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Fig. 1. We propose a method for practical information embedding and extraction for layered structures as illustrated in (a) and demonstrated by imaging

(b) a handwriting content embedded in a 12-page paper stack (for non-destructive reading), (c) a split QR code in a 12-page paper stack (as chipless

digital information), (d) a printout inserted between two perspex plates (as a physical tagging layer), and (e) handwriting between two PVC cards (as

steganography).

Non-invasive inspection and imaging techniques are used to acquire non-

visible information embedded in samples. Typical applications include

medical imaging, defect evaluation, and electronics testing. However, ex-

isting methods have specific limitations, including safety risks (e.g., X-ray),

equipment costs (e.g., optical tomography), personnel training (e.g., ultra-

sonography), and material constraints (e.g., terahertz spectroscopy). Such

constraints make these approaches impractical for everyday scenarios. In

this article, we present a method that is low-cost and practical for non-

invasive inspection in everyday settings. Our prototype incorporates a

miniaturized near-infrared spectroscopy scanner driven by a computer-

controlled 2D-plotter. Our work presents a method to optimize content

embedding, as well as a wavelength selection algorithm to extract content
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without human supervision. We show that our method can successfully

extract occluded text through a paper stack of up to 16 pages. In addition,

we present a deep-learning-based image enhancement model that can fur-

ther improve the image quality and simultaneously decompose overlap-

ping content. Finally, we demonstrate how our method can be generalized

to different inks and other layered materials beyond paper. Our approach

enables a wide range of content embedding applications, including chip-

less information embedding, physical secret sharing, 3D print evaluations,

and steganography.
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1 INTRODUCTION

Information extraction consists of techniques to read contents

that are encoded or embedded in a sample, object, or even signal.

Radio-frequency identification (RFID), for instance, is one of
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the most prevailing technologies for this purpose [Ngai et al. 2008;

Sheng et al. 2008]. However, such a technology cannot be adopted

to non-digital contents, such as normal printing or handwriting,

and it requires a sophisticated embedded chip and functional elec-

tronic circuits. Alternatively, in particular, X-ray is widely used as

a promising method for not only medical use but also for extract-

ing other embedded contents such as reading an unopened letter

as recently demonstrated by Dambrogio et al. [2021].

Despite the prevalence of existing methods on non-invasive con-

tent extraction, there are several limitations that constrain their

usage in everyday scenarios. Besides X-ray, predominant content

extraction methods are mostly used in medical diagnosis, includ-

ing optical tomography, terahertz time-domain spectroscopy

(THz-TDS), ultrasonography, and magnetic resonance imaging

(MRI) [Chan and Perlas 2011; Hall and Brenner 2008; Huang et al.

1991; Morris 1986; Son et al. 2019]. Despite the maturity of X-ray,

it is well known that exposure to X-ray may increase the risk of

developing health issues, and thus has restricted usage cases [Hall

and Brenner 2008]. A safe alternative such as MRI is also widely

used, but it requires certain nuclei with an odd number of pro-

tons (mostly H1 in water for medical imaging) [Morris 1986]. Sim-

ilarly, ultrasonography is susceptible to extreme changes of sound

impedance in samples, which is a common occurrence (e.g., the

performance drops sharply when there is a gas between the trans-

ducer and the organ of interest in medical ultrasound imaging) [Or-

tiz et al. 2012]. Alternatively, THz-TDS is challenging to extract

content from sub-millimeter layered structure when the signal con-

trast between the content and the layer material is low in the THz

frequency range, which is common in many scenarios with layered

structures [Redo-Sanchez et al. 2016].

The limitations of existing methods motivate us to explore a

method to embed and read information for more general scenar-

ios, such as for everyday use. In particular, we focus on layered

structures as a common use case, as illustrated in Figure 1(a). Ex-

ample applications include but are not limited to non-destructive

reading (such as an unopened letter, mimicked by a paper stack

in Figure 1(b)), chipless information embedding (as compared to

RFID, demonstrated by a Quick Response (QR)-code split into

a 12-page paper stack in Figure 1(c)), physical tagging for a lay-

ered object (such as a stacked digital fabricated object as shown

in Figure 1(d)), and steganography (exemplified by a handwriting

content between two PVC cards in Figure 1(e)).

Technically, our method is inspired by optical tomography,

a non-invasive imaging technique that can provide both high-

resolution images (up to sub-micrometer) and broad spectral in-

formation of a sample, and are safe to the human body [Boas

et al. 2001; Huang et al. 1991; Ntziachristos 2010]. Although op-

tical tomography has limited penetration ability as compared to

other aforementioned techniques, it can still pass through cer-

tain materials. A few studies demonstrate that optical tomography

can be successfully adopted in other applications such as painting

diagnostics [Arecchi et al. 2006] and artefact examinations [Tar-

gowski et al. 2004]. However, most existing studies on optical to-

mography focus on medical use and are considerably customized,

making them more costly to generalize to everyday scenarios.

This motivates our work using an emerging technology, minia-

turized near-infrared spectroscopy (NIRS), which is cheaper,

mobile, and more suitable for content extraction in general

scenarios.

Conventionally, NIRS is used for non-destructive analysis in a

range of disciplines [Jiang et al. 2021; Klakegg et al. 2016; Siesler

et al. 2008]. Its typical applications include food quality control

in agriculture [Goel et al. 2015], physiological diagnosis in health-

care [Klakegg et al. 2018; Scheeren et al. 2012], medicine control in

pharmaceutics [Roggo et al. 2007], and brain-computer interfaces

in computer science [Solovey et al. 2009]. An advantage of the

NIRS method is that near-infrared (NIR) light can better pene-

trate samples [Reich 2005], compared to other lights such as visible

and ultraviolet lights. Thus, NIRS can be used to acquire informa-

tion at greater depth. This characteristic enables our adoption of

NIRS for occluded content extraction.

In this article, we present a low-cost and generic technique that

can embed and extract occluded content in everyday layered struc-

tures without any special treatment. The main contributions of our

paper are fourfold:

• We demonstrate a prototype and a method to embed contents

using normal printouts on commonly used copy paper, such

as printed texts, handwriting, and QR codes.

• In addition, we present an unsupervised and non-reference

wavelength selection algorithm that can enhance the imaging

results, enabling content extraction at greater depths.

• Furthermore, we show a deep-learning-based method to en-

hance the imaging results, including super-resolution for

upscaling, and content-decomposition for separating super-

imposed contents, at the same time.

• Finally, we demonstrate that our method can be used with var-

ious inks, including toner cartridge (laser printer), pigment

ink cartridge (inkjet printer), marker pen, rollerball pen, and

pencil (2B), as well as a range of layered materials, includ-

ing perspex (acrylic), polylactide (PLA), vinyl tapes, and

polyvinyl chloride (PVC).

2 RELATED WORK

2.1 Non-destructive Testing Methods

Non-destructive testing (NDT) aims to extract an object’s inter-

nal information, such as its inner structure, material, and compo-

sition [Gholizadeh 2016]. With respect to the fundamental prin-

ciples, commonly used NDT methods include electromagnetic

radiation-based techniques, ranging from high-energy X-ray and

Gamma-ray imaging, optical tomography, terahertz (THz) imag-

ing, to low-energy microwave imaging [Deng and Liu 2011]. While

non-electromagnetic methods include ultrasound imaging or ultra-

sonography [Chan and Perlas 2011], magnetic resonance imag-

ing (MRI) [Morris 1986], and so on.

X-ray and Gamma-ray imaging. X-ray and Gamma-ray

are ionizing radiations with frequencies between 30 petahertz

(×1015 Hz, PHz) and 300 exahertz (×1018 Hz, EHz) [Butcher 2010].

They consist of sufficiently high energy to detach electrons from

atoms and molecules, and can penetrate many dense materials in a

relatively great depth [Martz et al. 2016]. Such properties make X-

ray and Gamma-ray ideal for extracting the internal information

of an object, while also harmful to living tissue [Hall and Bren-

ner 2008; Zamanian and Hardiman 2005]. Whereas Gamma-ray is
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more useful in cosmic studies such as Gamma-ray burst [Meszaros

2006], X-ray can prevail in many scenarios, besides its common

applications for airport security [Griffin et al. 2018] and medical

diagnosis including projectional radiography [Ducros et al. 2017]

and computed tomography (CT) [Shepp and Kruskal 1978]. For

instance, Stromer et al. utilize a 3D X-ray micro-CT scanner to

read a closed book without opening it [Stromer et al. 2017]. How-

ever, their approach cannot yield clear images for individual pages.

