
Personal and Ubiquitous Computing
https://doi.org/10.1007/s00779-018-01190-0

ORIGINAL ARTICLE

Energy-efficient prediction of smartphone unlocking

Chu Luo1 · Aku Visuri2 · Simon Klakegg2 ·Niels van Berkel1 · Zhanna Sarsenbayeva1 · Antti Möttönen2 ·
Jorge Goncalves1 · Theodoros Anagnostopoulos3 ·Denzil Ferreira2 ·Huber Flores4 · Eduardo Velloso1 ·
Vassilis Kostakos1

Received: 6 July 2018 / Accepted: 27 November 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
We investigate the predictability of the next unlock event on smartphones, using machine learning and smartphone contextual
data. In a 2-week field study with 27 participants, we demonstrate that it is possible to predict when the next unlock event will
occur. Additionally, we show how our approach can improve accuracy and energy efficiency by solely relying on software-
related contextual data. Based on our findings, smartphone applications and operating systems can improve their energy
efficiency by utilising short-term predictions to minimise unnecessary executions, or launch computation-intensive tasks,
such as OS updates, in the locked state. For instance, by inferring the next unlock event, smartphones can pre-emptively
collect sensor data or prepare timely content to improve the user experience during the subsequent phone usage session.

Keywords Smartphones · Machine learning · Sensors · Context-awareness

1 Introduction

Predicting when a phone will be unlocked in an accurate
and energy-efficient manner is crucial to both resource
management and user experience. Literature makes a
distinction between glancing at the phone’s lock screen [3]
versus actually unlocking the device [5]. We are interested
in predicting the latter, i.e. when users actually choose to
unlock their device for further use. Although a plethora of
work contributes to understanding phone usage patterns,
little work has considered techniques to predict smartphone
unlock events. Such predictions can benefit smartphones in
a number of ways, such as

1. trigger timely data acquisition: prediction of upcoming
unlocking events allows mobile applications, especially
lockscreen applications, to prepare timely content

� Chu Luo
CHUL3@student.unimelb.edu.au

Vassilis Kostakos
vassilis.kostakos@unimelb.edu.au

1 The University of Melbourne, Melbourne, Australia

2 University of Oulu, Oulu, Finland

3 University of West Attica, Athens, Greece

4 University of Helsinki, Helsinki, Finland

which users can see right after unlocking. This can
directly improve the user experience on the device.
A typical use case is lockscreen-based crowdsourcing,
which presents questions with pictures or icons for
users to answer via various unlock gestures. Given
a prediction of the next upcoming unlocking event,
smartphones can, in advance, connect to the Internet
to download timely questions and their media files.
Without this prediction, the user experience may suffer
when users see obsolete questions or have to wait for
the newest content from the ad-hoc downloading.

2. disable unnecessary executions: given a prediction that
the phone is likely to remain locked for a certain time,
the phone can suspend the execution of applications
that continuously prepare content. For example, mobile
crowdsourcing applications, such as Truong et al.’s,
collect sensor data and download online content every
few minutes [43]. The continuous execution of such
applications consumes a significant amount of power,
which can prove detrimental to the user experience [33].

3. schedule computation-intensive tasks: when predicting
that the phone is likely to remain locked, the operating
system can launch computation-intensive background
tasks, such as data synchronisation or updates, which
would have a negative impact on the user experience
during phone use. A typical example is the OS
update which often involves hundreds of megabytes of
data to download, and a long reboot. During an OS

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-018-01190-0&domain=pdf
http://orcid.org/0000-0002-3814-1074
mailto: CHUL3@student.unimelb.edu.au
mailto: vassilis.kostakos@unimelb.edu.au


Pers Ubiquit Comput

update, smartphone users must wait for the completion
without any possibility for interaction. Since untimely
schedules of such computation-intensive tasks greatly
degrade user experience, Apple’s iOS 10 engineers have
publicly highlighted that scheduling OS updates is a
challenging problem [29].

Crucially, the energy cost to achieve such predictions
must be sufficiently low, otherwise making these predic-
tions will defeat their very purpose. Therefore, energy
efficiency is an essential requirement in the selection of
smartphone context features and the prediction process.

We hypothesise that by analysing smartphone context,
we can develop a learning model to predict the next unlock
event. We intend to make this prediction regardless of
whether the user actively unlocks their phone, or the user
is notified to unlock it by a notification. In a 2-week field
study, we used the AWARE framework [17] to collect
phone usage and context from 27 users during their daily
activities. Our analysis is multi-faceted, and a key tradeoff
that we investigate is between prediction accuracy and time
windows. Overall, our work makes these contributions:

1. We present an energy-efficient approach to predict the
next unlocking event on a smartphone, by considering
smartphone unlock time prediction as either a regres-
sion problem or a binary classification.

2. We identify which features are the strongest indicators
of upcoming unlock events, and show that software-
based context data be more useful predictors than
hardware sensors.

3. We describe and discuss the trade-off between the
accuracy of positive and negative predictions in the
selection of time windows for this classification.

4. We evaluate two real-world deployment scenarios:
using personalised models and cold start.

2 Related work

Predicting when applications will be launched helps to
reduce launch time and improves efficiency, particularly for
frequent users [39, 45]. Shin et al. dynamically presented
application icons on the launch screen by predicting
application usage through contextual data with accurate
predictions in nearly 90% of cases [39]. Lee et al. reduced
the size of contextual data needed for such predictions by
integrating a feature selection algorithm [31].

These techniques focus on either expanding the function-
ality of the lock screen or predicting interactions following
the unlock event. No study has investigated the accu-
racy of predicting when the smartphone will be unlocked.
Predicting the time when users will unlock their phones
is beneficial for applications related to phone unlocking,

such as smart notifications [38], music recommendation,
and auto-execution services [31].

2.1 Smartphone usage patterns

Several factors impact phone usage patterns, including time,
location and mental state. Time is an important measure
in previous studies of smartphone usage patterns. In a
longitudinal study, Yan et al. showed that most phone
interactions are very short, 50% of interactions last less
than 30 seconds, and 90% last less than 4 min [46].
Approximately 40% of all application uses consist of short
bursts of up to 15 s, particularly when the user is at
home and alone—what Ferreira et al. call micro-usage [16].
Falaki et al. found that phone interactions happen very
frequently (10–200 times per day), are short (10–250 s)
and involve multiple applications (10–90) [13]. McGregor
et al. identified three usage patterns in a study with 15
iPhone users: micro-breaks, digital knitting, and mobile
reading [8]. Van Berkel et al. further analysed smartphone
usage sessions and recognised that multiple micro-breaks
can combine into longer combined sessions [5].

In terms of correlation between phone usage and user
location, Verkasalo [44] highlights that more than half of
the time spent on smartphones is at home; over 25% on
the move; and the remainder at work. In a case study of
a Chinese city, Yuan et al. found that mobile phone usage
correlates with human travel behaviour [47]. One important
finding is that when users make more phone calls, their
average movement radius increases. Furthermore, based on
a smartphone usage dataset from 77 participants over a
9-month period, Do et al. report that application usage
is strongly correlated with locations [12]. For example,
voice calls are frequently made at work. In contrast, clock
application use occurs very seldom at work.

