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ABSTRACT 
We evaluate the situational impairments caused by cold 
ambient temperature on fine-motor movement and vigilance 
during mobile interaction. For this purpose, we tested two 
mobile phone applications that measure fine motor skills 
and vigilance in controlled temperature settings. Our results 
show that cold adversely affected participants’ fine-motor 
skills performance, but not vigilance.  Based on our results 
we highlight the importance of correcting measurements 
when investigating performance of cognitive tasks to take 
into account the physical element of the tasks. Finally, we 
identify a number of design recommendations from 
literature that can mitigate the adverse effect of cold 
ambiance on interaction with mobile devices. 
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INTRODUCTION 
We investigate the effect of acute cold exposure on 
vigilance and fine-motor movements during mobile 
interaction. Despite the de-facto prominence of UbiComp 
experiments “beyond the desktop” and “in the wild” [26], 
relatively little work has investigated how interaction itself 
is shaped by non-conventional environments which can 
lead to situational impairments [47]. Situational impairment 
is a temporary loss of bodily function caused by a variety of 
factors including vibration, divided attention, diverted gaze, 
body motion, awkward postures, cold temperatures, 
clothing, rainwater, glare, uneven terrain, ambient noise, or 

encumbering baggage [15]. Specifically, very little work 
has systematically investigated how interaction with mobile 
devices is shaped by ambient temperature, even though 
ambient temperature substantially deviates geographically, 
seasonally, and diurnally. 

There are two primary sets of human functions that govern 
how people interact with mobile devices: physical and 
cognitive. Physical aspects concern motor actions such as 
touching, pointing, and swiping. Cognitive aspects concern 
tasks such as finding and launching necessary applications, 
finding and activating commands, responding to output, and 
formulating language [37]. Our study focuses on how these 
two sets of functions are affected by ambient temperature, 
by considering performance in terms of fine-motor 
movements and vigilance respectively. 

It is common in cold climates for users to interact with their 
devices in outdoor settings. Although exposure to cold in 
modern society is typically limited to short bursts, it 
remains substantial for industries such as agriculture, 
forestry, mining, factory and construction work, hunting, 
fishing, and military [27]. People working in these activity 
fields face prolonged exposure to cold conditions that can 
deteriorate their performance [46].  

Since cooling of the tissue may result in degraded physical 
[38] and mental [31] performance, completing the same 
task in cold can require extra effort compared to a warm 
environment [27]. Physical interaction with mobile devices 
may also be adversely affected in cold due to muscular 
dexterity loss [22] and shivering, which may in turn disturb 
fine motor control. Hence, a better regulation of movements 
may be required to perform motor-tasks compared to a 
warm environment [38]. Further, research shows that 
discomfort caused by cold can adversely affect tasks 
requiring concentration and vigilance [27]. It also deflects 
attention from primary task and results in impaired 
cognitive performance [42,43]. Rich literature exists on 
how  interaction with mobile devices is impaired by 
situational factors such as motion [15], divided attention 
[24], and ambient noise [47]. However, while it is well 
established that cold temperatures affect vigilance amongst 
other cognitive capabilities [42,43], and fine-motor 
movements [38], very little prior work has investigated the 
effect of cold temperatures have on mobile interaction. 
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Even though the effect of temperature has been reported 
extensively in literature, its impact on mobile device use 
has not been explored. This study is the first to do so, and 
our findings highlight the importance of adapting interfaces 
of mobile devices in cold settings, and the need to account 
for this effect when conducting experiments in cold 
temperatures.  

RELATED WORK 

Situational impairments and mobile phone interaction 
There is a lack of understanding of situational impairments 
and their impact on mobile interaction [47]. Goel et al. 
emphasise that situational impairments, such as dynamic 
state of the phone, might affect successful interaction with 
the device, because current mobile devices still lack 
appropriate awareness of environmental context [16]. 
Previous work has highlighted how situational impairments 
may worsen user’s interaction with mobile device 
regardless of their abilities [23], since they can be caused 
by various factors, such as ambient temperature, ambient 
light [47], ambient noise [47] and movement [15]. 
Moreover, situational impairments might cause further 
accessibility issues for people with disabilities when 
attempting to use the device in one of the mentioned 
situations [23]. Also, a better understanding of situational 
impairments can be helpful in improving accessibility for 
those with more permanent physical impairments, since 
they both might affect users in a similar way 
[47].  Wobbrock argues that understanding situational 
impairments would increase our understanding of needs for 
improved accessibility and adaptive user interfaces [47].   

Since cold-induced motor impairments and temporal 
disabilities may have common characterisation, it is 
important to consider literature on the use of touchscreen 
technology by motor-impaired individuals. Such individuals 
typically find conventional gestures challenging, often 
causing them to refrain from using touchscreen devices 
altogether [50]. Duff et al. [8] report that motor-impaired 
individuals make more mistakes than individuals without 
disabilities when hitting targets on a touchscreen. Further, 
Wobbrock et al. [48] showed that tremor and fatigue 
adversely affected user’s ability to control their movements 
on PDA screens using stylus. Kane et al. summarise 
problems faced by people with motor and visual disabilities 
when using mobile phones such as difficult interfaces with 
small buttons and screens, causing difficulties while reading 
[24].  Therefore, design implications from this area of 
research can potentially be adapted for users without 
disabilities when suffering from cold-induced decreases in 
manual dexterity.  

Effect of cold on fine-motor and cognitive skills 
Previous work has highlighted that cold exposure can 
severely affect fine-motor skills [6,32]. Tasks involving 
manipulations of fingers are more adversely affected in cold 
than those involving hand and arm manipulations [44,49]. 
For instance, standardised Pegboard tests show that 

decreased manual dexterity significantly increases reaction 
time (i.e. target acquisition time) and lowers accuracy in 
manual tasks [22]. 