Whereas a recent work by Dambrogio et al. shows more promis-

ing results to virtually unfold and read a sealed historical letter

with letterlock (a folding technique to seal a letter without an

envelope). Specifically, they applied an algorithm to transform a

3D X-ray micro-CT data into a 2D image [Dambrogio et al. 2021].

The authors further demonstrated that the reconstructed images

could be successfully transcribed by humans. In addition, Sabet-

sarvestani et al. present a method to separate X-ray images for

artworks painted on both sides, using a self-supervised convolu-

tional neural network [Sabetsarvestani et al. 2019]. Despite the

prosperity of X-ray, its adverse impact on the human body is in-

evitable in principle [Morris 1986], thus cannot be used in everyday

scenarios.

Optical tomography. Unlike X-ray or Gamma-ray, optical to-

mography is safe for the human body [Fercher et al. 2003]. It

utilizes infrared or visible lights with frequencies between 300 gi-

gahertz (×109 Hz, GHz) and 790 terahertz (×1012 Hz, THz), predom-

inated by near-infrared (NIR) region with frequencies from 120

to 400 THz (or wavelengths from 2,500 to 750 nm) [Butcher 2010].

Although near-infrared light cannot pass through as many materi-

als as X-ray or Gamma-ray, it can still penetrate certain objects to a

specific depth, which outperforms visible lights [Reich 2005]. Com-

mon optical tomography techniques include optical coherence

tomography (OCT), which is mostly used for medical imaging

in ophthalmology or cardiology [Baumal 1999], and diffuse opti-

cal tomography (DOT), which is used for brain imaging, breast

cancer imaging, monitoring oxygenation changes of hemoglobin

(Hb) cells in the blood, and other medical applications [Hoshi

and Yamada 2016]. Similar to X-ray, optical tomography also has

non-medical applications, including non-destructive inspection

of artworks, contactless material characterization, data storage,

and security [Stifter 2007]. For instance, Arecchi et al. claim the

first application of adopting OCT on painting diagnostics [Arec-

chi et al. 2006]. Specifically, the authors leveraged near-infrared

lights centered at 800 nm wavelength with 100 nm bandwidth for

measuring the varnish film thickness during a cleaning process

for painting conservation. For measuring everyday objects, Cza-

jkowski et al. demonstrate that OCT can be used in quality inspec-

tion for a printed RF antenna, focusing on the height of wire pro-

files, which may impact the antenna’s performance [Czajkowski

et al. 2010]. Another study on an everyday object was conducted by

Alarousu et al. , where the authors use OCT to investigate the prop-

erties of papers [Alarousu et al. 2005]. The authors successfully re-

constructed a 3D image of a copy paper sample with a 0.16 mm

thickness, demonstrating the penetration ability of OCT in an ev-

eryday object, with wavelengths centered at 822 nm/832 nm and

20.2 nm/19.7 nm spectral width. In this article, we further study

the penetration ability of near-infrared light on everyday objects

using NIRS, which is more fundamental than optical tomography.

In addition to tomography, there are other optical imaging tech-

nologies using infrared light that may penetrate materials in spe-

cific scenarios. For instance, a recent study by Wallace et al. shows

a full waveform light detection and ranging (LiDAR) system

can be used in bad weathers such as heavy rain, fog, or smoke [Wal-

lace et al. 2020]. In particular, the authors leverage near-infrared

light with a wavelength at 1,550 nm to penetrate smoke. For far-

infrared light, Kowalski et al. show that cloth fiber can be pene-

trated by long-wavelength infrared using a 7,700 nm/11,500 nm

thermal camera, and a 0.25-Terahertz camera [Kowalski et al.

2015], which can be used for revealing concealed items under

cloths.

Other non-destructive testing techniques. Besides the afore-

mentioned prevailing techniques, there are other non-destructive

testing techniques used in specific fields. For instance, THz imag-

ing, with wavelengths between 1 mm and 10 μm (partially over-

lapped with far-infrared), has other nondestructive testing appli-

cations apart from previous under-cloth item inspection, such as

quality inspection of plastics or food [Jansen et al. 2010]. THz imag-

ing is also applied in clinical applications such as endoscopy (ex-

amining the inside of a hollow organ) and otoscopy (examining the

inside of ears) [Son et al. 2019]. Whereas its main limitation is the

high cost of the THz source and detector [Afsah-Hejri et al. 2020],

and the detectable blackbody radiation emitted by many materi-

als at room temperature as noise [Hegedüs et al. 2020]. Further-

more, at the end of the electromagnetic radiation spectrum, there

are microwave and radio wave imaging techniques with long wave-

lengths between 100,000 km and 1 mm (or frequency between 3 Hz

and 300 GHz). Recent studies have also focused on utilizing Wi-Fi

for object or human identification, activity recognition, and imag-

ing, exploiting its ubiquity [Ma et al. 2019]. Whilst its penetration

ability is high including solid walls [Adib and Katabi 2013], the

Wi-Fi imaging technique is limited to reconstructing the outline

of an object’s shape at a resolution of meters, or up to tens of cen-

timeters with an emerging 60 GHz Wi-Fi device [Zhu et al. 2017],

as a special example of millimeter-wave (mmW) imaging [Patel

et al. 2016].

Finally, there exist radiography techniques using non-

electromagnetic radiations, such as ultrasonography [Chan

and Perlas 2011] and nuclear magnetic resonance imaging

(NMRI), i.e., MRI [Morris 1986]. Albeit these techniques are

exceptionally useful on medical applications for diagnosis, they

require highly customized devices for medical use with profes-

sional training, and are limited to particular materials (e.g., an

object consists of materials with similar acoustic impedance for

ultrasonography, or materials with an odd number of protons in

nuclei for MRI). Hence, it is challenging to adopt these techniques

for radiography in everyday scenarios.

2.2 Information Embedding and Extraction Methods

Broadly speaking, our work also relates to the information em-

bedding and extraction techniques, which aim to encode and

decode information inside an object that cannot be detected by

human eyes. Besides the aforementioned techniques, recent stud-

ies present a variety of methods for such a purpose in everyday

settings. Here, we categorize these studies, with respect to the

materials used. On the one hand, dielectric materials are rather
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transparent to specific electromagnetic or non-electromagnetic ra-

diations while opaque for human eyes, as mentioned previously.

Hence, in particular, this property enables information embed-

ding using digital fabrication techniques such as 3D printing and

laser cutting, and normal printout on copy papers. On the other

hand, conductive materials are opaque to electromagnetic radia-

tions while responsive as an antenna for designated wavelengths,

which can also be embedded as information.

Dielectric materials. Existing works using dielectric materials

involve at least two materials that have different properties such

as scattering or absorbance. For instance, Li et al. present an Air-

Code scheme to embed information such as a QR code, inside a 3D

printed object, using a group of air pockets as the information ma-

terial with sophisticated designs under the surface [Li et al. 2017].

The air pockets are unnoticeable for human eyes, while readable

using an off-the-shelf projector as a patterned light source, and a

monochrome linear camera at 700 nm wavelength (i.e., red light).

The authors also demonstrated that their method can be general-

ized to read cut-out texts on paper. However, AirCode cannot work

on normal inks, thus, is limited to the scenarios allowing air pock-

ets to be embedded. Similarly, Willis et al. show an information

embedding and extraction approach in digitally fabricated layered

objects such as 3D print or laser-cut in the THz domain [Willis and

Wilson 2013]. The authors also utilize air for information encod-

ing, resulting in similar limitations to AirCode. To generalize the

THz imaging technique to normal inks, Redo-Sanchez et al. show

a time-gated spectral imaging method that can read texts written

by a HB or 6B pencil through nine-layered papers [Redo-Sanchez

et al. 2016]. However, their method requires 300 μm thick papers in-

stead of the more common 100 μm thick papers (i.e., 80 gsm papers).

Also, the method cannot be applied to laser printer inks or perma-

nent inks due to the low spectral contrast between the ink material

and the paper material in the THz domain. Alternatively, Tserev-

elakis et al. successfully extracts ink-printed information from a

four-layer paper stack using the photoacoustic imaging technique

with 20 MHz ultrasound [Tserevelakis et al. 2019], while they re-

quire samples immersed in distilled water and spaced without di-

rect contact, which is not practical.

Conductive materials. The underlying principles of informa-

tion embedding and extraction using conductive materials involve

designing a conductive pattern that can be detected by specific

sensors or performs as a microstrip antenna printed on the circuit

board. Above all, one of the most well-known technology for this

purpose is radio frequency identification (RFID) [Ngai et al.