In addition, researchers found that phone usage is
impacted by mental states. For example, several studies
state that when people feel bored, mobile phones commonly
serve as means to kill time [8, 34, 36]. Other studies found
links between phone usage and compulsive anxiety [27],
depressive symptoms, higher interpersonal anxiety, and
lower self-esteem [22].

Although these previous studies illuminate various
aspects of smartphone usage patterns, there is little insight
into what contextual factors lead to the user actually unloc-
king their phone.

2.2 Context-aware services on smartphones

With embedded sensors and increasingly capable processors,
modern smartphones act as more than a communication
tool. New applications for e-health, environmental moni-
toring and transportation benefit from the collection of big



Pers Ubiquit Comput

sensor data on smartphones [30]. Particularly, providing
context-aware services to smartphone users is of increasing
interest to the HCI and UbiComp community. Studies have
repeatedly confirmed the feasibility of inferring user intent
using contextual data on smartphones. For example, predict-
ing whether users are available to answer an incoming call
[35], how responsive they are to instant messaging [2, 37]
and when to best interrupt users with notifications [18, 38].

However, most of these context-aware services are
battery-intensive as they rely on continuous sensing [32,
33], leading to the need for daily charging [14, 15]. The
literature points to alternative ways of using sensor data,
such as relying on low-energy sensors wherever possible
[4], and avoiding energy-intensive sensors like GPS [48].
To reduce the power cost from context-aware services, Lu
et al. proposed the Jigsaw continuous sensing engine [33].
Jigsaw adaptively controls accelerometer, microphone and
GPS sensors according to phone sensing environments.
Similarly, Chon et al. presented a smartphone sensing
manager SmartDC that monitors, learns and predicts user
mobility and location to conduct adaptive energy-efficient
duty cycling [11].

In spite of these efforts, prior work has not attempted
to achieve energy efficiency by minimising irrelevant
executions while the user keeps the phone in the locked
state for a long time. If a smartphone application can
predict when it will be unlocked next, it is easier for
other applications to prepare relevant content and schedule
tasks for the next session, such as delaying or dismissing
context-aware notifications, downloading timely content,
or changing phone settings (e.g. slowing down data
synchronisation and enabling power saving mode).

3Methodology

We conducted an in-the-wild study with 27 Android
smartphone users (16M/11F) recruited through mailing lists
of at our University. The data collection lasted for two
weeks. Most participants were students or had an academic
background. Participants were young (M = 24.7, SD =
4.32), and from various academic backgrounds with 14
participants from engineering, 6 from humanities, 2 from
business, 1 from natural sciences, and three preferred to
not say. Most participants were local (20) to our city, while
seven were foreign.

After we explained the data collection mechanism
and study process, we installed the software on each
participant’s phone. We then instructed participants to
use their smartphones as they normally would in their
everyday life. Our software did not require any active
input from participants, nor did it notify them in any way.
Our software logged smartphone usage events, including

unlocking events and contextual data from sensors. The
application worked as a plugin of the AWARE framework,
an open-source middleware to capture contextual data on
mobile devices [17].

3.1 Data collection and features

Our plugin constantly collected contextual data in the
background. Table 1 describes the features extracted from
the sensors and other data sources. We consider a ses-
sion of phone usage as a continuous interaction period
from the moment of unlocking the smartphone to the
moment of the subsequent locked/power off state. To min-
imise power consumption, only low-frequency proximity
(200 ms/sample), light (5 s/sample), location (180 s/GPS
sample, or 300 s per network sample when GPS unavail-
able) and WiFi (60 s/scan) sensors are logged. We also
used Google’s Activity Recognition API (6s/sample) [20]
and Android’s Pedometer API [21] to obtain users’ activ-
ities and steps, computed from accelerometer data. Based
on such contextual data, we extracted 18 features. In addi-
tion, we also considered gender as a feature, as reported by
participants.

Because the characteristics of a previous usage session
might be informative as to the timing of the next unlocking
event, we collect application usage as provided by the
operating system. Finally, data traffic reveals the intensity of
networked activities, as measured by two hardware modules
(WiFi and Cellular antenna).

3.2 Analysis

Our analysis first considers unlock time prediction as a
regression problem: given the user context, the algorithm
should predict the timing of when the user will unlock
the phone. Without knowing the linearity of the relation,
we compare the performance of two regression algorithms:
multiple linear regression as a linear approach (it serves as a
baseline of regression), and Random Forests as a nonlinear
approach (using Weka’s default parameters, i.e. Random
Forests with 100 trees and �log2 m�+1 features, where m is
the number of initial features). For Random Forests, using
�log2 m� + 1 features avoids high complexity of the model
and reduce overfitting. Considering that there are only 19
features in our dataset (�log2 19� + 1 = 5 features per tree),
100 trees in Random Forests are sufficient. We also evaluate
the performance loss incurred in using solely low-power
software-related features as compared to the full feature
set. Finally, we compare the performance of personalised
models to cold start models (i.e. models trained on other
users’ data) [6].

We also attempt to use a classifier approach: given
the user context, the classifier should predict whether the



Pers Ubiquit Comput

Table 1 Features and data types extracted from the smartphone sensors and other data sources used in data collection

Data source Description Feature and data type

Activity Physical activity e.g. walking,

running and being in vehicle

(value within a categorical set)

Application Foreground application The number of foreground applications

used in last session (integer)

Data traffic Data upload and download Since last session,

transmission WiFi data upload (integer);

WiFi data download (integer);

Cellular data upload (integer);

Cellular data download (integer);

Demographics Gender Gender (value within a categorical set)

Light Ambient light (lux) Ambient light lux (integer)

Location Location on, off and mode GPS availability (Boolean);

(GPS, network) Network location availability (Boolean);

Pedometer Steps travelled Step count since last session (integer)

Proximity Coverage on phone Proximity (Boolean)

Screen events Screen on, off and unlocking Duration of last session (integer);

time since last session (integer)

Time Timestamp of phone clock Minute of hour (integer);

hour of day (integer);

day of week (integer)

WiFi WiFi on, off and the number WiFi availability (Boolean);

of nearby spots WiFi spots nearby (integer);

user will unlock the phone within the next x minutes.
Similar to previous work employing different machine
learning algorithms on smartphones [35, 38], we compared
four widely used classifiers to run 10-fold cross-validation
tests: Naive Bayes, J48 Decision Tree, Random Forests
and Support Vector Machine (SVM) with the Radial Basis
Function (RBF) kernel (with normalised samples). The
parameters were left to their default values in Weka
for simplicity, i.e. Random Forests with 100 trees and
�log2 m� + 1 features (m is the number of initial features);
SVM with the RBF kernel (γ = 1

m+1 , C = 1).
In summary, our analysis empirically investigates the

following questions:

1. How well do machine learning algorithms perform?
2. What are the most useful features in the prediction?
3. How does performance change using low-power

software-related data sources?
4. How does a personalised model perform on each user

who has provided training data?
5. How does a general model trained by previous users’

data perform on a new user who has not provided
training data (the new user cold start problem [6])?