Further, Havenith et al. demonstrate that finger dexterity 
decreases sharply when the skin temperature drops below 
15 ºC [19]. Moreover, the more finger dexterity the task 
requires, the bigger the performance loss will be. Even 
though this effect is well documented, very little prior work 
has directly studied the effects of cold temperature on 
users’ interaction with technology. As one example, 
Blomkvist [3] used a target size in a Fitts’ acquisition task 
[12] to investigate the effect of cold hands on desktop input 
using a mouse, two trackballs (small, large), and a Wacom 
tablet with two pens (thin, thick). The experiment consisted 
of four sessions, with one of the sessions performed with 
cold hands. In that session, participants’ hands were 
immersed into a large bowl with a mixture of snow and 
water, and kept immersed until the finger skin temperature 
reached 11 ºC. The study reported that participants with 
cold hands performed slower when using trackballs which 
require higher finger dexterity, regardless the target size. 
Regarding cognitive performance, previous work has 
shown that cold can have a significant impact due to the 
distracting power of a more stressful environment than 
usual [42,45]. For example, Daanen et al. found a 
deteriorating effect of cold on driving performance, and 
reported a 16% decrease in driving performance at 
temperatures of 5 ºC compared to driving performance at 20 
ºC [7]. Vaughan and Strauss also documented considerable 
degradation in cognitive performance after exposure to cold 
water (4.5 ºC) compared to exposure to warmer water (15.5 
ºC). Accuracy for solving simple arithmetic tasks and 
navigation problems fell by 11% and 9% respectively. 
Vigilance performance decreased by 3% in target detection 
task alongside with detection time, which increased by 26% 
[45]. 

Pilcher et al. reported that below 10 ºC cognitive skills such 
as reasoning, learning and memory are impaired [34]. 
Flouris et al. observed significant vigilance deterioration in 
a target hitting task in ambient temperatures of -20 ºC 
within 45 minutes of exposure to cold [13]. They also 
report more deteriorated vigilance in women in comparison 
to men. Hence, gender needs to be controlled in studies 
investigating physiological response to cold. Reaction time 
to complete a task is considered to be one of the indicators 
that measure vigilance [13]. Several studies report longer 
response times when cognitive tasks are performed while 
participants are exposed to cold air or water [6,40]. 
Furthermore, exposure to a cold room at -5 ºC increased 
error rate in 8-choice reaction time tasks [10,11]. 

We hypothesise that cold temperatures can severely affect 
smartphone usage due to decreased manual dexterity [38] 
and vigilance [45]. Particularly, we hypothesise that from a 
fine-motor performance perspective, offset and reaction 
time of touch will be larger in cold than in warm. From a 



cognitive skills perspective, we hypothesise that due to the 
adverse effect of cold on vigilance, users will take longer 
time and make more mistakes when asked to remember and 
find an icon, a common task in mobile phone use. 
STUDY 

Software 
Two custom Android applications called TapCircle and 
FindIcon were developed for this study. The TapCircle 
application was designed to quantify participants’ fine-
motor performance in a target acquisition task, while the 
FindIcon application was used to quantify participants’ 
vigilance in a search task. 

The TapCircle application displayed circular targets of 135 
pixels radius, randomly appearing on a 4x6 grid [20], one at 
a time. The grid positions were numbered as shown in 
Figure 1. 

 
Figure 1. Grid with 24 positions and the interface of TapCircle 

application. 

Every target had an indicated center and participants were 
instructed to tap the center of the target as precisely and as 
quickly as possible. We ensured that targets appeared in 
each of the 24 grid positions at least once in order to have 
data points on every grid position. Figure 1 shows the 
interface used by the researchers to set the conditions, and 
the application used by the participants. This application 
logged the position of the grid where a target was drawn, 
coordinates of the target’s center and participant’s touch, 
and elapsed time. Only taps inside the circle were 
subsequently retained during data analysis. We decided to 
use a custom target selection task instead of the standard 
reciprocal tapping task (ISO 9241-9), so as to more closely 
emulate a standard smartphone “Home Page” interface 
(circles were positioned in spots where application icons 
appear). 

In the FindIcon application, participants had to locate and 
click on a particular target icon amongst a set of 24 icons in 
a 4x6 grid that emulated a typical home screen of a mobile 
phone. The target icon was first shown to participants 
before each trial, and participants could look at the target 
icon for as long as necessary until they memorised it. The 
application was designed so that in each condition each of 
the 24 icons would be designated as the target in a random 
order, and that every grid position would host a target icon 
in a random order. This randomisation minimised any 
possible learning effects. The set of 24 icons was chosen 
from the list of most downloaded applications with more 

than 100 million downloads each [25]. Figure 2 shows the 
interface used by the researchers to set the conditions, and 
the interface of the application seen and used by the 
participants. We recorded the time spent on memorising the 
target icon, the time taken to locate and click the target 
icon, the grid position where the target icon was shown 
(including X and Y coordinates of the start and center 
points of the icon), and the coordinates and timestamp of all 
touches made by participants. The application required 
participants to click on the correct icon before proceeding 
to the next trial, and recorded the number of wrong attempts 
before the correct icon was clicked. 

 
Figure 2. Interface of FindIcon application 

Participants performed tasks on both of our applications, 
counterbalancing the order. 