2008]. However, it is infeasible to integrate RFID circuits in ev-

eryday objects, as it requires a well-designed circuit and a dedi-

cated chip for data storage. To address this limitation, researchers

are motivated to study the chipless RFID technique that can be

printed like a bar code [Herrojo et al. 2019b; Preradovic and Kar-

makar 2010]. In particular, a state-of-the-art work using a mi-

crostrip line encoding scheme achieves a high data density of 26.04

bits/cm2 [Herrojo et al. 2019a]. Furthermore, a chipless RFID can

be inkjet printed [Yang et al. 2007], even with a modified domestic

printer [Kawahara et al. 2013]. Nevertheless, chipless RFID tech-

niques are fragile, since they either rely on the electrical resonance

properties that require fine capacitance tuning, or other sophisti-

cated but unstable transmission line circuits in general. Also, an

Fig. 2. System setup. A near-infrared spectroscopy (NIRS) scanner is

mounted on an xy-plotter for raster scanning. The scanner is configured

in transmission mode. A near-infrared (NIR) light source is attached in

tandem below the scanner. A layered sample with occluded contents is

placed between the light source and the scanner on a transparent acrylic

platform.

Fig. 3. Pixel size and scan area. (a) Pixel size is optimum given the scan

area. Scans are performed at the center of each pixel. (b) Scans performed

at the edge of adjacent pixels can result in indistinguishable signals. (c)

Pixel size is too small, each scan includes multiple pixels that cannot be

distinguished.

RFID reader can occupy a wide range of already-scarce radio fre-

quency spectrum resources spanning up to several GHz (a chip-

RFID is either single-frequency or narrow-band covering tens of

MHz) [Herrojo et al. 2019b]. To this end, chipless RFID is still a

maturing technique for everyday scenarios.

As a substitute, Chadalavada et al. present an ID’em scheme us-

ing an array of conductive dots (i.e., an array of cells with or with-

out conductive dots) for information embedding [Chadalavada

et al. 2018]. The conductive dot array can be then detected by an

array of inductive sensors decoded as the information, through the

covering or finishing materials including wood, felt, glass, acrylic,

tile, and concrete. Nonetheless, their method is highly customized

with an exceptional information encoding scheme, which is diffi-

cult to be generalized to other encoding materials such as normal

inks. Compared to the aforementioned works, in this article, we

present a method for information embedding and extraction that

can be generalized to common objects and inks in everyday set-

tings in the near-infrared region.

3 SYSTEM DESIGN

3.1 Overview

Our system consists of prototype hardware (Figure 2) and

software for raster scanning. A miniaturized near-infrared
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Fig. 4. Pixel size measurement. (a) A printout sample with bars of varying width (between 0.1 mm and 6.0 mm). We scan across each bar from left to right

with a 0.1 mm step, as illustrated by the red arrow. (b) For each bar, we calculate the mean intensity levels at different scanning positions, centered around

the location with peak absorbance. (c) The half-peak widths in (b) for each bar width. (d) A printout sample with different gap widths. We scan across the

bars from left to right with a 0.1 mm step, as illustrated by the red arrow. (e) For each gap, we calculate the mean intensity levels at different scanning

positions, centered around the peak transmission point. (f) The half-peak widths in (e) for each gap width.

spectroscopy (NIRS) scanner is mounted on an xy-plotter to

raster layered samples. Each sample is placed between the scan-

ner and a near-infrared (NIR) light source co-located under the

scanner. The sample can consist of multiple sheets of paper, with

black-ink printed contents (such as text). The sheets used are the

common 80 gsm white copy paper, with each sheet being 100 μm

thick. The contents are printed by an unmodified commercial of-

fice laser printer with default settings.

For each spatial point on the sample, the scanner measures the

light intensities at wavelengths between 900 mm and 1, 700 nm,

after transmitting through the sample. Since printer ink absorbs

more light in specific wavelengths, we can discriminate the

spatial points with or without ink by comparing the scanned

near-infrared spectra. Furthermore, as the scanner only detects

the intensities after the light passes through all sample layers, the

relative order of different layers has no significant effect on the

spectrum. Hence, the extraction of content at different layers has

the same performance.

After raster scanning all spatial points on the sample, a nor-

malized heatmap is generated to visualize the detected intensities

across all spatial points. In this article, we refer to a scanning re-

sult at a corresponding spatial point as a “heatmap pixel.” The

heatmap is the reconstructed image that represents the occluded

content within the layered sample. We note that the intensity lev-

els are unitless numbers representing the output of the scanner

without physical meaning. The intensity levels can be transformed

to absorbance with a physical meaning (absorbance A = log10
Φi

e

Φt
e

,

where Φi
e is the received intensity levels and Φt

e is the transmit-

ted intensity levels). Here, we use the raw intensity levels for the

heatmap to prevent numerical issues in practice, as the device may

output negative intensities due to noise in the high absorbance

region.

3.2 System Specifications

Hardware. The NIRS scanner we use is a DLP NIRscan Nano Eval-

uation Module by Texas Instruments. The measuring wavelengths

range between 900 nm and 1700 nm, with 228 distinct wavelengths

(digital resolution). The width for the generated light pattern is

7.03 nm, with 0.635 ms exposure time. Each scan repeats three

times internally for noise reduction with only one spectrum re-

turned. The device is configured in transmission mode using a DLP

NIRScan Nano Transmissive Evaluation Module by Texas Instru-

ments. We modify the transmission module by separating the lamp

and the lens on the receiver side to enable the samples to be placed

between the lamp and the device. The device is mounted on an xy-

plotter to raster scan the samples.

Software. Our software programmatically synchronizes and

controls the raster scanning (move-and-scan). The software is

ACM Transactions on Graphics, Vol. 42, No. 1, Article 4. Publication date: August 2022.
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Fig. 5. Sample printout and raw spectra. (a) A pixelated image of “EUREKA” with a 41 × 7 resolution as the ground truth. A red arrow and a blue arrow

point to two pixels with and without ink, respectively. (b) The “EUREKA” image is split into 12 pages and printed out. (c) The raw near-infrared spectroscopy

spectra for two scans with or without ink respective as illustrated in (b).

developed using Python 3.6 and runs on a normal laptop (HP Pro-

Book 440 G6) with a Linux operation system (Ubuntu 18.04.5 LTS).

Our algorithm is also developed using Python 3.6. We have open-

sourced the software at https://github.com/HighTemplar-wjiang/

NIRScanner-Plotter.

3.3 Pixel Size

In practice, the scanner performs a scan through the sample at a

small area rather than a point. The size of the area is dictated by the

scanner’s hardware characteristics. Inevitably, adjacent inked pix-

els (i.e., areas with printed ink) will interfere with each other if they

are close enough when scanned, as illustrated in Figure 3. To over-

come this problem, the printed pixel size should, ideally, be at least

the same size as the scan area. If the printed pixel is smaller, then a

single scan is likely to involve multiple printed pixels, which com-

plicates the distinguishing of individual pixels. Further, we note

that a scan should be performed at the center of a pixel to mini-

mize signal loss or dispersion. As shown in Figure 3(b), two scans

performed at the edge of adjacent pixels will produce indistinguish-

able results due to the misalignment to the pixels’ centers.

In principle, larger pixels are ideal for stronger signal levels

but are less practical for imaging. Therefore, as a fundamental pa-

rameter, we first need to estimate the minimum viable size for

our printed pixels given our scanning setup. For measurement,

we scan across printed vertical bars of varying horizontal widths

on a single-layered paper. Conceptually, these bars act as one-

dimensional pixels. This allows us to measure intensity levels at dif-

ferent positions in relation to the printed area itself, as is shown in

Figure 4(a). Specifically, we print bars that range between 0.1 mm

and 6.0 mm width. The light’s intensity level reaches its mini-

mum level (maximum absorbance) at the center of each bar, and in-

creases when we scan beyond the ink area, as shown in Figure 4(b).

In this figure, we consider zero-offsets around the minimum inten-

sity (i.e., maximum absorbance) points. In other words, the pixel’s

signal “disperses” around its center. In particular, we calculate the

full width at half maximum (FWHM) values for each bar as

the dispersion area within which an inked pixel can be detected,

and pinpoint the zero-offsets as the center of the full width at half

maximum region.

As shown in Figure 4(c), for bars thinner than 2.0 mm, the

FWHM is consistently and significantly larger than the bar width

itself (mean = 1.69, std = 0.23). For bars thicker than or equal to

2.0 mm, the FWHM is approximately equal to the bar width (with

error ±0.2 mm). Furthermore, adjacent inked pixels may interfere

with each other due to the aforementioned signal dispersion. Ac-

cordingly, we also perform measurements of different width gaps

(i.e., “negative” pixels) between adjacent bars (Figure 4(d)). We

print 5.0 mm bars to maximize the signal level following the results

above, as well as to prevent signal dispersion across adjacent gaps.

