.
generated malware trigger-conditions for individual mobile
users, based on their unique phone use patterns [42].
Finally, Markov models have been used to predict the next
used application [22].

This latter approach can readily be incorporated into our
model: each application can represent a phone state, and
therefore analysis of state transitions could become richer.
However, it is challenging to account for applications that
may be removed (thus affecting transition probabilities), or
newly installed applications for which the model may not
have enough data to incorporate. In addition to modelling
interaction, such an approach could be used to identify
flaws in the system. A recent review on the topic [8]
suggests that use of Markov chains in software testing has
already resulted in uncovering critical flaws in complex
industrial systems and can significantly improve testing
processes in general.

In our case, understanding and optimizing the use of mobile
devices is an increasingly relevant challenge due to the
widespread popularity and increasing fragmentation of
these devices. There have already been some studies that
attempt to systematically collect real-world usage data from
such devices. For example, the Device Analyzer project
collected in-depth contextual data from over 16,000 mobile
devices in 175 countries and made the data set publicly
available for the research community to reuse [47]. Another
framework, AWARE, is openly available for researchers,
developers and individuals alike, and is used to capture
hardware-, software-, and human-based data from Android
powered smart phones [5]. The rich data collected by the
framework can then be freely used in e.g. optimising the
battery life of mobile devices [16] and understanding
application use [18].

Limitations
We should point out a number of limitations of our work.
First, our study collected data from Android devices only
and it is very likely that for different operating systems the
results may differ. In addition, it is questionable whether
the Google Play app store can reach a representative sample
of the smartphone users, since there are smartphone users
who are not active users of app stores. As a result, the
model we have presented may prove to be inaccurate for a
segment of the population. As we discussed, it is possible to
treat each user as a cluster of their own, therefore attempt to
create a model solely from their behaviour. This, however,
could require a substantial amount of time, and may not
accurately capture rare events. Finally, users may change

the patterns how they use their mobile devices rapidly [47],
and therefore the model may become outdated.

CONCLUSION
Gartner predicts that in 2016 alone closer to 2 billion
mobile devices will be shipped [48], even optimisations that
intuitively appear insignificant can yield highly positive
network effects. Our work improves our understanding of
mobile phone use by modelling the wider context of screen
state transitions. The model we present does not consider
details of individual applications – it is app-agnostic and
considers the entire “session.” Since different applications
have different usage patterns [18], we point out that these
patterns take place within a single usage session that lasts
from the moment the phone is turned on until it is turned off
and auto-locked.

While application use has a key role in phone state
transitions, empirical knowledge about the typical sessions
enveloping the application usage can help, inter alia,
develop simulators for testing purposes or optimizing
mobile operating systems. The work we present allows for
modelling of screen state transitions based on empirical
data. Our simplest model can be used to guide a basic
simulation of phone use, generate realistic “use traces”, or
runtime prediction. However, we argue that it also offers a
solid and practical foundation for further developing
rigorous modelling of interaction with mobile devices.

ACKNOWLEDGMENTS
This work is partially funded by the Academy of Finland
(Grants 276786-AWARE, 285062-iCYCLE, 286386-
CPDSS, 285459-iSCIENCE), and the European
Commission (Grants PCIG11-GA-2012-322138, 645706-
GRAGE, and 6AIKA-A71143-AKAI).

REFERENCES
1. Pekka Abrahamsson, Antti Hanhineva, Hanna Hulkko,

Tuomas Ihme, Juho Jäälinoja, Mikko Korkala, Juha
Koskela, Pekka Kyllönen and Outi Salo. 2004. Mobile-
D: An Agile Approach for Mobile Application
Development. In Companion to the 19th Annual ACM
SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, ACM, 174-175.
http://doi.acm.org/10.1145/1028664.1028736

2. Application Exerciser Monkey. Retrieved 17/12/2014
from
http://developer.android.com/tools/help/monkey.html

3. Leena Arhippainen and Marika Tähti. 2003. Empirical
evaluation of user experience in two adaptive mobile
application prototypes. In International Conference on
Mobile and Ubiquitous Multimedia, 27-34.