Participants and Apparatus 
Participants were recruited through mailing lists and 
snowball recruitment. Twenty-four participants aged 18 to 
35 years (M=24.64, SD=4.55) enrolled (12 male, 12 
female). Gender was balanced since literature suggests that 
it affects physiological response to cold [2,13,36]. We 
controlled for acclimatisation to cold temperature by 
ensuring that all participants had lived in cold climates 
(e.g., Scandinavia) for more than six months. Participants 
were required to have owned a smartphone for more than a 
year.  

Participants’ clothing was controlled by instructing them to 
wear a single layer of trousers, one pair of socks and top 
garment on the day of the study. During the experiment, 
every participant was asked to wear additional winter attire 
provided by us, consisting of a winter jacket and hat (Figure 
3). The participants were asked to not wear gloves nor 
warm their hands through movement, rubbing, or the 
pockets. Each participant was paid 40 Euros for 
participating. 

 
Figure 3. Grant Squirrel meter/logger (series 1000), a 

participant’s hand with thermal sensors attached, and a cold 
chamber setup. 



Participants used a Samsung Galaxy S5 smartphone 
running Google’s Android 5.0 (Lollipop) operating system 
with a 5.1-inch screen sized 1080 by 1920 pixels. The 
experiment took place in two adjacent chambers hosted at 
an arctic medical facility. The warm room had a controlled 
ambient temperature of 20 ºC, wind velocity below 0.1 m/s, 
and humidity of 30-35%. The cold chamber had a 
controlled ambient temperature of -10 ºC, wind velocity 
below 0.1 m/s, and humidity of 70-75%. Finger temperature 
was measured using two thermistors (Model 427, YSI Inc. 
USA) attached to the index finger and thumb of each 
participant’s dominant hand, just below the nail. Thermal 
data was logged every 1 second using a mobile battery-
powered Grant Squirrel meter/logger series 1000 (Figure 3). 
We collected this information to verify the temperature 
drop in the cold chamber as well as temperature rise in the 
warm room.  

Design and Procedure 
The study followed a within-subjects experimental design. 
The first independent variable was the experimental setting: 
warm room or cold room.  The second independent variable 
was the finger used for target acquisition: index finger or 
thumb. This variable was coupled with holding posture, 
since thumb was used in one-handed operation while index 
finger requires two-handed operation. The experimental 
design was approved by the Human Sciences ethics 
committee of our university. 

Participants arrived to the warm room, where they were 
initially briefed on the purpose of the study. We then 
recorded their personal details (age, gender, dominant hand) 
and asked them to sign a consent form if they agreed to 
study specifications. We then attached the two thermistors 
to their dominant thumb and index fingers while making 
sure the wires did not interfere with participants’ 
movement. For training we asked participants to freely 
interact with our smartphone and both applications so they 
become accustomed to the setting, and subsequently to 
complete one full session with both of the interaction 
modes (one-handed and two-handed), which we discarded 
from our data analysis. Reception and training of 
participants lasted 20-30 minutes, and was designed to 
ensure that learning effects [19] and performance variations 
[35] are minimised, and participants’ finger temperature is 
stabilised. 

After training, participants were dressed in our winter attire 
and shown to the cold chamber to begin the experiment. 
Each participant completed 4 experimental sessions as 
follows: cold-warm-cold-warm (Figure 4), and during the 
whole experiment participants were standing. We decided 
not to counterbalance the order in which participants 
experience the warm and cold rooms for two reasons. First, 
all participants were inevitably exposed to room 
temperature before beginning our study, and 
counterbalancing would require exposing half of the 
participants to the cold chamber 3 times. This is crucial 

because we wanted to observe fluctuations in finger 
temperature: if participants started in the warm room, it 
would not be possible to measure fluctuations in the first 
trial. Second, following ethical recommendations we 
decided to minimize the time we expose our participants to 
the cold chamber, keeping it to 2 visits for each participant.  

Finally, we precisely timed participants’ exposure to cold 
by running trials at specific time periods instead of waiting 
until participants reached certain finger temperatures.  

 
Figure 4. Experimental setup diagram 

The 4 sessions tested either the thumb (one-handed) or 
index finger (two-handed) for interacting with the 
smartphone. The order of active finger was 
counterbalanced, and once a session was completed the 
participants switched rooms and continued with the next 
session. Thus, the order of the 4 sessions was either [cold-
thumb, warm-thumb, cold-index, warm-index] or [cold-
index, warm-index, cold-thumb, warm-thumb]. In every 
session a researcher kept strict timing using a handheld 
timer. Once a participant entered a room, the scientist began 
the timer. When the timer reached 1:00 (1 minute), the 
participant was instructed to begin Block 1 in which both 
applications’ task was completed. The order in which 
applications appeared was counterbalanced between 
participants. A block typically lasted around 2.5 minutes in 
TapCircle application and 1.5 minutes in FindIcon 
application, and once a block of tasks was finished for both 
applications, participants waited (with their hands lowered 
to a natural position) for the scientist to hand them back the 
phone and signal to begin the next block. The blocks were 
timed to begin at 1:00, 6:00, 11:00 within a given session. 
Hence, our experimental design controlled the exposure 
time of participants to the cold and warm rooms.  

Once the experiment was completed, participants took part 
in a short interview session. Regarding both applications, 
we enquired participants about their subjective opinion if 
they were more precise and/or quick when completing the 
tasks in any of the conditions. We then asked them to 
identify parts of the screen that were in their opinion 
harder/easier to reach (in both applications) and find the 
icon (application FindIcon). We also asked participants to 
report which of the apps used in our experiment were also 
installed on their phones in order to determine if this 
affected time taken to find an icon. Finally, we enquired 
what strategy they used to find an icon, and whether shape, 
text or colour of the icons mattered. 
 