6. How much energy does the prediction consume on a
real device?

3.3 Measures

For regression, we used three commonly used measures:
coefficient of determination (R2), mean absolute error
(MAE) and square root of mean squared error (RMSE). For
the importance of each feature in the regression model, we
used two feature importance measures provided by Random
Forests: increased mean squared error (IncMSE) and
increased node purity (IncNodePurity). For each feature,
IncMSE is computed by comparing the difference of mean
squared error in predictions after permuting this feature.
IncNodePurity corresponds to the increase in node purity
of having each feature within the trees related to the mean
squared error. Hence, a high IncNodePurity of a feature
means that this feature significantly helps the algorithm to
reduce mean squared error. The details of these measures
are illustrated by Genuer et al. [19].

In the classification models, because of class imbalance,
we report ROC area, precision and recall, instead of
accuracy, as recommended by Kostakos et al. [28]. All
results are reported using a 10-fold cross-validation on the
entire dataset. In our data, we separately consider the two
classes: “no” (the cases where the user did not unlock
the phone within x minutes) and “yes” (where the user



Pers Ubiquit Comput

Table 2 Confusion matrix for classification analysis of the two classes

Actual unlock (class “Yes”) Actual lock (“No”)

Predicted unlock (class “Yes”) TP FP

Predicted lock (class “No”) FN TN

did unlock the phone within x minutes). Table 2 shows
the confusion matrix for classification analysis on the two
classes. Based on the confusion matrix, Table 3 shows recall
and precision definitions of the two classes.

For the feature importance of classification, we used
Mean Decrease Accuracy (MDA) and Mean Decrease
Impurity (MDI). MDA is measured by randomly permuting
features in the out-of-bag samples, while MDI (also known
as Mean Decrease Gini if the Gini index is used as in our
analysis) is the average weighted impurity decreases for
all nodes containing a specific feature across all trees [7].
Specifically, we used three types of MDA to investigate the
influence of removing each feature on both classes, as well
as the overall prediction. The higher the MDA value is, the
more importance a feature has. In practice, the scenario may
require high accuracy for only one class.

In contrast, MDI does not measure feature importance
for each class. MDI provides an overall assessment of
each feature’s importance based on the assumption that
if a feature has high usefulness, it tends to divide nodes
with multiple classes into nodes with single classes.
However, this assumption may result in bias. Usually,
feature importance analysis should use a combination of dif-
ferent measures to avoid the bias from a single measure [41].

4 Results and optimisation

We collected 7,472,609 entries of raw user data, from which
we sampled 175,684 segments of phone usage. We used
Weka [23] to analyse these samples in both the regression
and classification problems.

4.1 Regression approaches

Table 4 shows the regression results using three commonly
used measures: coefficient of determination (R2), mean

Table 3 Recall and Precision definitions of the two classes

Recall Precision

Unlock (class “Yes”) T P
T P+FN

T P
T P+FP

Lock (class “No”) T N
T N+FP

T N
T N+FN

absolute error (MAE) and square root of mean squared
error (RMSE). Times are displayed in minutes. Results
show that for both algorithms, removing hardware features
does not lead to a significant performance loss. Also, the
Random Forests algorithm outperforms linear regression in
both accuracy and dispersion.

Table 5 shows the regression results for the person-
alised and cold start models. Although Random Forests
significantly outperformed linear regression in personalised
models, the accuracy and dispersion are similarly poor for
the cold start model.

To quantify the relative importance of each feature when
using regression, we used two feature importance measures
provided by Random Forests: IncMSE and IncNodePurity.
The unit of IncMSE and IncNodePurity is the same as the
regression process: min2. Table 6 shows the importance
of all the 19 features using these two measures. The five
features with the highest IncMSE are WiFi data download,
duration of last session, time since last session, WiFi data
upload, number of foreground apps used in the last session.
Three of these features come from software sensors. The 5
features with the highest IncNodePurity are duration of the
last session, time since last session, WiFi data upload, WiFi
data download, hour of day. Again, three of these features
come from software sensors. The difference of top features
across the two measures is little, meaning that the results
have high robustness.

Table 7 shows the correlation (Spearman’s rank correla-
tion coefficients) between each feature and the time before
next unlocking event. We only considered numerical fea-
tures in this analysis (10 out of 19 features). We found that
all 10 showed a significant (α = 0.05) correlation with
the time before the next unlocking event, although relations
were mostly weak. The time since last session, a software-
related feature, had the strongest relation (rs = 0.411). From
the aspect of correlation, the results reflected the different
importances of each factor. It is worth noting that features
with weak relations may also be useful if the classification
or regression method can learn from nonlinear data.

4.2 Classification approaches

When considering the average number of unlocking events
our users exhibited per day, the maximum was 163, which
is in line with previous studies [13]. Given that phone
unlocking events can be rather frequent during the day, and



Pers Ubiquit Comput

Table 4 Regression results of the entire dataset in coefficient of determination (R2), mean absolute error (MAE) (in minutes) and square root of
mean squared error (RMSE) (in minutes)

Dataset Regression type R2 MAE RMSE

All sensors Linear regression 0.06 122.59 263.96

All sensors Random Forests 0.98 14.24 48.09

Software sensors only Linear regression 0.03 124.87 268.11

Software senors only Random Forests 0.98 12.50 45.85

Table 5 Regression results of personalised models and the model of cold start in coefficient of determination (R2), mean absolute error (MAE)
(in minutes) and square root of mean squared error (RMSE) (in minutes)

Bootstrap approach Regression type R2 MAE RMSE

Personalised Linear regression 0.08 117.16 181.51

Personalised Random Forests 0.94 8.89 24.44

Cold start Linear regression 0.04 168.80 251.87

Cold start Random Forests 0.96 150.05 258.40

Table 6 When using Random Forests regression, the importance (in min2) of all the features is estimated by two measures (IncMSE and
IncNodePurity)

Feature IncMSE IncNodePurity

Time since last session 65104.8 13.51 ×108

Duration of last session 68947.3 23.67 ×108

Hour of day 51155.7 10.17 ×108

Activity 7382.5 1.12 ×108

Minute of hour 1970.9 1.28 ×108

Day of week 32953.2 8.31 ×108

Proximity 17930.7 2.75 ×108

Ambient light 34608.7 3.73 ×108

Cellular data download 24750.8 4.99 ×108

Cellular data upload 32317.6 7.28 ×108

WiFi data download 78213.3 11.04 ×108

WiFi data upload 64162.6 11.09 ×108

Step count since last session 19901.4 2.13 ×108

Number of foreground apps 55934.8 5.51 ×108

used in last session

GPS availability 13162.1 1.22 ×108

WiFi spots nearby 13057.4 2.67 ×108

Network location availability 10391.2 2.29 ×108

WiFi availability 7995.7 1.23 ×108

Gender 18829.9 2.31 ×108



Pers Ubiquit Comput

Table 7 Correlation between each feature and the time before next unlocking event, measured by Spearman’s rank correlation coefficients