The bars are separated by gaps of varying width between 0.1 mm

and 6.0 mm. As shown in Figures 4(e) and 4(f), for the gaps smaller

than 2.0 mm, the FWHM is significantly larger than the gap itself

(mean = 1.51, std = 0.17). For gaps larger than or equal to 2.0 mm,

the FWHM is close to the gap width (with error ±0.3). This result

is identical to the aforementioned experiment with different pixel

sizes.

Given these results, we chose a pixel size of 2.0 mm as the min-

imum viable pixel size for our subsequent samples, which repre-

sents the optimum trade-off between interference and resolution

with our setup.

4 EVALUATION AND WAVELENGTH SELECTION

4.1 Image Quality Evaluation

Using a constant pixel size of 2.0 mm, we evaluate the system per-

formance using pixelated images. As a demonstration, we first pix-

elate six Latin characters spelling “EUREKA” into a 41×7 pixel res-

olution image. The pixels are subsequently randomly distributed
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Fig. 6. Mean-squared error (MSE) performance with different number of pages. (a) MSE performance for each wavelength with different number of pages,

respectively. A curve shows the minimum MSEs at the corresponding wavelengths. The curve indicates a wavelength around 1300 nm is optimum for the

mean-squared error performance. (b) Performance benchmark for different spectrum processing methods. The benchmark is done with a 10× 10 randomly

generated image. The image is printed and placed on the top of a paper stack for consistency and simplicity. (c–e) Scanning results and their histograms of

the EUREKA sample shown in Figure 5, with different processing methods. (f) The ground truth of the EUREKA sample.

across 12 sheets of paper. The sheets are then stacked into a single-

layered sample, on which we perform our content extraction.

The demonstration image and sample raw spectra are shown in

Figure 5. As shown in Figure 5(c), the intensity level is lower for

pixels with ink (red arrow, mean intensity = 12.01) than for pixels

without ink (blue arrow, mean intensity = 57.68) at certain wave-

lengths. Also, the raw spectra are noisy as only a small ratio of light

can pass through the sample (mean absorbance = 4.72 for a 12-page

paper stack, i.e., the mean pass-through ratio is 1.90 × 10−5).

Next, we systematically measure the effect of varying the num-

ber of layers in the sample. Specifically, we vary the number of

layers in the sample between 1 and 20. Here, we use a random pat-

tern of 10 × 10 pixels and containing 50 shuffled inked pixels, as

“EUREKA” is a biased sample (does not contain the same number of

inked versus non-inked pixels). We include the “EUREKA” sample

for demonstration purposes.

To measure the quality of the reconstructed image, we adopt the

metric of mean-squared error (MSE) between the reconstructed

image (i.e., the heatmap) and the ground truth (i.e., the pixelated

image) [Wang and Bovik 2009]. A lower MSE value indicates a

more accurate reconstruction of the ground truth. We calculate

MSE values using reconstructed images at different wavelengths

and using a different number of pages. As shown in Figure 6(a),

the MSE values are rather small for samples with less than six

pages, while the MSE values increase rapidly when more pages

are added. Also, for samples with less than six pages, the MSE

is smaller at shorter wavelengths (closer to the visible red light),

while for thicker samples the MSE is minimized at a wavelength

of 1302.71 nm. In general, we observe that specific wavelengths

may perform better with smaller MSE values using raw spectra.

This observation motivates our exploration of raw spectra pro-

cessing and wavelength selection to improve the quality of recon-

structed images. Using conventional signal processing tools in lit-

erature, we first smooth the raw spectra with a Savitzky–Golay

filter (window size = 11, polynomial order = 3) and a moving av-

erage filter (window size = 11) [Jiang et al. 2019; Klakegg et al.

2017; Skoog et al. 2013; Zimmermann and Kohler 2013]. Then,

the intensity values at the 1,302.71 nm wavelength are selected
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for each pixel, respectively, represented by a two-dimensional ar-

ray. Finally, the intensity values are normalized and drawn to a

heat map (values between 0 and 1, where 1 represents an inked

pixel). As shown in Figure 6(b), the MSE values with smoothed

spectra at 1,302.71 nm are significantly lower than the raw spec-

tra, as also visualized in Figures 6(c) and 6(d) for a clearer EUREKA

demonstration.

In addition to single wavelength selection, we further investi-

gate improving the MSE performance using multiple wavelengths,

as based on the observation in Figure 6(a). This motivates us to

design a wavelength selection algorithm to enhance the recon-

structed image. However, it is not realistic to expect to have the

ground-truth image available prior to the content extraction pro-

cedure. Therefore, the MSE value cannot be used as a variable for

wavelength selection. Also, it is not feasible to include a human in

the process, i.e., the algorithm must be unsupervised without the

ground truth or the reference image. To this end, we developed an

unsupervised and non-reference wavelength selection algorithm

based on the mean difference (MD) between the zero-candidates

and one-candidates. A zero-candidate is a pixel with a normalized

value less than 0.5 in the heatmap, while a one-candidate is a pixel

with a normalized value greater than 0.5. As shown in Figures 6(c)

and 6(d), the histogram of the reconstructed image with processed

spectra provides a more pronounced split between the two distri-

butions (blue versus red) than when using the raw spectra. This ob-

servation is in line with the literature [Bovik 2009]. Next, we quan-

tify the split as the absolute difference between the mean value of

the two distributions. Our algorithm aims to search for a wave-

length subset that maximizes this mean difference, by adding a

wavelength in each iteration. We detail the algorithm and show

its performance below.

4.2 Wavelength Selection Algorithm

Our algorithm’s performance is shown in Figure 6(b), where it

outperforms the conventional signal processing method using the

MSE metric. For a visual comparison, we refer to Figure 6(e). In ad-

dition, we provide further visual illustration by reconstructing the

EUREKA sample for a different number of pages in Figure 7. The

reconstructed images appear to be equally clear for an 8-page sam-

ple. The image becomes significantly worse for raw spectra with

12 pages, and mostly unreadable with 15 pages. Using the conven-

tional signal processing method, the image is somewhat visible to

the human eye up to the 16 page sample. Using our unsupervised

and non-reference wavelength selection method, the reconstruc-

tion is more accurate, both visually and in terms of MSE score, for

all samples up to 16 pages.

The pipeline for our wavelength selection method is illus-

trated in Figure 8. A Savitzky–Golay filter (window size = 11,

polynomial order = 3) and a moving average filter (window size =
11) are adopted to each raw spectrum, respectively, for smoothing

before the wavelength selection step. The unsupervised and non-

reference wavelength selection algorithm is then applied to select

a subset of wavelengths that can reconstruct an optimal image.

The algorithm is described in Algorithm 1. It selects wave-

lengths recursively by iterating through all wavelengths. The

wavelengths are split as a selected wavelength list and an unse-

lected wavelength list, with the selected wavelength list initialized

ALGORITHM 1: Non-reference wavelength selection algorithm.

input :A raw spectra array

output :A reconstructed image, selected wavelengths

/* Initialization. */

1 wavelengthPoll← all scanning wavelengths;

2 selectedWavelengths, meanDifferences←�;

/* Begin iterations. */

3 while wavelengthPoll is not empty do

4 maximalMD← 0;

5 candidateWavelengths← wavelengthPoll;

6 bestWavelength← candidateWavelengths[0];

7 foreach wavelength in candidateWavelengths do

8 selectedWavelengths.append (wavelength);

9 currentImage←

rawSpectrumArray[selectedWavelengths].norm();

10 currentMD← calculateMD(currentImage);

11 if currentMD > maximalMD then

12 maximalMD← currentMD;

13 bestWavelength← wavelength;

14 bestImage← currentImage;

15 end

/* Remove current wavelength for testing next one. */

16 selectedWavelengths.remove(wavelength);

17 end

/* End of one iteration. */

18 selectedWavelengths.append(bestWavelength);

19 meanDifferences.append(maximalMD);

20 reconstructedImages.append(bestImage);

21 wavelengthPoll.remove(bestWavelength);

22 end

/* End of iterations. */

/* Output the iteration with global maximal mean difference. */

23 indexOptimum← meanDifferences.argMax();

24 return reconstructedImages[indexOptimum],

selectedWavelengths.firstNItems(indexOptimum +1);

as an empty set. In each iteration, one wavelength will be selected

and moved from the unselected wavelength list to the selected

wavelength list, which maximizes the mean difference value. The

mean difference values are calculated with the reconstructed

image, which is a normalized array after computing the mean

intensities for each pixel at selected wavelengths. To alleviate

the scaling effect caused by outliers, we also adopted a robust

normalization method that uses the 2nd and 98th percentiles as

the min-max values. In the end, all wavelengths will be moved to

the selected wavelength list ordered by the number of iterations.