Results 
The experiment (including intake, training, and experiment) 
lasted about 90 minutes per participant, and the scientists 
observed 4 participants per day. Each participant completed 
a total of at least 288 correct circles and 288 correct icons 
hits. Overall, we collected 33,672 target hits from 24 
participants for both applications (26,448 for TapCircle and 
7,224 for FindIcon), and independent thermal data from 2 
fingers per participant every 1 second. All data was 
timestamped to enable posthoc synchronisation. Further, 
data from left-handed participants (N=3) was mirrored in 
the x-axis of screen position for consistency purposes.  

We performed an initial analysis to test if there was a 
learning effect across the trial blocks. We found no 
significant improvements in performance as the experiment 
progressed over time. This was expected, since we provided 
extensive training at the start of our experiment and the 
tasks were simple by design. 

Smartphone Performance 
Our experiment used an off-the-shelf smartphone instead of 
a certified cold temperature device, to provide realism in 
our tests. We tested the smartphone’s hardware 
performance in room temperature (20 ºC) and cold 
temperature (-10 ºC) at identical timeframes as in our 
experiment (at 1 minute, 6 minutes, 11 minutes) using the 
AnTuTu benchmarking software, which reports a 
benchmark score that measures performance. Our results 
showed non-significant impact of cold temperature on the 
performance of the smartphone (t(2) = -2.21, p = 0.16). 

Task Performance in TapCircle Application 
We built a model that describes the effect of cold exposure 
on the time taken to tap a circle. We first ran a stepwise 
multiple regression analysis to predict the time taken to tap 
a circle. The final prediction model contained all 5 possible 
predictors (environmental condition, interaction mode, x 
and y center coordinates of target grid position, and gender) 
and was built in 1 step without any of the variables being 
removed. The model is statistically significant (F(5, 26442) 
= 649, p < 0.01) and described approximately 11% of 
variance of time taken to tap a circle (R2 = 0.11, Adjusted 
R2 = 0.11). All factors were significant (Table 1). 

 Est. Std. Err. t  p  

(Intercept) 6.53e-01 4.09e-03 159.80 < 2e-16 
Condition (warm) -1.54e-02 2.53e-03 -6.05 1.45e-09 
Interaction mode (one hand) 1.21e-01 2.54e-03 47.58 < 2e-16 
X center coordinate -7.04e-05 4.18e-06 -16.83 < 2e-16 
Y center coordinate 2.16e-05 2.41e-06 8.98 < 2e-16 
Gender (male) -5.73e-02 2.53e-03 -22.61 < 2e-16 

Table 1. Coefficients of the model predicting the effect of cold 
exposure on the time taken to tap a circle. 

Table 1 shows that participants took less time to tap the 
circles in the warm room than in the cold chamber, and took 
longer when interacting with the phone in one-handed mode 
compared to two-handed interaction mode. Male 

participants were significantly faster than female 
participants when completing the task of tapping circles. X 
and Y center coordinates of the circles were significant for 
the model; however, we should not interpret them in a 
linear fashion, as shown in Figure 5. In other words, greater 
X or Y coordinates do not necessarily mean better 
performance and vice-versa. 

We next built a model that describes the effect of cold 
exposure on the mean offset when tapping a circle. The 
final prediction model contained 4 of the 5 predictors 
(environmental condition, interaction mode, X and Y center 
coordinates of grid position) and was obtained in 2 steps by 
removing one variable (gender). The model is statistically 
significant (F(4, 26443) = 103.4, p < 0.01) and explained 
2% of variance of time taken to find an icon (R2 = 0.02, 
Adjusted R2 = 0.02). All remaining factors were statistically 
significant as can be seen in Table 2. 

 Est. Std. Err. t  p  

(Intercept) 48.18 1.01 47.51 < 2e-16 
Condition (warm) -1.93 0.66 -2.93 < 0.01 
Interaction mode (one hand) 5.63 0.66 8.51 < 2e-16 
X center coordinate -0.02 < 0.01 -16.36 < 2e-16 
Y center coordinate 0.01 < 0.01 7.56 4.17e-16 

Table 2. Coefficients of the model predicting the effect of cold 
exposure on the offset. 

As shown in Table 2, the offset was smaller in the warm 
room (vs.  the cold room). Further, the offset size was larger 
for one-handed (vs. two-handed). In addition, position of X 
and Y center coordinates of circles was significant in 
predicting the offset; however, as reported above, X and Y 
coordinates do not linearly relate to the offset size. 

Mean offsets between target center and participant click are 
shown in Figures 5 and 6, with arrowheads indicating the 
mean direction and mean length of the offset vector. The 
colours of the circles also indicate the length of the offset, 
with lighter colour indicating longer offset and darker 
colour indicating shorter offset.  

Table 3 shows the mean offset and time taken to tap a target 
in the TapCircle app. We estimated the effect size for offset 
between cold and warm environments for both two-handed 
(Cohen’s d = 0.04) and one-handed interaction mode 
(Cohen’s d = 0.04). We also estimated effect size for time 
taken to hit a target for two-handed (Cohen’s d = 0.09) and 
one-handed interaction modes (Cohen’s d = 0.07). 

 Interaction mode 

 Two-handed (Index) One-handed (Thumb) 

Cold Offset = 42.66 (33.04) px 
Time = 603 (144.62) ms 

Offset = 49.30 (72.39) px 
Time = 732 (254.51) ms 

Warm Offset = 41.34 (40.89) px 
Time = 593 (137.89) ms 

Offset = 46.47 (58.22) px 
Time = 709 (248.36) ms 

Table 3. Mean offset and mean time taken to hit a target for 
TapCircle application. SD reported in brackets. 