4. Richard Atterer and Albrecht Schmidt. 2007. Tracking
the Interaction of Users with AJAX Applications for
Usability Testing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM, 1347-1350.
http://doi.acm.org/10.1145/1240624.1240828

5. AWARE: Android Mobile Context Instrumentation
Framework. Retrieved 29/01/2014 from
http://www.awareframework.com

6. Marco Bazzi, Francisco Blasques, Siem S. J. Koopman
and Andre Lucas. 2014. Time Varying Transition
Probabilities for Markov Regime Switching Models.

7. Joanna Bergstrom-Lehtovirta and Antti Oulasvirta.
2014. Modeling the Functional Area of the Thumb on
Mobile Touchscreen Surfaces. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems, ACM, 1991-2000.
http://doi.acm.org/10.1145/2556288.2557354

8. Divya Bindal. 2013. A review of markov model for
estimating software reliability. International journal of
advanced research in computer science and software
engineering 3, 6: 426-433.

9. Jiang Bo, Long Xiang and Gao Xiaopeng. 2007.
MobileTest: A Tool Supporting Automatic Black Box
Test for Software on Smart Mobile Devices. In
Proceedings of the Second International Workshop on
Automation of Software Test, IEEE Computer Society,
8-8. http://dx.doi.org/10.1109/AST.2007.9

10. Ulrich Burgbacher and Klaus Hinrichs. 2014. An
Implicit Author Verification System for Text Messages
Based on Gesture Typing Biometrics. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 2951-2954.
http://doi.acm.org/10.1145/2556288.2557346

11. David R. Cox. 1981. Statistical analysis of time series:
Some recent developments [with discussion and reply].
Scandinavian Journal of Statistics 8: 93-115.

12. Drew Creal, Siem S. J. Koopman and André Lucas.
2011. A dynamic multivariate heavy-tailed model for
time-varying volatilities and correlations. Journal of
Business & Economic Statistics 29, 4: 552-563.

13. Drew Creal, Siem J. Koopman and André Lucas. 2012.
Generalized autoregressive score models with
applications. Journal of Applied Econometrics 28, 5:
777-795.

14. Francis X. Diebold, Joon-Haeng Lee and Gretchen G.
C. Weinbach. 1994. Regime switching with time-
varying transition probabilities. In Nonstationary time
series analysis and cointegration C Hargreaves (eds.).
Oxford University Press, 283-302.

15. Jacob Eisenstein and Angel Puerta. 2000. Adaptation in
Automated User-interface Design. In Proceedings of the
5th International Conference on Intelligent User
Interfaces, ACM, 74-81.
http://doi.acm.org/10.1145/325737.325787

16. Denzil Ferreira, Anind K. Dey and Vassilis Kostakos.
2011. Understanding human-smartphone concerns: a
study of battery life. In International Conference on
Pervasive Computing, Springer-Verlag, 19-33.
http://ubicomp.oulu.fi/files/pervasive11.pdf

17. Denzil Ferreira, Eija Ferreira, Jorge Goncalves, Vassilis
Kostakos and Anind K. Dey. 2013. Revisiting Human-
Battery Interaction with an Interactive Battery Interface.
In International Joint Conference on Pervasive and

Ubiquitous Computing , ACM, 563-572.
http://ubicomp.oulu.fi/files/ubicomp13b.pdf

18. Denzil Ferreira, Jorge Goncalves, Vassilis Kostakos,
Louise Barkhuus and Anind K. Dey. 2014. Contextual
Experience Sampling of Mobile Application Micro-
Usage. In International Conference on Human-
Computer Interaction with Mobile Devices and
Services, ACM, 91-100.
http://ubicomp.oulu.fi/files/mobilehci14.pdf

19. Denzil Ferreira, Vassilis Kostakos, Alastair R.
Beresford, Janne Lindqvist and Anind K. Dey. 2015.
Securacy: An Empirical Investigation of Android
Applications' Network Usage, Privacy and Security. In
Conference on Security and Privacy in Wireless and
Mobile Networks, ACM, 11:1-11:11.
http://ubicomp.oulu.fi/files/wisec15.pdf

20. Denzil Ferreira, Vassilis Kostakos and Anind K. Dey.
2015. AWARE: mobile context instrumentation
framework. Frontiers in ICT 2, 6: 1-9.