For our setup, a spectrum consists of 228 wavelengths, thus, 228

iterations will be run for an image. We include extra notes for

Algorithm 1 in Appendix Section A.

Through these iterations, after a certain point, the mean differ-

ence value of the reconstructed image may decrease after reaching

a global maximum. This is because the wavelengths selected later

are usually noisy or not responsive to the materials or ink we use.

Therefore, as the final step, we need to identify the number of iter-

ations for which the mean difference value is the global maximum.

As the selected wavelength list is ordered by the number of iter-

ations, we can simply output the wavelengths indexed from the

beginning to the number of iterations.
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Fig. 7. Scanning results with different number of layers. (a) Scanning results of the EUREKA sample with a 8-page split scheme. All methods show clear imag-

ing outcomes. (b) Scanning results of the EUREKA sample with a 12-page split scheme. Imaging outcome of raw data with single wavelength (@1,302.71 nm)

becomes noisy. (c) Scanning results of the EUREKA sample with a 15-page split scheme. Imaging outcome of raw data with single wavelength (@1,302.71 nm)

is not readable, while the wavelength selection method still shows a clear imaging outcome. (d) Scanning results of the EUREKA sample with a 16-page

split scheme. Imaging outcomes of all methods are noisy, while the wavelength selection method shows a barely readable outcome.

Fig. 8. Signal processing and wavelength selection. (a) Raw spectra for two pixels with or without ink are exemplified, respectively. The layered sample

consists of 15 layers of white copy paper. (b) The raw spectra are processed using a Savitzky–Golay filter and a moving average filter. (c) With all the

processed spectra, the non-reference wavelength selection algorithm is applied. The optimal point is selected as the wavelength subset with the maximal

mean difference. (d) Intensity values at selected wavelengths are averaged as the pixel value (all pixels adopt the same selected wavelength subset).

It is worth noting that, intuitively, our algorithm performs

greedy-like steps. At each iteration, the algorithm selects a local

optimal wavelength with respect to the mean difference maximiza-

tion problem, and achieves a decent selection of wavelengths. This

is because each selected wavelength carries the most image infor-

mation and does not cancel out the selected wavelengths that are

already in the selection subset in previous iterations. For example,

as an extreme case as a result of noise, Wavelength 1 may represent

inked pixels as 0 s, while Wavelength 2 represents inked pixels as

1 s. With respect to the mean difference values, both wavelengths

are equivalently good, while adding them together would cancel

out each other and result in significant information loss. This phe-

nomenon is particularly common in lower intensity cases (e.g.,

15 pages). Hence, our algorithm shows a more significant improve-

ment with increasing numbers of pages as illustrated in Figure 7.

Similarly, a straightforward wavelength ranking algorithm may

not perform well. For instance, we could consider ranking all the

wavelengths by calculating the mean differences, respectively, and

then select the top-N wavelengths as the optimal wavelength sub-

set. However, in addition to the above reason, this method falsely

assumes that the intensities of different wavelengths are inde-

pendent. In principle, the NIRS technique is based on molecular

overtone and combination vibrations that are very broad in spec-

trum [Skoog et al. 2013]. Therefore, the measurements among dif-

ferent wavelengths are usually correlated. In addition, depending

on the hardware, the noises at different wavelengths may also be

correlated. For example, the scanner we use consists of a digital

micromirror device (DMD) chip for separating the wavelengths

that might be a noise source for all wavelengths. In contrast, our

algorithm does not require such assumptions and is thus more ro-

bust for various system setups and scenarios.

5 IMAGE ENHANCEMENT

Beyond imaging, we now investigate image enhancement meth-

ods that can further improve the image quality for practical use. In
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Fig. 9. Sample printout and scanning results with different pixel sizes. (a) Six texts, EUREKA, are printed separately on six pages and stacked with another

six empty pages (12 pages in total). (b–d) Scanning results with 1.0 mm, 2.0 mm, and 3.0 mm pixel sizes, respectively.

particular, we present methods that can mitigate the physical lim-

itations of our system, including supersampling, super-resolution,

and content decomposition.

5.1 Supersampling

In the reality of the non-digital world, the embedded contents are

not pixelated. In such a case, the scanner cannot be expected to

optimally align with the sample’s pixels. More generally, for in-

stance, handwritten contents consist of ink without a digital con-

text. Hence, we may expect the scan area to be larger than the finer

details of the sample, as previously illustrated in Figure 3. Conse-

quently, the reconstructed image can be blurred or jagged (alias-

ing). Although unavoidable, this issue can be alleviated by using

supersampling with a fine resolution [Damera-Venkata and Chang

2009].

For demonstration and comparison, we show the “EUREKA”

sample without pixelation in Figure 9(a). The 6 letters of EUREKA

are printed on 6 pages, respectively, and interleaved with 6 addi-

tional empty papers into a layered sample (thus 12 pages in to-

tal). The sample is then scanned using a raster step size of 1.0 mm,

2.0 mm and 3.0 mm, respectively. Varying the raster size means

that the plotter driving the NIRS hardware moves in smaller in-

crements across the x and y axes. Consequently, the reconstructed

images consist of pixels sized of 1.0 mm, 2.0 mm, and 3.0 mm, re-

spectively. The reconstructed images are shown in Figures 9(b)–

9(d). All three images are well-constructed as indicated by the his-

tograms (mean differences are 0.632, 0.675, and 0.637 with 1.0 mm,

2.0 mm, and 3.0 mm pixel sizes, respectively). However, the 3.0 mm

pixel-sized image is blurred and some letters are barely distinguish-

able. The 2.0 mm pixel-sized image is clear and all letters can be

easily identified, as well as jagged with aliasing. Finally, the super-

sampled image with 1.0 mm pixel size is both clear and smooth

as expected. These findings suggest that our prototype can ex-

tract analog content from layered samples, with anti-aliasing by

supersampling.

5.2 Super-resolution and Content Decomposition

Improving Image quality. Beyond supersampling for image

enhancement, we further consider two limitations that are con-

strained by physical principles. First, while supersampling is ef-

fective for improving the image resolution, the method is lim-

ited by the pixel size (2 mm) as shown in Section 4. Increasing

the resolution using supersampling results in blurred edges, as

shown in Figure 9. A conventional method using the deconvolu-

tion process requires certain assumptions to be fulfilled that can

be unrealistic (e.g., perfect or accurately estimated point spread

function (PSF) [Rossmann 1969]). Alternatively, the latest deep-

learning-based method is less constrained on such assumptions

and more effective on such tasks [Wang et al. 2018]. Hence, in

particular, here we show that a generative adversarial net-

work (GAN)-based deep-learning approach can further improve

the image quality including deblurring, denoising, as well as fur-

ther improving the image resolution beyond super-sampling (i.e.,

super-resolution).

Content decomposition. A second physical limitation is

the overlap of contents. In principle, our system images the

embedded contents as a projection by penetrating the layered

structure. Consequently, contents located at the same projection

position across different layers overlap in the imaging outcomes.

To separate the overlapping contents, we perform a content de-

composition process to reconstruct images with non-overlapping

content. Effectively, the content decomposition (also known as

image decomposition) task can also be well accomplished by

using the deep-learning-based approach as the state-of-the-art.

To this end, as an end-to-end combined solution, we develop and

train a GAN-based deep-learning model to perform both tasks

simultaneously.

Deep-learning-based approach. In particular, we adopt a

deep adversarial decomposition framework [Zou et al. 2020] incor-

porating a U-Net convolutional network model [Ronneberger et al.

2015]. Although previous work shows that such a model can be

successfully applied to image decomposition tasks [Zou et al. 2020],

existing methods only show results on specific public datasets (e.g.,

dogs and flowers [Khosla et al. 2011; Nilsback and Zisserman 2006])

and cannot be applied directly to our scenario. Therefore, we train

a model from scratch for decomposing overlapping contents (e.g.,

texts) extracted by near-infrared imaging. We include the details

for the model and training process in Appendix B.
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Fig. 10. Results of our deep-learning-based content decomposition with

super-resolution model. Left: Near-infrared imaging results (2.5× upscaled

with bilinear interpolation, and padded to the 128 × 128 resolution). Left-

bottom corner represents the original resolution (inputs). Middle and right:

Decomposed images (outputs).