  
Figure 5. a) Offset vectors for index finger in cold, b) Offset 

vectors for index finger in warm 

 
Figure 6. a) Offset vectors for thumb in cold, b) Offset vectors 

for thumb in warm 

Task Performance in FindIcon Application 

Data Treatment 
We followed the recommendations from Flouris [13] and 
quantified vigilance using reaction time and error. In the 
FindIcon application, participants had to complete the task 
of finding and clicking a target icon, which consisted of 
three subtasks: 1) memorise the target icon, 2) locate the 
target icon amongst 24 icons, 3) click on the target icon. 
The time for subtask 1 was recorded separately by our 
software. However, the time for subtasks 2 & 3 was 
inevitably aggregated and recorded as a single value. 

To quantify vigilance, we were mostly interested in subtask 
2: the time taken to search and locate a particular target 
icon. Hence, in our analysis we had to develop a way to 
measure subtask 2 and exclude the time taken to complete 
subtask 3. 

Due to our experimental design, the data from the 
TapCircles trials gave us an estimate of the average time 
needed for a participant to click an icon at a particular grid 
position, using either thumb or index finger, in either the 
warm or cold rooms. Essentially, this mean value is an 
estimate for the duration of subtask 3, and therefore we 

were able to subtract it from our data to arrive at an 
estimation for subtask 2. We note that different values were 
calculated and subtracted for each participant, room (warm 
vs. cold), interaction mode (index vs. thumb), and block 
(minute 1:00 vs. minute 6:00 vs. minute 11:00). 

Finally, we labeled each icon based on colour. Four 
researchers rated the icons according to the icons’ dominant 
colours. This classification revealed a taxonomy with 8 
categories of colours: blue, red, green, purple, yellow, 
brown, orange, and mixed (for icons with no dominant 
colour). An interrater reliability analysis using the Kappa 
statistic was performed to determine consistency among 
raters, which showed strong agreement between raters (κ = 
0.77, p < 0.01). Overall there were 7 blue icons 
(“Facebook”, “Shazam”, “Skype”, “Dropbox”, “Translate”, 
“Messenger”, “Twitter”), 6 mixed colour icons (“Drive”, 
“Chrome”, “Candy Crush Saga”, “Angry birds”, “Maps”, 
“Fruit Ninja”), 4 red icons (“Adobe Acrobat reader”, 
“YouTube”, “Gmail”, “Google+”), 3 green icons (“Line”, 
“Whatsapp”, “Hangouts”), and 1 of each: purple (“Viber”), 
yellow (“TempleRun”), brown (“Instagram”), orange 
(“ChatOn”).  

Time to memorise 
We analysed if the time taken to memorise each target icon 
was affected by the environmental condition and interaction 
mode (Table 2). A two-way repeated measures ANOVA 
was run to test the effect of the environmental condition 
(cold or warm room) and interaction mode (one-handed or 
two-handed) on the time taken to memorise the icon. The 
results showed a significant effect for environmental 
condition (F(1, 6878) = 128.640, p < 0.01) but not 
interaction mode (F(1, 6878) = 1.179, p < 0.29), and a 
significant interaction effect (F(1, 6878) = 278.525, p < 
0.01). In the cold chamber participants were significantly 
slower in memorising an icon than in the warm room across 
both one-handed and two-handed interaction modes. 
Finally, we estimated the effect size for time taken to 
memorise an icon between cold and warm environments, 
separately for one-handed interaction (Cohen’s d = 0.23) 
and two-handed interaction (Cohen’s d = 0.22). 

Modeling the impact of cold exposure 
We built a model that describes the effect of cold on the 
time taken to find and click the target icon. We first ran a 
stepwise multiple regression analysis to predict the total 
time taken to locate and click a target icon. The final 
prediction model contained 5 of the 6 possible predictors 
(environmental condition, interaction mode, X and Y center 
coordinates of target grid position, and icon colour) and was 
built in 2 steps by removing 1 variable (gender). The model 
is statistically significant (F(11, 6248) = 33.30, p < 0.01) 
and describes approximately 5.5% of the variance of total 
time taken to search and locate a particular target icon (R2 = 
0.055, Adjusted R2 = 0.054). All factors were statistically 
significant and are presented in Table 4. 



 Est. Std. Err. t p  

(Intercept) 1.60e+00 3.23e-02 49.48 < 2e-16 
Condition (warm) -4.06e-02 1.89e-02 -2.15 0.03 
Interaction mode (one hand) 1.31e-01 1.89e-02 6.93 4.64e-12 
X center coordinate -2.63e-04 3.32e-05 -7.93 2.65e-15 
Y center coordinate 1.31e-04 1.92e-05 6.80 1.11e-11 
Icon colour (brown) -1.84e-01 4.97e-02 -3.70 < 0.01 
Icon colour (green) -2.52e-01 3.21e-02 -7.84 5.40e-15 
Icon colour (mix) 4.64e-02 2.58e-02 1.80 0.07 
Icon colour (orange) -3.87e-01 4.92e-02 -7.87 4.27e-15 
Icon colour (purple) -1.27e-01 4.93e-02 -2.58 < 0.01 
Icon colour (red) -2.25e-01 2.90e-02 -7.75 < 1.06e-14 
Icon colour (yellow) -2.34e-01 4.93e-02 -4.81 1.53e-06 

Table 4. Coefficients of the model predicting the effect of cold 
exposure on the time taken to find+tap the target icon. 