Feature p-value rs

Time since last session < 2.220 × 10−16 0.411

Duration of last session < 2.220 × 10−16 0.024

Hour of day N/A N/A

Activity N/A N/A

Minute of hour N/A N/A

Day of week N/A N/A

Proximity N/A N/A

Ambient light < 2.220 × 10−16 − 0.182

Cellular data download 1.548 × 10−10 − 0.015

Cellular data upload 0.042 0.005

WiFi data download < 2.220 × 10−16 0.136

WiFi data upload < 2.220 × 10−16 0.153

Step count since last session < 2.220 × 10−16 − 0.214

Number of foreground apps < 2.220 × 10−16 − 0.098

Used in last session

GPS availability N/A N/A

WiFi spots nearby < 2.220 × 10−16 − 0.072

Network location availability N/A N/A

WiFi availability N/A N/A

Gender N/A N/A

that mobile applications can download sufficiently large
files in several minutes via either WiFi or 4G, we decided
to also model our problem as a classification rather than
regression.

Doing so means that we do not try to answer the question
“When will the next unlock happen?”, but rather we ask
the question “Will the next unlock happen in the next x

minutes?” In essence, this is an easier question to answer,
but it stil provides utility given that many smartphone
operations can complete within a few minutes.

In our analysis, we consider a time period of up to 10
minutes, in 1-min segments. Therefore, our classifier tries
to answer the question: “Will the next unlock happen in the
next x minutes?” for x between 1 and 10. Figure 1 using our
175,684 samples to visualise our ground truth: did an unlock
actually happen in the next x minutes during the duration
of the study? As expected, we observe a class imbalance,
especially for short time windows (e.g. 1 min had 163129
“no” instances and 12555 “yes” instances). As the time
window increase, there are more samples in the class “yes”
balancing the two classes (e.g. 10 min has 119831 “no”
instances and 55853 “yes” instances).

To better understand the classification performance, we
first need to define a baseline classifier. We simply use the
statistical distribution of mean times between two sessions
(i.e. the idle usage period between two consecutive lock
and unlock events). Our baseline classifier outputs positive

predictions of the next smartphone unlocking event when
the idle usage period is longer than the average value, and
vice versa (since the baseline is not an algorithm, it does not
give ROC).

Figure 2 depicts the comparison results in overall
classification accuracy (i.e. the ratio of correctly classified
instances). The baseline classifier’s performance is 0.630
regardless of time windows. The accuracy of Random
Forests is the highest in all time windows, stably ranging
from 0.913 to 0.937.

Fig. 1 175,684 samples of the absence and presence of unlocking
events measured by different time windows at different moments
during our study



Pers Ubiquit Comput

Fig. 2 Comparison between baseline, Naive Bayes, J48 Decision Tree,
Random Forests and SVM

Figure 3 shows the receiver operating characteristic
(ROC) areas of the four classifiers. Here, each classifier is
asked to predict whether an unlock event will be observed in
the next x minutes (x-axis). Random forests outperformed
other classifiers. Its ROC areas range from 0.875 to 0.983,
which show a steady ascending trend as time window
increases.

To further investigate the classifiers’ performance, we
separately consider the two classes: “no” (which represents
the cases where the user did not unlock the phone within
x minutes), and “yes” (where the user unlocked the phone
within x minutes). Figure 4 shows the precision and recall
of the three classifiers for the class “no” and Fig. 5 for class
“yes.” In these figures, precision measures the ratio of true
positives to all positive predictions on this class. Similarly,
recall denotes how many relevant instances are correctly
predicted.

For class “no”, random forests had the highest precision
within 0.921 to 0.949. For class “yes”, the precision

Fig. 3 ROCAreas of Naive Bayes, J48 Decision Tree, Random Forests
and SVM

Fig. 4 Precision and recall of Naive Bayes, J48 Decision Tree and
Random Forests on class “no”

of random forests is also the highest among the three
classifiers, increasing approximately in a shape of a
logarithmic function from 0.704 at 1 min to 0.902 at 10 min.
The recall of Naive Bayes is the highest, significantly
outperforming the others from 1 to 5 min (growing from
0.363 to 0.899). The difference becomes insignificant in
larger time windows.

Since Random Forests had the best and stable perfor-
mance in our analyses, we only consider this algorithm for
further analysis of predicting smartphone unlocking. We
actually attempted to apply parameter tuning methods on the
RBF kernel for SVM (see Appendix), but due to the large
number of possible γ values we could not improve further.

4.2.1 Random forests parameter tuning

Previous work, such as [42], stated that the increase of
number of trees in Random Forests can improve the
performance, and the default setting of feature number

Fig. 5 Precision and recall of Naive Bayes, J48 Decision Tree and
Random Forests on class “yes”



Pers Ubiquit Comput

�log2 m� + 1 is optimal (m is the number of initial
features). Hence, we attempted to repeat the 10-fold cross-
validation on the data of 10 min time window, with different
numbers of trees in Random Forests, including increasing
and decreasing. As expected, the highest number of trees
produced the best performance. The ROC Area grows up
from 0.978 at 25 trees to 0.983 at 150 trees; class “no”
precision from 0.942 at 25 trees to 0.949 at 150 trees; class
“no” recall from 0.952 at 25 trees to 0.955 at 150 trees; class
“yes” precision from 0.896 at 25 trees to 0.902 at 150 trees;
class “yes” recall from 0.874 at 25 trees to 0.889 at 150
trees.

The results indicate that increasing the number of trees
improve the overall performance of Random Forests. The
default value of the number of trees in Random Forests is
100, which is already large. Considering limited computing
resources on smartphones, it is not necessary to use a larger
number, unless the targeted mobile applications have strong
need in the high performance of classification.

4.2.2 Optimisation regarding class imbalance for random
forests

From Fig. 5, we observed that using a small time window
significantly reduced the classification performance of
Random Forests for class “yes”. This may be because there
are fewer data instances within the class “yes” in small
time windows, which cause a class imbalance problem
[26]. The class imbalance problem represents the challenge
in the cases where data instances within one class are
significantly more or less than those within other class(es).
Algorithms such as Random Forests may perform poorly
in predicting the class with an imbalanced number of
instances. Similar to previous work, such as [26], handling

this problem, we attempted to apply repeated random sub-
sampling to improve the performance of Random Forests
in small time windows. Repeated random sub-sampling
is a popular method for highly imbalanced datasets (e.g.
medical records containing a large number of negatives and
a several positives) [26].