Our results are illustrated in Figure 10, representing different

conditions, including non-overlapping, partially overlapping,

and fully overlapping cases. The inputs are the near-infrared

imaging results with eight-layered white-copy paper stacks

(embedded with printout contents “ABC” + none, “AB” + “123,”

“ABC” + “123,” and “TOP” + “DOWN,” respectively). The inputs

are scaled-up (2.5×, bilinear) and padded to a 128× 128 resolution.

The outputs are two decomposed images (both with a 128 × 128

resolution) for each input image. We can observe that our model

can successfully separate overlapping contents. As a special case,

the non-overlapped condition is considered as two identical over-

lapped contents. Beyond content decomposition, our model also

performs denoising and deconvolution-like processes (deblurring),

yielding clear images with super-resolution.

It is worth noting that our deep-learning-based approach

does not conflict with our wavelength selection algorithm (Al-

gorithm 1). Whereas the wavelength algorithm aims to extract

as much information as possible from the raw signals (image

formation), the deep-learning model performs post-processing

to further interpret and improve the image outcomes (image

processing).

Fig. 11. Mean-squared error (MSE) performance using an inkjet printer

with different number of pages.

6 VALIDATIONS AND GENERALIZATIONS

6.1 Other Inks

We next validate and generalize our method with other inks. In

total, we test six different inks, including toner cartridge (laser

printer), pigment ink cartridge (inkjet printer), marker pen, roller-

ball pen, ballpoint pen, and pencil (2B).

Inkjet printer. For the two printers, we evaluate the MSE per-

formance using a randomly generated 10 × 10 binary matrix as

mentioned in Section 4, since the printers can yield accurate and

homogeneous printouts specified by the ground truth (i.e., the bi-

nary matrix). The MSE performance for inkjet printer (pigment

ink cartridge) is shown in Figure 11. Compared to the laser printer

(toner cartridge), the inkjet printer shows similar results as shown

in Figure 6.

Pens. In contrast, the MSE evaluation for pens can be unrealistic. It

is required to hand-draw the content precisely and homogeneously

(i.e., the same amount of ink for all pixels) as per the ground truth

(i.e., the binary matrix). Such a scenario is not practical for actual

use cases. To this end, we validate the performance using pens

in a semi-systematic and realistic form. We hand-write the letters

“EUREKA” on white copy paper using different pens. The letters

are sketched and filled with pens. We subsequently image the con-

tent (EUREKA) with different numbers of pages (8, 12, 15, and 16).

The results are shown in Figure 12. Overall, the content written by

three pens (marker pen, rollerball pen, and 2B pencil) can be suc-

cessfully imaged with similar results. In the extreme cases (15 and

16 pages), the marker pen shows slightly better results than the

other two pens (rollerball pen and pencil). We are unable to detect

significant signals for the ballpoint pen.

6.2 Other Layered Materials

Furthermore, we generalize our method to different materials be-

sides copy paper. We test different materials that are commonly

used in everyday scenarios and can be layered. In particular, we

test generic copy papers (80 gsm, which is the most common cat-

egory for printing), perspex (also known as acrylic, a common

material for laser cutting), polylactide (PLA, a common material
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Fig. 12. Imaging results of handwritten contents using different pens (inks), including marker pen (top), rollerball pen (middle), and 2B pencil (bottom).

for 3D printing), and Vinyl tapes (also known as electrical tape, a

flexible and opaque tape) with three colors (white, red, and black).

We also test medium-density fibreboard (MDF, a commonly used

wooden material for hardware prototyping, furniture, and build-

ing), polyvinyl chloride (PVC, one of the most popular plastic

materials), and copper sheet (a metal material mostly used for

electronics).

To establish a limit of how deep we can embed content, we first

measure the maximum penetrable layers (thickness) of these mate-

rials without ink. In particular, we calculate the absorbance per mm

for each material as a measure of penetrability. The process for

each material is as follows:

(1) Data collection: We scan each sample 100 times in a 10 mm ×

10 mm area with 1.0 mm raster steps. We scan an area instead

of a fixed position to minimize measurement bias and avoid

outlier-related issues. Each material is scanned with varying

numbers of layers (thickness) until no signal could be detected

by the scanner.

(2) Spectrum processing: We then process the absorbance spectra

using the same method as reported in Section 4 (smoothed by

a Savitzky–Golay filter and a moving average filter).

(3) Characteristic wavelength selection: Next, we select the char-

acteristic wavelength for each material by choosing the wave-

length with the best linearity. Here, we do not use the MSE-

based selection method as in Section 4 to focus on the material

itself. Also, it is infeasible to print contents on all materials

like paper. As a measurement of the linearity, for each wave-

length, we run F-tests using the thickness of the sample as the

independent variable, and the absorbance value at each wave-

length as the dependent variable. We select the wavelength

with the maximal F-value as the characteristic wavelength for

that material.

(4) Linear regression: Finally, we adopt a linear regression model

with the ordinary least squares (OLS) method for the char-

acteristic wavelength, respectively, for each material. The es-

timated coefficient of the linear regression model is regarded

Fig. 13. Absorbance per mm values for tested layered materials. The error

bars represent the root mean-squared errors (RMSE).

as the value of absorbance per mm for the corresponding ma-

terial. In addition, due to the limitation of the NIRS scanner,

we only consider absorbance values between 2.0 and 5.0 for

linear regression, since the thickness-absorbance relationship

is non-linear for the absorbance region below 2.0 [Liu et al.

2018]. It should be noted that this phenomenon does not af-

fect our content extraction procedure. Also, the spectra are

quite noisy for absorbance beyond 5.0 (i.e., only 10−5 ratio of

light is detected). Therefore, we consider 5.0 as the maximal

absorbance that can be measured by our scanner.

The results for different materials are shown in Figure 13 and

listed in Appendix Table E.1. We also provide photos of the sam-

ples with microscopic images of their microstructures, as well

as the linear regression fitting curves in Appendix E (Appendix

Figures E.6–E.10). In summary, both the white and the red copy

papers show similar absorbance profiles in the near-infrared re-

gion (between 900 nm and 1,700 nm) with maximum 15 and 16

pages penetrable, respectively. While absorbance of the black copy
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Fig. 14. Samples with different materials. (a) A printout sample with a seven-page black copy paper stack (0.56 mm thickness) and its scanning result (mean

difference = 0.616). (b) A printout sample stacked between 2 PVC cards (1.62 mm thickness) and its scanning result (mean difference = 0.686). (c) A printout

sample stacked between two white perspex plates (6.00 mm thickness) and its scanning result (mean difference = 0.525). (d) A printout sample stacked

between two red perspex plates (5.86 mm thickness) and its scanning result (mean difference = 0.606).

paper is higher, it is still penetrable up to 11 pages. Compared to

the copy papers, the perspex materials are more translucent with a

substantially lower absorbance for both the white and the red col-

ors. However, we cannot detect any signal for the black perspex

with a single layer (2.92 mm). The 3D printing materials, polylac-

tide (PLA), also show a high transmittance (i.e., low absorbance)

in the near-infrared region, topped by the red color while bottomed

by the black color. Similar results are obtained for the vinyl tapes.

Among all the penetrable materials we measured, the black vinyl

tape has the most absorbance per mm. Finally, we observe low ab-

sorbance for the polyvinyl chloride (PVC plastic) material, while

no signal can be detected for the 2.94 mm medium-density fibre-

board (wooden material) and the 0.1 mm copper sheet (metal mate-

rial), hence they are opaque in the near-infrared region with such

thicknesses.

6.3 Other use Cases

Next, we demonstrate the feasibility of content extraction with dif-

ferent materials, as a means to show the generalizability of our pro-

totype and our method, as illustrated in Figure 14. First, we print

“EUREKA” on 6 pages of black copy paper and cover it with another

blank page. Since the absorbance of the black copy paper is higher

than the white copy paper, the sample only consists of 7 pages

(0.56 mm) instead of 12 pages (1.20 mm). The image reconstructed

by our algorithm is very clear, despite the low contrast between

the ink and the paper (mean difference in image intensity values

= 0.616). In addition, we also test layered samples stacked with

printed white copy paper and PVC or perspex. The reconstructed

images are distinct for both the PVC-paper sample (mean differ-

ence = 0.686) and the red perspex-paper sample (mean difference

= 0.606), while rather blurred for the white perspex-paper sam-

ple (mean difference = 0.525) due to higher absorbance. It should

be noted that these three mixed samples are much thicker than the

paper samples as the materials have a lower absorbance per mm.