Table 3 shows that in the warm room participants required 
less time to find and tap the target icon (vs. cold). In one-
handed interaction mode participants took longer to 
complete the task (vs. two-handed). Blue icons took 
significantly longer time to be found and clicked in 
comparison to brown, green, orange, purple, red, and 
yellow icons. 

We next built a model that describes the effect of cold on 
the time taken to find the target icon, i.e. adjusting time to 
exclude the time needed to click the target icon. The final 
prediction model contained 4 of the 6 predictors (x and y 
center coordinates of grid position, icon colour, and gender) 
and was achieved in 3 steps by removing two variables 
(environmental condition and interaction mode). This 
removal was expected, as time was corrected to exclude the 
physical component of clicking the icon. The model is 
statistically significant (F(10, 6249) = 28.93, p < 0.01) and 
explained 4.4% of variance of time taken to find an icon (R2 
= 0.044, Adjusted R2 = 0.043). All of the factors within the 
model are statistically significant as shown in Table 5. We 
estimated the effect size for time taken to find an icon 
between cold and warm environments for one-handed 
interaction mode (Cohen’s d = 0.03) and two-handed mode 
(Cohen’s d = 0.06). 

Blue icons took significantly longer time to be found. 
Moreover, male participants took significantly less time 
than females. This corresponds with previous results in 
literature [13], which reported more deteriorated vigilance 
in women when compared to men. 

 Estimate Std. Err. t  p  

(Intercept) 9.53e-01 3.07e-02 31.04 < 2e-16 
X center coordinate -2.05e-04 3.26e-05 -6.29 3.35e-10 
Y center coordinate -1.10e-04 1.89e-05 5.82 6.12e-09 
Icon colour (brown) -1.83e-01 4.89e-02 -3.74 < 0.01 
Icon colour (green) -2.55e-01 3.16e-02 -8.08 7.86e-16 
Icon colour (mix) 3.97e-02 2.53e-02 1.57 0.12 
Icon colour (orange) -3.79e-01 4.84e-02 -7.82 6.16e-15 
Icon colour (purple) -1.36e-01 4.85e-02 -2.81 < 0.01 
Icon colour (red) -2.32e-01 2.85e-02 -8.14 4.93e-16 
Icon colour (yellow) -2.51e-01 4.85e-02 -5.18 2.32e-07 
Gender (male) 4.05e-02 1.87e-02 2.17 0.03 

Table 5. Coefficients of the model predicting the effect of cold 
exposure on the time taken to find the target icon. 

Contrasting the two models indicates that when only 
cognitive effort is considered, the environmental condition 
and interaction mode become negligible factors in 
predicting time taken to find an icon. Ergo, environmental 
condition and interaction mode significantly affect physical 
aspects of interaction.  Table 6 presents average values of 
time taken to find an icon for each condition.  

 Interaction mode 

 Two-handed (Index) One-handed (Thumb) 

Cold 

Time to memorise = 854 
(196.47) ms  
Time to find = 873 (727.11) 
ms  

Time to memorise = 922 
(229.52) ms  
Time to find = 889 (925.83) 
ms  

Warm 

Time to memorise = 815 
(150.15) ms  
Time to find = 834 (626.37) 
ms  

Time to memorise = 875 
(185.05) ms  
Time to find = 867 (871.16) 
ms  

Table 6. Mean time to memorise a target icon and find a target 
icon for FindIcon application. SD reported in brackets. 

Figures 7 and 8 show the difference in time taken to find an 
icon for each grid position in both interaction modes and 
environmental condition. 

 
Figure 7. a) Time taken to find a target icon on the grid 

position for index finger in cold, b) Time taken to find a target 
icon on the grid position for index finger in warm 

 

 
Figure 8. a) Time taken to find a target icon on the grid 

position for thumb in cold, b) Time taken to find a target icon 
on the grid position for thumb in warm 



Error 
A Chi-square test was conducted to analyse the relationship 
between environmental condition and if an error was made 
when trying to finding an icon, and no significant 
relationship was found (𝜒2(1, 1) = 0.12, p=0.73).  Similarly, 
no significant relationship was found between interaction 
mode and if an error was made when trying to finding an 
icon (𝜒2(1, 1) < 0.01, p = 0.97). However, a Chi-square test 
showed a significant effect of icon colour on if an error was 
made when trying to find an icon (𝜒2(1, 7) = 26.32, p < 
0.01). Participants made more errors when finding blue 
icons compared to orange and purple. Finally, no significant 
relationship was found between participants that had 
installed the application of the target icon they were looking 
for and if an error was made when trying to find an icon 
(𝜒2(1, 7) < 0.01, p = 0.96). 
Interview results 
During our interviews the majority of participants (16 out 
of 24) felt they were less precise in cold rather than in 
warm, while performing the tasks on TapCircle application. 
When asked for the reason, sense of cold and numb fingers 
were the main ones named: “I was less precise in cold, 
because my fingers were numb” (P14), “The precision was 
slightly worse in the cold due to frozen fingers” (P20), “My 
peak physical performance is more adjusted to warm” 
(P09).  

Interestingly enough 6 out of 24 participants thought they 
were equally precise in both cold and warm conditions. 
Moreover, two participants thought they were more precise 
in the cold than in the warm, “because I wanted to get the 
task done, hence focused on pressing the circles” (P24). 
Overall, this subjective opinion is inline with our findings 
that showed that in the cold they were less precise than in 
the warm.  When asked about particular positions on the 
screen that took longer time to access in a one-handed 
interaction mode (thumb finger), most participants agreed 
that corners of the screen along with the left side edge of 
the screen were the most difficult ones to access, hence 
required more time. Again, their answers correspond with 
our quantitative findings, indicating the top left and bottom 
left corners as the slowest to press. 