Figure 6 summarises the process of repeated random
sub-sampling for the construction of unlocking prediction
models using Random Forests. First, given the training data
with N0 instances of class “no” and N1 instances of class
“yes”, it computes NoS, where NoS = �N0

N1
�. If NoS <

3, it ends the process by assuming that there is no class
imbalance problem. Otherwise (NoS ≥ 3, which means
N0 � N1, and at least 3 models can be voters), it randomly
divides N0 instances of class “no” into N0S groups. Then,
it trains NoS models where each model is trained by one
subgroup of instances from the class “no” and all instances
from the class “yes”.

Figure 7 summarises the prediction process. The values
from all features are sent to all the NoS models. The results
from the the NoS models go to a voting system which
simply accepts the prediction of the majority. In the case
where there are equal numbers of positive and negative
predictions from the models, it gives the negative prediction
(i.e. class “no”), since the negative instances are the majority
in training data.

With the repeated random sub-sampling method, we
repeated the 10-fold cross-validation on the data of all
time windows using Random Forests. The data sets of time
windows from 1 to 7 min were considered as imbalanced
(NoS ≥ 3).

Figure 8 compares the process with and without
repeated random sub-sampling using the precision and
recall measure for the class “no”. And Fig. 9 shows the

Fig. 6 Training models of
Random Forests with
sub-sampling against class
imbalance. NoS is the ratio of
“no” to “yes” instances



Pers Ubiquit Comput

Fig. 7 Using models of Random
Forests with sub-sampling to
classify samples with class
imbalance

results for the class “yes”. Overall, repeated random sub-
sampling significantly improved the performance for the
class “yes” which was challenged by the class imbalance
problem. However, repeated random sub-sampling reduced
the performance for the class “no” which had the majority of
instances. For various mobile applications, the two classes
may be of different importance. Developers should use
repeated random sub-sampling if their applications need
higher performance of unlocking prediction for the class
“yes” using small time windows.

4.3 Feature evaluation in classification

To quantify the importance of each feature, we compared
them using two criteria. First, we used the “select attributes”
function of Weka to generate the average ranking of
features in 10-fold cross validation. The evaluator used
was the classifier attributes subset which measures the
accuracy decrease caused by the removal of features from
a classifier. Since Random Forests performed the best in
the previous analyses, we only consider this classifier.

Fig. 8 Precision and recall of Random Forests with and without
sub-sampling on class “no”

The search method was Greedy Stepwise which explores
forward or backward in a greedy search through space
within feature subsets. Second, we also included two feature
importance measures generated by the training process of
Random Forests in 10-fold cross validation: Mean Decrease
Accuracy (MDA) and Mean Decrease Impurity (MDI).

Since Random Forests gained the highest ROC area in the
time window 10 min, we used this timeframe to maximise
the effect of using different feature subsets (also, using this
timeframe can minimise the effect of class imbalance which
is illustrated in the discussion section).

Table 8 includes the importance of all the 19 features
computed using our two methods. According to Weka’s
“select attributes”, the 5 features with the highest average
rank are: time since the end of last session, duration of last
session, hour of day, activity, and minute of hour. Among
them, only activity data is collected from hardware sensors.
The 5 features with the highest MDA on the class “no”
are: time since the end of last session, WiFi data upload,
WiFi data download, duration of last session, hour of day.
Only 2 of them (WiFi data upload, WiFi data download) are

Fig. 9 Precision and recall of Random Forests with and without
sub-sampling on class “yes”



Pers Ubiquit Comput

Table 8 For the binary classification problem, the importance of all the features calculated by “select attributes” (average rank) and the two kinds
of measures (MDA and MDI) of Random Forests

Feature Rank No-MDA Yes-MDA All-MDA MDI (Gini)

Time since last session 1 0.16681 0.23758 0.18931 11982.5

Duration of last session 2 0.11121 0.11011 0.11086 6669.2

Hour of day 4.3 0.11097 0.12337 0.11491 4931.3

Activity 4.4 0.05428 0.03985 0.04969 2092.5

Minute of hour 5.5 0.03897 0.07236 0.04958 5105.0

Day of week 5.9 0.05578 0.06556 0.05889 2999.3

Proximity 7.5 0.03234 0.02655 0.03050 882.9

Ambient light 8.1 0.08299 0.09787 0.08772 3719.0

Cellular data download 8.8 0.08347 0.08378 0.08357 4173.8

Cellular data upload 10.1 0.08838 0.08568 0.08753 4136.5

WiFi data download 10.3 0.13248 0.12501 0.13010 5094.3

WiFi data upload 12.1 0.13656 0.12556 0.13306 5067.1

Step count since last session 12.3 0.06695 0.07625 0.06991 2776.5

Number of foreground apps 14.1 0.10863 0.11551 0.11082 3274.9

used in last session

GPS availability 15.3 0.03025 0.03679 0.03233 773.4

WiFi spots nearby 16.2 0.03636 0.04596 0.03941 2025.4

Network location availability 16.5 0.02753 0.03404 0.02960 752.3

WiFi availability 16.6 0.01905 0.02253 0.02015 524.7

Gender 19 0.06928 0.09512 0.07749 1179.9

hardware-related features. Similarly, the five features with
the highest MDA on the class “yes” are time since the end
of last session, WiFi data upload, WiFi data download, hour
of day, number of foreground apps used in last session. Still,
three of them are software-related features.

4.4 Classification using only software-related
context

To reduce power consumption in prediction, we calculate
the prediction accuracy without considering context derived
from hardware sensors. Thus, we only selected the
following “software-related” features: application usage,
screen events, time and gender.

Figure 10 shows the ROC areas of Random Forests using
all context and software-related context. Using software-
related context only, Random Forests actually achieve a
slightly higher ROC area curve (from 0.918 at 1 min to
0.990 at 10 min) than using all available context (from 0.875
at 1 min to 0.983 at 10 min). As the time window grows,
the performance gap gradually decreases. Figures 11 and 12
show the precision and recall of Random Forests using all
context and software-related context for both classes “no”
and “yes”. Precision and recall actually improves when
using software-related context.

4.5 Personalisedmodel in classification

To validate our approach under more realistic conditions,
we investigated personalised models built by data from
each participant. Thus, we personalised the model for
each participant using Random Forests and software-related
context. We conducted 10-fold cross validation on each
participant’s own data. Then we computed the average ROC
areas across all participants.

Fig. 10 ROC areas of Random Forests using all context and software-
related context



Pers Ubiquit Comput

Fig. 11 Class “no”: precision and recall of Random Forests using
software-related context vs. using all context

Figure 13 depicts the ROC areas of the personalised
models. The ROC area of the personalised model grows
rapidly as the time window increases from 1 to 5 min. For
longer time windows, the ROC areas plateau.

Figure 14 shows the precision and recall of the
personalised model for the class “no”. The precision curve
of the personalised model is stably high, between 0.958 and
0.970, in all time windows. In contrast, the recall curve,
although on a higher level, follows a descending pattern:
reaching the peak on 0.993 in time window at 1 min, then
steadily dropping at a slow speed as the time window grows
(down to 0.981 at 10 min).