21. Andrew J. Filardo. 1994. Business-cycle phases and
their transitional dynamics. Journal of Business &
Economic Statistics 12, 3: 299-308.

22. Charles Gouin-Vallerand and Neila Mezghani. 2014. An
Analysis of the Transitions Between Mobile Application
Usages Based on Markov Chains. In Proceedings of the
2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication, ACM,
373-378. http://doi.acm.org/10.1145/2638728.2641700

23. James D. Hamilton. 1989. A new approach to the
economic analysis of nonstationary time series and the
business cycle. Econometrica: Journal of the
Econometric Society 57, 2: 357-384.

24. Andrew C. Harvey. 2013. Dynamic models for volatility
and heavy tails : with applications to financial and
economic time series. Cambridge University Press.

25. Niels Henze, Enrico Rukzio and Susanne Boll. 2011.
100,000,000 Taps: Analysis and Improvement of Touch
Performance in the Large. In Proceedings of the 13th
International Conference on Human Computer
Interaction with Mobile Devices and Services, ACM,
133-142. http://doi.acm.org/10.1145/2037373.2037395

26. Paul Holleis, Friederike Otto, Heinrich Hussmann and
Albrecht Schmidt. 2007. Keystroke-level Model for
Advanced Mobile Phone Interaction. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 1505-1514.
http://doi.acm.org/10.1145/1240624.1240851

27. Paul Holleis and Albrecht Schmidt. 2008. MakeIt:
Integrate User Interaction Times in the Design Process
of Mobile Applications. In Pervasive Computing,
Springer Berlin Heidelberg, 56-74.

28. Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos and
Timo Ojala. 2012. Testdroid: automated remote UI
testing on Android. In International Conference on
Mobile and Ubiquitous Multimedia, ACM, 28:1-28:4.
http://ubicomp.oulu.fi/files/mum12a.pdf

29. Titti Kallio and Anne Kaikkonen. 2005. Usability
testing of mobile applications: A comparison between

laboratory and field testing. Journal of Usability studies
1, 4-16: 23-28.

30. Eeva Kangas and Timo Kinnunen. 2005. Applying
User-centered Design to Mobile Application
Development. Commun. ACM 48, 7: 55-59.

31. David J. Kasik and Harry G. George. 1996. Toward
Automatic Generation of Novice User Test Scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 244-251.
http://doi.acm.org/10.1145/238386.238519

32. Panu Korpipää, Jonna Häkkilä, Juha Kela, Sami
Ronkainen and Ilkka Känsälä. 2004. Utilising context
ontology in mobile device application personalisation.
In Proceedings of the 3rd international conference on
Mobile and ubiquitous multimedia, ACM, 133-140.
http://doi.acm.org/10.1145/1052380.1052399

33. Kari Kostiainen, Ersin Uzun, N Asokan and Philip
Ginzboorg. 2007. Framework for comparative usability
testing of distributed applications. In Security User
Studies: Methodologies and Best Practices Workshop.

34. Norris. 1998. Markov chains. Cambridge University
Press.

35. Abhinav Parate, Matthias Böhmer, David Chu, Deepak
Ganesan and Benjamin B. M. Marlin. 2013. Practical
Prediction and Prefetch for Faster Access to
Applications on Mobile Phones. In Proceedings of the
2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, ACM, 275-284.
http://doi.acm.org/10.1145/2493432.2493490

36. JiSu Park, HeonChang Yu, KwangSik Chung and
Eunyoung Lee. 2011. Markov Chain Based Monitoring
Service for Fault Tolerance in Mobile Cloud
Computing. In Advanced Information Networking and
Applications (WAINA), IEEE, 520-525.