As for the FindIcon application, when asked what strategy 
they used to find the target icon, all but one participants 
answered that the colour was the major aspect. Moreover, 
some participants elaborated on the colour aspect of the 
icons by saying “Fruit Ninja and Candy Crush icons were 
more difficult to find because they were colourful” (P17) or 
“their colour was too messy” (P11). Several participants 
mentioned that blue icons were harder to find, since there 
was a high number of them, however 7 people claimed that 
the Facebook icon (blue) was very quick to find, 3 people 
claimed Shazam and Skype icons were quicker to find 
“because of the colour contrast” (P01, P20, P22). Our 
quantitative findings also showed significant higher time 
taken to find blue and mixed coloured icons. 

Furthermore, when asked to elaborate on their search 
strategy, 10 participants said that they scanned the screen as 
a whole, 7 participants preferred scanning the center first, 
and 4 scanned top, then bottom. One of the participants 
noted that “When the icon was in the middle, I could 
directly see it” (P08), even though his strategy was to scan 
icon by icon starting from the top of the screen. The 
remaining participants reported not having a preferred 
search strategy. When asked to mark on the grid where it 
was quicker to find an icon, participants were consistent in 
selecting the center of the grid. These results correspond to 
our findings, which showed that corners of the grid 
(positions 0 and 20 especially) as well as the top and 
bottom parts of the grid took longer time to access and find 
an icon. 

DISCUSSION 
A decade ago Wobbrock described four trends in society 
and technology that have direct consequences for mobile 
interaction, one being the increasing amount of personal 
computing used away from the desktop [47]. This is 
because the context of mobile device use can vary 
substantially more than desktop computers [47]. Hence, 
dealing with situational impairments [39] of mobile use is 
an important, but often neglected research challenge. In this 
paper, we explore one example of a situational impairment, 
mobile interaction in cold environments.  

Fine-motor performance with mobile phones in cold 
environments 
An extensive body of work highlights the effects of 
exposure to cold temperatures on humans’ fine-motor skills 
(e.g., [22,27,38]). Our findings show that participants were 
more precise in a TapCircle task in the warm room than the 
cold chamber. Previous work has showed that since users 
cannot feel the position of touchscreen keys or buttons, 
offsets for top left corner naturally shift towards the lower-
right corner, and offsets for lower-right corner naturally 
shift towards the top-left corner [20]. Our results 
correspond with these findings and show that the offset 
skew is observed in both interaction modes, a factor that 
was not investigate in previous work [20].  
Our results also demonstrate for the first time that the 
magnitude of the offset is larger in cold conditions, 
particularly in one-handed interaction mode. While the 
differences in offset may look relatively small between the 
two environmental exposure conditions (Table 1), these are 
likely to be exacerbated in repeated everyday phone use in 
cold environments, especially when we consider that target 
acquisition is a task that users repeatedly perform to interact 
with touch-screen devices.  

In terms of time taken, participants' performance also 
dropped in the cold chamber. Again, the differences in one-
handed interaction mode were more pronounced in the cold 
chamber. Taking into account the simplicity of the task, we 
argue that a more complex task, such as text entry or object 
manipulation, would lead to even higher differences 



between these two environmental exposure conditions. 
Moreover, several participants were not aware of their 
precision loss during their interaction with the mobile 
device, since in the interview sessions 25% of participants 
(6 out of 24) claimed they were equally precise in both cold 
and warm rooms. This example highlights the importance 
of passively identifying potential situational impairments so 
that the device can react independently of users’ direct 
feedback.  

Further, we highlight the effect of grid position on the time 
taken to tap a circle. Our findings agree with previous work 
by Park & Han [33], but extends to both modes of 
interaction, since Park & Han primarily considered one-
handed thumb interaction. According to our findings, the 
corners of the screen and the upper & lower edges of the 
screen are areas where it was harder to tap a circle. Given 
that in cold settings users’ fine-motor skills deteriorate, 
these challenging areas of the screen become even harder to 
reach/press.  

Our results provide an empirical basis to design devices and 
interfaces that adjust to better accommodate situational 
impairments induced by cold exposure [47]. This can be 
achieved on mobile phones by increasing the size of buttons 
in problematic areas of the screen, or activating accuracy-
improving input techniques such as Fat Thumb [4] or 
GraspZoom [30]. Further, the smartphone interface may 
adapt in real-time to minimise the time users expose their 
hands to cold temperature. These changes can rely on both 
contextual [17] or sensor [16] information (e.g., location, 
ambient temperature, smartphone battery temperature) and 
users’ behaviour. Another potential application of our 
findings is notifying the user of possible frostbite risk when 
their performance decreases when using a smartphone in 
cold temperatures.  

Cognitive performance with mobile phones in cold 
environments 
Unlike physical performance, deterioration of cognitive 
skills tends to occur after a longer time of exposure to cold. 
For example, Flouris et al. recorded adverse deterioration of 
vigilance after 45 minutes of exposure to cold in -20 ºC, 
and was highly correlated to core body temperature [13]. In 
addition, several studies state that cognitive impairment 
happens when the core body temperature drops by 2 – 4 ºC, 
which can requires longer exposure to cold [6,14]. Hence, it 
is natural that shorter exposure to less extreme ambient 
temperatures may not have any significant effect on 
vigilance. Our study did not control for core temperature as 
this would require invasive methods of measurements and 
would therefore not represent realistic use conditions. 
However, it is expected that at a certain threshold cognitive 
impairment would affect users’ input performance. 