Figure 15 compares the precision and recall of the
personalised model for the class “yes”. The precision curve
grows steadily from 0.854 to 0.959 in time window from
1 to 10 min. Comparatively, the recall curve grow rapidly
from the level below 0.5: from 0.421 at 1 min to 0.695 at
3 min. Then it grows gradually in larger window sizes (up
to 0.904 at 10 min).

Fig. 12 class “yes”: precision and recall of Random Forests using
software-related context vs. using all context

Fig. 13 Using software-related context only, ROC area of the
personalised model trained by Random Forests

4.6 The new user cold start problem

A common scenarios for classification system is the cold-
start problem, where we need to make inferences or predic-
tions about a new user who has not provided any informa-
tion. In this case, our classifier needs to use data collected
from other users to make a recommendations for new users.
This challenge is called “the new user cold start problem”
[6]. In the same manner, our system predicting the next
smartphone unlocking event also has to handle this prob-
lem. A new user may want to use this system immediately
after installation, meaning that there will be no training data
from this user for the system to learn and build a person-
alised model. The system must generate predictions using
the model trained by data collected from previous users.

Consequently, we investigated how a cold start of
smartphone unlocking prediction performs on a new user.
Similar to previous work [6], we conducted a leave-one-
out cross validation which iterates through each user by

Fig. 14 Class “no”: precision and recall of the personalised model
trained by Random Forests



Pers Ubiquit Comput

Fig. 15 Class “yes”: precision and recall of the personalised model
trained by Random Forests

considering the data from other users as the training data,
and then validating the model using the data of this user as
the testing data. The evaluation conditions are the same as
the analysis of personalised models: using Random Forests
and software-related context.

Figure 16 compares the ROC areas of the model in cold
start and the personalised model. Across all time windows,
the ROC areas of the model in cold start remains low,
ranging from 0.583 to 0.594. In contrast, the ROC areas of
the personalised model are significantly higher, growing up
steadily as the time window increases.

Figure 17 shows the precision and recall of the model
in cold start and the personalised model for the class “no”.
As the time window increases, both the precision and recall
curve of the model in cold start drop steadily: precision from
0.936 at 1 min to 0.732 at 10 min; recall from 0.994 at

Fig. 16 ROC Areas for our classifier in cold start vs. personalised
model

Fig. 17 Class “no”: precision and recall of the model in cold start,
compared to the personalised model

1 min to 0.788 at 10 min. Comparatively, the curves of the
personalised model are stably high.

Figure 18 depicts the precision and recall of the model
in cold start and the personalised model for the class “yes”.
As the time window increases, both the precision and recall
curve of the model in cold start follow a slowly ascending
pattern: precision from 0.256 at 1 min to 0.375 at 10 min;
recall from 0.004 at 1 min to 0.296 at 10 min. The curves
of the personalised model also follow an ascending pattern
with significantly higher values in different time windows.

4.7 Energy consumption

As energy efficiency is a critical requirement of our
approach, we quantified the energy consumption on a real
smartphone in different conditions. We selected a Huawei

Fig. 18 Class “yes”: precision and recall of the model in cold start,
compared to the personalised model



Pers Ubiquit Comput

Fig. 19 Energy consumption of our approach on Huawei GR5 2017 in
different conditions

GR5 2017 with Android 7.0 as the experiment device, with
3340 mAh full battery capacity.

We installed AWARE and our implementation of the
unlocking prediction system which is based on the Random
Forests classifier in Weka. We compared two sets of
contextual data sources (all data sources vs. software-related
sources) and two time windows (1 min vs. 10 min). Also, to
provide a baseline, we measured the energy consumption in
standby state by disabling the installed applications on the
device. The test for each condition ran for 24 h.

Figure 19 shows the results of the energy tests in different
conditions. When using all the data sources, the device
used 4% (133.6 mAh) of its battery capacity when using
a prediction with time window either 1 min or 10 min.
In contrast, the devices used only 2% (66.8 mAh) battery
when using software-related data sources only for time
windows either 1 min or 10 min. This energy consumption
is virtually the same as that of standby state, meaning
that using software-related data sources only has negligible
impact on smartphone battery.

5 Discussion

Our work has shown that it is possible to predict whether
users will unlock their phone in the near future. Our
analysis shows that contextual data can be used to make this
prediction with varying degrees of confidence. We adopted
two independent methods to make this prediction: using
regression, and using classification. Classification allows us
to ask whether the user is likely to unlock their phone in the
near future (up to 10 min). This approach is suitable when
a short-term prediction is required. Regression enables us
to predict the timing when we expect the next unlock
to happen. This approach can be useful for longer-term
planning. For example, if the classification suggests that
the user will not unlock their phone in the next 10 min,

regression can be used to estimate when the next unlock may
take place.

Additionally, our work has investigated the use of
software-only sensors, as a means of reducing the power
consumptions necessary for prediction. The analysis shows
that in fact using software-only sensors improves predictive
power. Finally, our analysis shows that personalised models
perform quite well and on par with general models, but in
cold-start settings the performance significantly drops.

5.1 Regressionmethods

We investigated the effectiveness of regression methods
attempting to predict the exact time of the next unlocking
event. Our findings show that Random Forests can perform
significantly better than multiple linear regression. This
indicates that the relation between smartphone usage
patterns and phone unlock events are highly nonlinear. We
also found that the difference between using all features
and using software-related features only was insignificant
in this case. Further, a software-related feature, time since
last session, had the strongest correlation to the time
before the next unlocking event. Using personalised models
and software-related features, Random Forests with the
regression model can achieve an MAE of 8.89 min and an
RMSE of 24.44 min. This accuracy is sufficient to schedule
computation-intensive tasks, such as OS updates taking half
an hour, when the classifier predicts a very long period of
idle phone usage.

The strength of regression methods is flexibility, since
algorithms can estimate the time when users are likely to
unlock their phone next. One exciting possibility for this
kind of prediction is the hypothesis that our classifier can be
used to predict when users are going to sleep or will wake
up. For example, previous work at UbiComp has shown that
smartphone usage can be used to detect sleep behaviour [1]
with MAE 45 min.

That work used screen on-off patterns to build person-
alized models for retrospectively determining sleep. We
believe that our regression model can be used to identify
long periods when users are not expected to unlock their
phone, therefore identifying times when the users may be
sleeping. By its nature, our prediction also identifies the
moment in time when users are expected to wake up (and
start using their phone), as shown in previous work.

Furthermore, mobile applications can use both classifiers
and regression methods to improve user experience,
particularly for frequent users [39, 45]. When all time
windows do not fit the requirement of a specific task
(e.g. prediction if there will be 30 min of idle usage), the
smartphone can rely on regression. However, we found
that the results generated by a cold start of our regression



Pers Ubiquit Comput

models tend to be very inaccurate on average. Hence, we
suggest avoiding regression methods to launch a cold start
prediction of unlocking. For a regression-based cold start
of unlocking prediction, future research can investigate the
possible strategies to improve the performance.