37. Martin Pielot. 2014. Large-scale Evaluation of Call-
availability Prediction. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, ACM, 933-937.
http://doi.acm.org/10.1145/2632048.2632060

38. I Satoh. 2003. A testing framework for mobile
computing software. Software Engineering, IEEE
Transactions on 29, 12: 1112-1121.

39. Choonsung Shin, Jin-Hyuk Hong and Anind K. Dey.
2012. Understanding and Prediction of Mobile
Application Usage for Smart Phones. In Proceedings of
the 2012 ACM Conference on Ubiquitous Computing,
ACM, 173-182.
http://doi.acm.org/10.1145/2370216.2370243

40. Uwe Siebert, Oguzhan Alagoz, Ahmed M. Bayoumi,
Beate Jahn, Douglas K. Owens, David J. Cohen and
Karen M. Kuntz. 2012. State-Transition Modeling: A
Report of the ISPOR-SMDM Modeling Good Research
Practices Task Force–3. Medical Decision Making 32,
5: 690-700.

41. Vijay Srinivasan, Saeed Moghaddam, Abhishek
Mukherji, Kiran K. Rachuri, Chenren Xu and
Emmanuel E. M. Tapia. 2014. Mobileminer: Mining
your frequent patterns on your phone. In Proceedings of

the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 389-400.

42. Guillermo Suarez-Tangil, Mauro Conti, Juan E.
Tapiador and Pedro Peris-Lopez. 2014. Detecting
Targeted Smartphone Malware with Behavior-
Triggering Stochastic Models. In Computer Security -
ESORICS 2014 (eds.). Springer International
Publishing, 183-201.

43. Lee Suk-Won and Myung Ro-Hae. 2007. Prediction of
Mobile Phone Menu Selection with Markov Chains.
Journal of Korean Institute of Industrial Engineers 33,
4.

44. Harold Thimbleby. 2004. User Interface Design with
Matrix Algebra. ACM Trans. Comput.-Hum. Interact.
11, 2: 181-236.

45. Harold Thimbleby, Paul Cairns and Matt Jones. 2001.
Usability Analysis with Markov Models. ACM Trans.
Comput.-Hum. Interact. 8, 2: 99-132.

46. Niels van Berkel, Chu Luo, Theodoros
Anagnostopoulos, Denzil Ferreira, Jorge Goncalves,
Simo Hosio and Vassilis Kostakos. 2016. A Systematic
Assessment of Smartphone Usage Gaps. In Conference
on Human Factors in Computing Systems, ACM.
http://ubicomp.oulu.fi/files/chi16a.pdf

47. Daniel T. Wagner, Andrew Rice and Alastair R.
Beresford. 2014. Device Analyzer: Large-scale Mobile
Data Collection. SIGMETRICS Perform. Eval. Rev. 41,
4: 53-56.

48. Worldwide Device Shipments to Grow 1.9 Percent in
2016, While End-User Spending to Decline for the First
Time. Retrieved 16/03/2016 from
http://www.gartner.com/newsroom/id/3187134

49. Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas
Lane, Zhenyu Chen, Andrew Campbell and Tanzeem
Choudhury. 2013. Preference, Context and
Communities: A Multi-faceted Approach to Predicting
Smartphone App Usage Patterns. In Proceedings of the
2013 International Symposium on Wearable Computers,
ACM, 69-76.
http://doi.acm.org/10.1145/2493988.2494333

50. Tingxin Yan, David Chu, Deepak Ganesan, Aman
Kansal and Jie Liu. 2012. Fast app launching for mobile
devices using predictive user context. In MobiSys, 113-
126.
http://dl.acm.org/citation.cfm?id=2307636.2307648