The effect of cold on recall and recognition is disputable, 
since deterioration in recall but not recognition was 
observed in some studies [1], contrary to other studies 
where  decline in recognition but not recall was reported 

[11]. Our findings demonstrate that in the cold room 
participants took significantly longer time to memorise an 
icon compared to the warm room, however the following 
subtasks were not significantly affected by the cold 
environment. Neither time, nor frequency of errors were 
significantly affected by cold exposure, and our results 
correspond to the results by Flouris et al. [13]. Another 
possible explanation beyond insufficient exposure time to 
cold may have been that the task was too simple to measure 
and record a significant drop in vigilance. However, it is 
also unlikely that in cold users would perform complex 
tasks on their mobile devices. We also avoided using text 
entry as a task due to the difficulty in distinguishing the 
timing for its cognitive and physical components.  

Nonetheless, our results demonstrate a significant effect of 
grid position on the time taken to find an icon. The screen’s 
corners and upper/lower edges require more time to find an 
icon, in comparison to central positions. This finding 
suggests that future work can consider how people search 
mobile screens, ideally with the use of an eye tracker. 
While prototypes that detect eye motion when using mobile 
phones exist [5,29], to the best of our knowledge, no prior 
work has investigated favourable mobile screen areas for 
the human eye in this manner. Such work could also help to 
understand mobile interface design implications for users 
with visual impairments, if prioritised areas of user gaze 
were identified. 

Similarly, our results show a significant effect of icon 
colour on time taken to find an icon and frequency of 
errors. Interestingly, icons with the most frequent colour 
(blue) and mixed colours took longer time to find, while 
blue icons were also more prone to induce errors. As colour 
is a fundamental aspect of human perception [28], it is 
important to mitigate its adverse effect on cognition, 
especially under high cognitive load. Most existing studies 
focus on two or three primary colours [9,28,41], whereas in 
our study we had 8 colour groups. Our results suggest that 
the choice of colour can have a much more pronounced 
effect than ambient temperature. Crucially, this means that 
poor interface colour choices can be worse than freezing 
temperatures, at the levels explored in this paper, in terms 
of users’ cognitive performance during mobile interaction. 

Finally, the comparison of the two predictive models we 
have presented indicates the significance of environmental 
condition on physical impairment, but not cognitive. Due to 
the time correction in the second model, the physical factors 
were no longer significant (environmental condition and 
interaction mode). This is an important finding of our study, 
because it implies that designers should prioritise adjusting 
mobile interface designs in cold environmental conditions 
to improve physical interaction with mobile devices. 
Further, it shows the importance of accounting for physical 
factors when conducting experiments aimed at assessing 
cognitive performance. 



Limitations 
This study had several limitations. We constrained the 
experimental task either by involving the index finger or 
thumb, unlike in naturalistic settings where users involve 
more fingers or interchange them while accomplishing a 
goal on their mobile device. However, these were the 
requirements to control and detect differences in the 
performance of our participants in the two main modes of 
operation. Further, we did not counterbalance the 
presentation of the cold and warm rooms due to our 
experimental design and ethical concerns, which may have 
had an effect on our results. Another limitation was that we 
did not control icons’ colour, i.e. we did not have equal 
number of icons for each colour. However, controlling for 
colour would not allow us to simulate realistic home screen 
of a mobile device, since it is unlikely for a standard mobile 
device user to have equal number of icons for each colour. 
One more limitation was that some participants might have 
been more acclimated to cold climate conditions, for 
example were born in Nordic countries. Moreover, other 
factors such as metabolic rate affected cooling-down rates. 
Nevertheless, through our within-subjects design we 
mitigate the effect of these factors to provide a fair account 
of changes in performance due to exposure to cold 
temperatures.  

Finally, we used a cold chamber to simulate cold climate 
conditions and did not run the study under the natural 
environmental settings. This allowed us to create fair 
conditions for running the experiment by maintaining 
constant temperature and controlling climate factors such as 
precipitations, wind chill, wind speed and humidity. 
Previous work by Blomkvist [3] used local immersion of a 
hand in snow-water mixture to cool participants’ hands, but 
as a drawback cooling is induced locally and abruptly 
unlike in naturalistic settings. 
CONCLUSION & FUTURE WORK 
Our work investigates the effect of cold temperature 
exposure on mobile interaction in one-handed (using 
thumb) and two-handed (using index finger) interaction 
modes with bare hands. We find that at the levels of cold 
exposure we used in our experiment, fine-motor movements 
are significantly affected during mobile interaction, 
however the effect on cognitive performance is not 
significant. Specifically, in a cold environment the touch 
accuracy decreases, the target acquisition offset is 
significantly longer across both interaction modes, and 
participants take significantly longer time to hit a target. 
Further, cognitive skills measured by time taken to find a 
target icon and error frequency are not significantly affected 
by the environmental condition, but are substantially 
affected by the colour of an icon and the location on the 4x6 
screen grid. We also highlight that when investigating 
performance of cognitive tasks on mobile devices it is 
important to correct time measurements to account for fine-
motor movement and dexterity.  

Our findings highlight the need for mobile interfaces to 
adapt for usage in cold settings, especially considering fine-
motor skills. For example, current smartphone input 
techniques for users with disabilities can be extended to 
cold environment scenarios. Future research is needed to 
investigate and identify not only the effect of cold but other 
situational impairments that can cause fine-motor and 
cognitive deterioration when using mobile technologies. 
Further research is also warranted to explore the effect of 
cold temperature on user performance when interacting 
with touchscreens of other technologies that are used 
outdoors, such as public displays where voice controls have 
been proposed as a potential solution [18,21]. 
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