5.2 Classificationmethods

Our study with 27 participants demonstrates that it is
possible and practical for smartphones to predict the next
unlock event using a machine learning model and contextual
data. Given the smartphone unlock time prediction as
a binary classification problem, results show that a
personalised model trained by Random Forests using
software-related contextual data achieves ROC areas from
0.885 at 1 min to 0.99 at 10 min. For every instance where
the user will not unlock the phone in the next x minutes
(labelled as class “no” in our classification), the prediction
accuracy of this model ranges from 0.993 at 1 min to 0.904
at 10 min. Energy-saving mechanisms such as pausing the
downloading of timely content and hardware sensor usage
can be triggered by our model’s predictions that fall in the
class “no”. With such mechanisms triggered, the amount
of saved energy is the same as the prediction accuracy.
When the user is going to unlock the phone in next x

minutes (labelled as class “yes”), the performance varies
greatly from 0.421 at 1 min (without sub-sampling) to
0.981 at 10 min. Following a prediction in the class “yes”,
context-aware services on smartphones may launch in the
background to generate relevant content for the next usage
session after the expected unlock event.

By empirically validating the predictability of unlock
events, our work generalises the modeling of smartphone
usage patterns to also include unlocking itself, in addition to
existing approaches that predict which app users will launch
next [25]. Similar to previous approaches using Random
Forests on smartphone such as call-availability prediction
[35], boredom detection [36], and gesture recognition [40],
our approach is feasible as a stand-alone application for
off-the-shelf smartphones.

5.3 Software-related context

Based on the results of feature evaluation on the binary
classification problem using Weka’s “select attributes”,
and the two importance measures of Random Forests, we
found that the strongest indicators of unlock events are
software-related features: idle time (time since the end of
last session), the duration of last session, and the hour of
day. The same holds true for regression: using IncMSE
and IncNodePurity we also observed that software-related
features lead to better higher accuracy and lower dispersion.

For regression, those feature were; time since the end of last
session, the duration of last session, and the hour of day.
Additionally, we found a strong correlation (rs = 0.411)
between idle time (time since the end of last session) and
the time before next unlocking event. This correlation is the
strongest compared to that of any other feature which is a
continuous variable.

This finding is in line with results from van Berkel et
al. [5], who compared multiple features to predict whether
a user would continue with a previous objective or start a
new objective unrelated to the previous task when unlocking
their phone. Following from these results, we argue that
mobile phone usage behaviour follows a pattern that is
related to both the previous user interaction and the time of
day. These attributes can be collected by relying solely on
context information obtained through the device’s software.
This means that our approach can run on the personal
device of the user without need for hardware sensors or
communication with the outside world.

Furthermore, it is interesting to note that Random
Forests using software-related context obtains slightly
higher prediction accuracy than using all the context. This
phenomenon indicates that some features obtained from
hardware are correlated with software-related features, or
are irrelevant to the unlock events. Redundant features can
decrease the classification performance of Random Forests.
Also, feature evaluation shows that several hardware-related
features such as WiFi availability and GPS availability have
significantly low importance, yet are energy intensive.

5.3.1 Energy efficiency in unlocking prediction

Since one of our objectives is to reduce energy consumption
in the locked state, an important condition of a successful
implementation is that the model itself is energy efficient. In
the usage of unlocking prediction, the algorithm works with
a trained model on the smartphone, consuming no phone
power to train a new model. Specifically, based on our
experimental results , we found that using software-related
context (i.e. the data collection for screen events and clock
time) has negligible impact on smartphone battery. This find
is in line with prior work stating that quick computations by
CPU and RAM consume only little power in the locked state
[9, 17]. As stated in [17], operating systems has optimal
mechanisms for system-level broadcasts such as screen and
application events. Fetching these events does not involve
extra overhead.

Overall, our findings suggest that using only software-
related features is a feasible strategy to achieve better
accuracy and energy efficiency in performing smartphone
unlock prediction, compared to using both software-related
and hardware-related features.



Pers Ubiquit Comput

5.4 Deployment of unlocking prediction:
personalisedmodel and cold start

In practice, systems based on supervised learning have two
ways of deployment for a new user: personalising a model
using data collected from the new user, or launching a cold
start with a model trained by data collected from previous
users’ data.

Personalised models are commonly used by most
context-aware techniques on smartphone. These models
gradually learn and adapt to their user. Using personalised
models can maximise the accuracy of predictions, as
demonstrated in our results Fig. 16. When using short
time windows, personalised models tend to generate wrong
prediction for the class “yes” instances. Repeated random
sub-sampling can be used to overcome this problem. Using
long time windows, personalised models can generate
accurate predictions for both classes.

An important strength of personalised models is the
protection of privacy. Since a smartphone collects and
processes data from its own user, personalised models
do not involve any connection to a network and/or other
devices. After training a model, the smartphone can delete
the raw data to minimise risks. However, personalised
models require that some data collection occurs before
they can be used. Although unlocking prediction is an
opportunistic sensing system (i.e. users do not explicitly
input information to train a model), it may take long
time (e.g. 2 weeks in our study) to train a model with
sufficient performance. Also, many factors will affect the
training cost (time and power usage), such as hardware,
data size, algorithm parameters and implementation of
software. Since our approach only requires Random Forests
algorithm, it can work on any platform including Android
and iOS.

In contrast, a cold start can directly install the system
with a trained model on the smartphone of the new user,
so that the smartphone can have predictions immediately
after the installation. This model is trained by data collected
from previous users. Although there is no training effort
for the new user in a cold start, our findings indicate that
this approach has poor performance. Our evaluation results
indicate that the models of cold start cannot accurately
predict instances of class “yes” regardless of time window
sizes. This finding reflects the significant difference of
phone usage behaviours across different users. Also, cold
start models cannot accurately predict instances of class
“no” in long time windows. This means that a cold start may
be useful in very few cases.

Also, a cold start implies that previous users have to
upload their raw data to a central server that trains the

model. It is challenging to recruit such users without suffi-
cient compensation. Even with considerable compensation,
this data collection may involve privacy risks that may be
harmful to these users and may decrease their willingness
of data uploading. In practice, this can be achieved through
volunteers that sign up for beta testing.

5.5 Limitations and future work

In this study, we do not distinguish unlock events caused
by notifications or phone calls which users unlock the
phone in a passive way (i.e. phone usage without a
planned user intention). This means that future research
can investigate smartphone unlock events on a lower level
comprising:

– active unlock events initiated by the phone user;
– passive unlock events where the user is notified via

sound, vibration, LED light or the bright screen by the
phone.

Then the classifier can make more detailed predictions
to support certain applications. However, the classification
performance on the lower level might decrease for brief
time windows because the classes are more imbalanced
(active/passive unlock events are subclasses of unlock
events.), as we have discussed in this paper. Based on
the predictions of active/passive unlock events, smartphone
apps can further benefit users. On the other hand, splitting
more classes within unlock events increases the cost of
when the model is trained on hardware.