In addition, we show content extraction using our system with

handwriting using a marker pen. As shown in Figure 15, six let-

ters, “EUREKA” are handwritten on white copy paper and a PVC

card, using a normal black marker pen. The handwritten paper is

then placed in the middle (Page 7 from bottom to top) of a 12-page

stack, while the handwritten PVC card is placed on the bottom and

covered by another blank PVC card. Measurements for both sam-

ples yield sharp reconstructed images using our prototype and our

unsupervised and non-reference wavelength selection algorithm.

6.4 Validation and Comparison with a SWIR Camera

Finally, we validate and compare our method with a SWIR cam-

era (WiDy SenS 640 G-STE). In contrast to our system, which con-

sists of a high spectral resolution and a low spatial resolution, a

normal SWIR camera does not separate individual wavelengths

while having a higher spatial resolution. Hence, a SWIR camera

can be an alternative to our system for imaging purposes. To val-

idate, we demonstrate the imaging results in Figure 16, using a

white copy paper stack embedded with the “EUREKA” content.

Albeit the SWIR camera can successfully extract the embedded
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Fig. 15. Handwriting samples with different materials. (a) A handwriting sample on paper within a 12-page paper stack (1.20 mm in total) and its scanning

result (mean difference = 0.654). (b) A handwriting sample on PVC within a two-layer PVC stack (1.52 mm in total) and its scanning result (mean difference

= 0.678).

information, the noise level is higher due to the high density

of thermal agitation of the InGaAs sensor array. From 12 pages

onward, the content is overwhelmed by the noise. One possible

solution to mitigate this issue is to use a deep-cooling system,

although this solution is costly and unpractical for common use

cases due to the cooling peripherals (e.g., tubing with coolants). Al-

ternatively, the use of a more powerful light source may increase

the penetrated light intensity. However, common light sources

such as halogen lamps also emit significant far-infrared lights

(heat) that can increase the thermal noise levels.

Furthermore, we note that SWIR cameras are not suitable for

evaluation purposes. First, wavelength analysis is more challeng-

ing using SWIR cameras as it requires a dedicated tunable band-

pass optical filter to select individual wavelengths at a time (i.e.,

hyperspectral imaging). Also, absorbance evaluation requires uni-

form illuminance distribution on the sample surface (e.g., paper

stack). It further requires three conditions to be met: (1) Ideal paral-

lel alignment for “camera–sample–NIR light source.” (2) Ideal paral-

lel NIR light source. (3) A well-controlled space without unwanted

stray NIR lights reflected from the NIR light source.1 Although we

adopt a brightness homogenization process to mitigate the illumi-

nance distribution issue (see Appendix C), the absorbance analy-

sis remains challenging as the actual incident lights are not well

controlled.

In contrast, our setup intrinsically fulfills the aforementioned

requirements with a common laboratory setup. In addition, com-

mercial SWIR cameras are quite expensive, and are therefore not

be affordable for common use. For example, the uncooled mid-end

SWIR camera we used above is priced at ∼20,000 USD, which is

around 20 times more expensive than our system (∼1,000 USD).

7 DISCUSSION

7.1 Applications

Our method shows promising results in content extraction across

a range of layered materials, including printouts and handwriting

on normal copy paper, as well as other layered materials frequently

1In our test, we found that environmental NIR light was negligible. Stray NIR lights
are from the scattering and reflections of the light source.

Fig. 16. Imaging results using a SWIR camera. The sample area is cropped

out and re-normalized with brightness homogenizing. The camera setup

and full results are shown in Appendix C.

used for prototyping. Our method enables a variety of applica-

tions leveraging occluded content extraction, such as physical se-

cret sharing [Beimel 2011], steganography using materials that are

invisible but responsive in the near-infrared region (such as a syn-

thesized polymer presented by Yamane et al. [2018]), defect inspec-

tion in layered structures [Kim et al. 2011], or encapsulated objects

such as drugs, covered paintings, or other objects that can be pene-

trated by near-infrared light [Arecchi et al. 2006]. To demonstrate

a practical use case, we develop a physical secret-sharing scheme

with QR codes in Appendix Section D. Also, as our method is unsu-

pervised and does not require a reference image, it can be adopted

in various use cases with minimal to no effort on sample prepara-

tion, calibration, and training.

7.2 Limitations

A major factor that limits the use of this technique is material

absorbance in the near-infrared region. Although typically near-

infrared light can penetrate further into the samples as compared

to ultraviolet, visible, or even mid-infrared lights [Reich 2005], it

still cannot pass through certain materials, in particular conduc-

tive materials. For instance, our device did not detect any signal

with the 0.10 mm copper sheet. In fact, conductive materials are
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difficult to penetrate for most electromagnetic waves in principle,

and are therefore commonly used for shielding [Geetha et al. 2009].

Another limitation is in relation to overlapping we show in Sec-

tion 5.2. Although we demonstrate that such a limitation can be

mitigated by using a deep-learning-based content decomposition

algorithm, training such models for different content types can be

non-trivial. Alternatively, the NIRS device can be configured in re-

flection mode with different light paths that can distinguish reflec-

tions at various depths [Arimoto et al. 2005]. However, using the

reflection mode will reduce the penetrable depth, since the light

must pass through a doubled path, and will have additional inten-

sity loss at the bottom layer due to transmission, absorption, or

both if the bottom layer is not 100% reflective at all wavelengths.

Furthermore, our prototype takes advantage of low-cost hard-

ware and components, which lowers the bar for development and

deployment. Yet, this limits the capability of our system with lower

transmitted light intensity and higher noise levels. Although this

issue has been alleviated by our unsupervised and non-reference

wavelength selection algorithm, it remains impossible to extract

content when no signal is detected. In addition, although our pro-

totype is not bulky, it is not mobile either. This issue can be easily

resolved by using a lightweight plotter, whereas we used a generic

plotter intended for heavy-duty work such as a computer numer-

ical control (CNC) router or a laser cutter.

8 CONCLUSION

In this article, we present a near-infrared imaging method that can

be used for information embedding and extraction. Using a minia-

turized NIRS scanner, an xy-plotter, and a novel wavelength selec-

tion algorithm, we demonstrate that our prototype can success-

fully read occluded texts through up to 16 pages of papers in every-

day scenarios. We also demonstrate different image enhancement

methods that can further improve the imaging results in practical

use cases. Finally, we show that our method can be generalized

Fig. A.1. Wavelength selection results for different samples.

to several inks, including toner cartridge (laser printer), pigment

ink cartridge (inkjet printer), marker pen, rollerball pen, and pencil

(2B), as well as other layered materials, including perspex (acrylic),

polylactide (PLA), vinyl tapes, and polyvinyl chloride (PVC) of

different colors. Our work provides a computational perspective

on the possibility of practical content extraction using a spectro-

scopic method in the near-infrared region, enabling a wider range

of applications beyond content extraction such as chipless infor-

mation embedding, physical secret sharing, 3D print evaluations,

and steganography.

APPENDICES

A NOTES FOR ALGORITHM 1

Additional details on Algorithm 1.

rawSpectrumArray: A three-dimensional array with index order

(x ,y,wavelenдth). Each element represents the light intensity

of wavelenдth at coordinate (x ,y).

wavelengthPoll: A one-dimensional array including indexes of

unselected wavelengths. The array is initialized as [0, 1, . . . ,

N-1] where N is the number of total wavelengths (N = 228

for our system).

norm() function: The norm() function includes two steps: (1) cal-

culating the intensity means at selected wavelengths; (2) per-

forming robust normalization of the image array values be-

tween 0 and 1. The raw intensities at each wavelength should

not get normalized first as it may also amplify the noise. In

particular, a wavelength with a greater intensity scale usually

represents higher penetration capability to the material (po-

tentially less noisy). Therefore, normalizing intensities before

taking the mean will also equalize the noise level that is not

desired.

Examples of wavelength selection results are illustrated below:
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B SUPER-RESOLUTION AND CONTENT
DECOMPOSITION MODEL

The model and training details of our GAN-based deep-learning

model for super-resolution and content decomposition, as reported

in Section 5.2.

B.1 Model Parameters

Architecture. The model is adopted from the literature [Zou et al.

2020], including three components:

(1) A Generator that separates overlapped contents and gener-

ates decomposed images (contents). The generator is a 14-

layered U-Net that has been shown effective for various im-

age processing tasks [Ronneberger et al. 2015]. Both input and

output sizes are 128 × 128. For our NIR images that are low-

resolution, the images are first up-scaled using the nearest re-

sampling filter (keep ratio), and padded to 128 × 128.

(2) A Separation Critic that measures if the generated images

are well separated or still mixed (overlapped). The Separa-

tion Critic is a four-layered Fully Convolutional Network

(FCN) [Long et al. 2015] with an input size of 64 × 64.

(3) Two Markovian Discriminators that measure if the generated

images are like real images (i.e., texts-like images). Both

Discriminators are three-layered FCNs with input size of

128 × 128.

Loss function. We use the crossroad per-pixel loss with L1 error

(i.e., Mean Absolute Error or MAE) [Willmott and Matsuura 2005].

Optimizer. We adopt the AdamW optimizer [Loshchilov and Hut-

ter 2017], with β1 = 0.5, β2 = 0.999.

B.2 Training Process

To the best of our knowledge, no existing pre-trained model

or dataset exists for our task. Therefore, we created our own

dataset for training. As the deep-learning model requires

a significant amount of training data with accurate labeling, it

is infeasible nor necessary to collect the data manually. Instead, we

Fig. B.2. Samples of training inputs and outputs (predictions) at the end of training (Epoch 2,000).

introduce a process, as described next, to generate the training and

test data algorithmically. As we have shown in Section 5.2, the

trained model using generated data can be successfully applied to

actual near-infrared imaging outcomes.

Training data. We first randomly generate 5,000 images with

different texts. Each image includes 1–4 alphabet-numbers that

are randomly selected from the alphabet-numeric set. Then, for

each training data point, we randomly choose and compose two

of these images as overlapping contents. The composition pro-

cess consists of two steps: (1) Adding two images (pixel val-

ues are normalized to [0, 1]). (2) Clipping values greater than 1

(imaдeArray[imaдeArray > 1] = 1). Furthermore, for data aug-

mentation, each composed image is scaled down to a lower resolu-

tion. The resolution is randomly determined between 32 × 32 and

128 × 128. Next, a Gaussian blur filter is performed with kernel

size = 1, with a probability of 0.5 (i.e., half of the images are not

Gaussian blurred). Finally, the composed image is again scaled up

to 128 × 128 to serve as input to the model.

Test data. We generated 1,000 images using the same process as

the training data for testing. However, we note that the generated

data are only for training and validation purposes. The results we

show in Section 5.2 are actual NIR imaging outcomes by scanning

overlapping samples.

Labels. For each training data, the label contains the two orig-

inal images for composition. It is worth noting that the origi-

nal images are clear and high-resolution. Hence, the model is

trained to generate clear and high-resolution images, even with

blurred and low-resolution images. To this end, the model is

trained to generate super-resolution and clear contents besides

decomposition.

Training parameters. In total, 2,000 epochs were trained using

one Nvidia GeForce RTX 3090 graphics card for 13 h. We set the

learning rate = 1e − 4, with 0.1 decay rate every 1,000 epochs, and

batch size = 16. We show samples of training inputs and outputs

in Appendix Figure B.2.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 4. Publication date: August 2022.



Near-infrared Imaging for Information Embedding and Extraction with Layered Structures • 4:17

C SWIR CAMERA TEST

In this section, we include imaging results using a SWIR camera.

The camera setup is shown in Appendix Figure C.3, the results are

illustrated in Appendix Figure C.4.

Brightness homogenization. We adopt the following steps for

homogenizing brightness:

Fig. C.3. Experimental setup using a SWIR camera. (a) Experimental setup with a halogen lamp (left) as the NIR light source, a stacked stamp (middle) and

a SWIR camera (right). (b) SWIR camera snapshot example (8 pages). (c) Region of Interest (ROI) with respect to the sample. The ROI image is re-normalized

using the robust normalization method (2nd and 98th percentiles). (d) Example image after homogenizing brightness.

Fig. C.4. SWIR camera imaging results.

(1) Duplicate the image, then apply a Gaussian blur filter (kernel

size = 5).

(2) Invert the blurred image.

(3) Overlay the inverted image and the original image (alpha =

0.5 for both images).
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D SPLIT QR-CODE EXAMPLE

As shown in Appendix Figure D.5, a 21 × 21 QR code (Version

1, with up to 152 data bits depending on the error correction

level) is split into 12 pages that can be distributed as 12 pieces of

a secret. To reveal the secret, all 12 pages should be stacked, in

any arbitrary order, and scanned using our prototype. It is worth

noting that a QR code is actually encoded with an error-correcting

code (such as Reed-Solomon or low-density parity-check code). By

Fig. D.5. A QR-code sample with secret-sharing. (a) The ground truth of the QR code (decodes as “EUREKA”). (b) The reconstructed image of the 12-page

paper stack (the image is scannable with a smartphone QR code app). (c) A 12-page split scheme for the ground-truth QR code. (d) The histogram of the

scanning result.

adjusting the parameters of the error-correcting code (possibly re-

sulting in non-standard QR encoding), one may further control the

possible number of absences, such that revealing the secret with

only 10 of the 12 pieces is adequate, or defining a critical piece

that is required to reveal the secret. Furthermore, this use case can

be extended into three-dimensional scenarios, where different in-

formation can be revealed from different perspectives (such as 3D

printing).
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E LAYERED MATERIALS

Here, we include the details of tested layered materials.

Table E.1. Tested Materials with Layered Structures

Layer Material Thickness per layer∗ Penetrable layers Absorbance per mm

Copy paper 80 gsm (white) 0.10 mm 15 (1.50 mm) 1.86 ± 0.07 @1310.71 nm

Copy paper 80 gsm (red) 0.10 mm 16 (1.60 mm) 1.67 ± 0.06 @1310.71 nm

Copy paper 80 gsm (black) 0.08 mm 11 (0.88 mm) 3.18 ± 0.05 @1285.50 nm

Perspex (white) 2.95 mm 2 (5.90 mm) 0.36 ± 0.01 @1475.48 nm

Perspex (red)** 2.88 mm 3 (8.64 mm) 0.20 ± 0.00 @1054.62 nm

Perspex (black) 2.92 mm (No signal detected)

Polylactide (white) 1.00 mm 6 (6.00 mm) 0.55 ± 0.08 @1418.06 nm

Polylactide (red)** 1.00 mm 8 (8.00 mm) 0.46 ± 0.07 @1359.33 nm

Polylactide (black) 1.00 mm 2 (2.00 mm) 2.14 ± 0.18 @1062.06 nm

Vinyl tape (white) 0.18 mm 26 (4.68 mm) 0.63 ± 0.06 @1475.48 nm

Vinyl tape (red) 0.18 mm 26 (4.86 mm) 0.62 ± 0.05 @1502.11 nm

Vinyl tape (black) 0.18 mm 2 (0.36 mm) 9.82 ± 0.01 @1534.72 nm

Medium-density fibreboard 2.94 mm (No signal detected)

Polyvinyl chloride (white) 0.76 mm 4 (3.04 mm) 0.81 ± 0.03 @1488.30 nm

Copper sheet 0.10 mm (No signal detected)

∗We measured the actual thickness, respectively, instead of using the claimed thickness of the material products for practice.

∗∗Due to the height limitation in the scanning area, we cannot scan materials thicker than 9.0 mm.
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Fig. E.6. Copy paper samples in white (left), red (middle), and black (right). (a–c) The photos of the samples. (d–f) The microscopic views of the samples

(500X). (g–i) The linear regression fitting curves at the characteristic wavelength. Data points in linear region (with absorbance between 2.0 and 5.0) are in

red, while the data points in non-linear region are in blue.
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Fig. E.7. Perspex samples in white (left), red (middle), and black (right). (a–c) The photos of the samples. (d–f) The microscopic views of the samples (500X).

(g–i) The linear regression fitting curves at the characteristic wavelength. Data points in linear region (with absorbance between 2.0 and 5.0) are in red,

while the data points in non-linear region are in blue.
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Fig. E.8. Polylactide (PLA) samples in white (left), red (middle), and black (right). (a–c) The photos of the samples. (d–f) The microscopic views of the samples

(500X). (g–i) The linear regression fitting curves at the characteristic wavelength. Data points in linear region (with absorbance between 2.0 and 5.0) are in

red, while the data points in non-linear region are in blue.
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Fig. E.9. Vinyl tape samples in white (left), red (middle), and black (right). (a–c) The photos of the samples. (d–f) The microscopic views of the samples

(500X). (g–i) The linear regression fitting curves at the characteristic wavelength. Data points in linear region (with absorbance between 2.0 and 5.0) are in

red, while the data points in non-linear region are in blue.
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Fig. E.10. Samples of medium-density fibreboard (MDF), white polyvinyl chloride (PVC), and copper sheet. (a–c) The photos of the samples. (d–f) The

microscopic views of the samples (500X). (g–i) The linear regression fitting curves at the characteristic wavelength. Data points in linear region (with

absorbance between 2.0 and 5.0) are in red, while the data points in non-linear region are in blue.
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