Constrained by our computing resources for data
analysis, another limitation is that we did not include
diverse demographic features in our model. We had 27
participants (23 with academic background) which cannot
capture rich demographic diversity among billions of
smartphone users. Many demographic features including
age, occupation, education and personality may be useful
for the classifier to achieve higher accuracy. These features
are also critical to implement an accuracy model for new
users in a cold start scenario. Future research can explore
possible solutions to improve the model for a cold start.
Moreover, changes in demographics may greatly impact
phone usage. For example, a user may radically change their
phone usage behaviours after moving to another country,
so that a model trained in the previous country may have
lower performance. Similarly, users’ mental states (e.g.
depression and anxiety) may be helpful to increase the
accuracy the prediction. Developers can connect medical
apps as a data source to extend our system. To investigate
the effectiveness of additional features, future research
can extend our study to a larger group of participants.



Pers Ubiquit Comput

However, the computational cost (e.g. time and hardware)
in data analysis will also be larger. Researchers should
have sufficient computing resources such as servers or
workstations with large RAM.

Additionally, in the future, researchers can also attempt
to generalise our findings to other mobile devices such
as tablets and smartwatches. The usage scenarios of our
approach on smartphones are similar to those of tablets and
smartwatches. If our approach is suitable for these devices,
accurate unlock prediction will also be a great benefit for
tablet and smartwatch applications.

6 Conclusion

In this paper we propose multiple approaches for using
context data to predict when a smartphone will be unlocked.
Based on the results of our field study with 27 participants,
we found that it is possible to predict the next phone
unlock event, using Random Forests as a classifier/regressor
and smartphone contextual data including hardware sensor
data and phone usage patterns. Furthermore, our feature
evaluation indicates that the strongest indicators of phone
unlocking are software-related features including idle time
(time since the end of last session), the duration of
last session, and the hour of day. We also found that
using software-related features only can slightly improve
the accuracy and enable energy efficiency of continuous
sensing in unlocking prediction.

In the comparison between personalised models and
cold start, our results show that personalised models can
generate better predictions (ROC Area from 0.885 to 0.99
using different time windows), whereas cold start models
cannot achieve the same performance. We also show that
there exists a trade-off in the time window selection. If the
classifier uses a longer time window, the model will have
higher accuracy in positive predictions and lower accuracy
in negative predictions. To achieve high accuracy in positive
predictions by Random Forests using short time windows,
we found that the repeated random sub-sampling method is
very effective.

In contrast, personalised models using Random Forests in
the regression mode can generate the exact time before next
unlocking event (MAE = 8.89 min, RMSE = 24.44 min),
without considering time windows. Our findings enable
smartphones applications to collect sensor data or prepare
timely content to improve the context-awareness for the
next phone usage session. Also, by inferring the next
period of the idle state, smartphones applications and
operating systems can reduce unnecessary operations to
improve energy efficiency, and schedule computation-

intensive tasks, such as OS updates, in the locked state to
avoid the disturbance of phone usage.

Appendix: Parameter tuning

To improve the performance of SVM, we first tried the
linear kernel. However, the performance of SVMwith linear
kernel degraded (ROC Area = 0.523 at 10 min) compared
to the RBF kernel (ROC Area = 0.571 at 10 min). Hence,
we attempted to apply parameter tuning methods on the
RBF kernel. As illustrated in previous work investigating
parameter tuning for SVM with the Radial Basis Function
kernel [10, 24] , we repeated the 10-fold cross-validation on
the data of 10 min time window with replacing the default
setting γ = 1

m+1 with a wide variety of γ values.
Figure 20 shows the performance of SVM with the RBF

kernel having different γ values. Among all γ assignments,
γ = 100 achieved the best performance: ROC Area =
0.813, class “no” precision 0.864, class “no” recall 0.945,
class “yes” precision 0.852, class “yes” recall 0.682.

The results indicate that, given a suitable γ , SVM with
the RBF kernel can also achieve high performance in
the classification to predict unlocking events. However,
due to the large number of possible γ values and our
limited computing resources, we could not refine our
finding, since parameter tuning is highly time-consuming
and computation-intensive (in our case, running each γ

value took about 10 days for a normal PC). With γ = 100,
although SVM with the RBF kernel achieved considerably
good results, the performance of Random Forests was still
better. Hence, we focused on Random Forests in further
analysis. Future work may conduct deeper investigation
about the employment of SVM with the RBF kernel in
phone unlocking prediction.

Fig. 20 SVM with the Radial Basis Function kernel



Pers Ubiquit Comput

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Abdullah S, Matthews M, Murnane EL, Gay G, Choudhury T
(2014) Towards circadian computing: “early to bed and early
to rise” makes some of us unhealthy and sleep deprived. In:
Proceedings of the 2014 ACM international joint conference on
pervasive and ubiquitous computing, UbiComp ’14. ACM, New
York, pp 673–684, https://doi.org/10.1145/2632048.2632100

2. Avrahami D, Hudson SE (2006) Responsiveness in instant mes-
saging: predictive models supporting inter-personal communica-
tion. In: Proceedings of the SIGCHI conference on human factors
in computing systems. ACM, pp 731–740

3. Banovic N, Brant C, Mankoff J, Dey A (2014) Proactivetasks:
the short of mobile device use sessions. In: Proceedings of the
16th international conference on human-computer interaction with
mobile devices & services. ACM, pp 243–252

4. Ben Abdesslem F, Phillips A, Henderson T (2009) Less is more:
energy-efficient mobile sensing with senseless. In: Proceedings of
the 1st ACM workshop on networking, systems, and applications
for mobile handhelds. ACM, pp 61–62

5. van Berkel N, Luo C, Anagnostopoulos T, Ferreira D, Goncalves
J, Hosio S, Kostakos V (2016) A systematic assessment of
smartphone usage gaps. In: Proceedings of the 2016 CHI
conference on human factors in computing systems. ACM,
pp 4711–4721

6. Bobadilla J, Ortega F, Hernando A, Bernal J (2012) A
collaborative filtering approach to mitigate the new user cold start
problem. Knowl-Based Syst 26:225–238

7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
8. Brown B, McGregor M, McMillan D (2014) 100 days of

iphone use: understanding the details of mobile device use. In:
Proceedings of the 16th international conference on human-
computer interaction with mobile devices & services. ACM,
pp 223–232

9. Carroll A, Heiser G (2010) An analysis of power consumption in
a smartphone

10. Chang CC, Lin CJ (2011) Libsvm: a library for support vector
machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

11. Chon Y, Talipov E, Shin H, Cha H (2011) Mobility prediction-
based smartphone energy optimization for everyday location
monitoring. In: Proceedings of the 9th ACM conference on
embedded networked sensor systems. ACM, pp 82–95

12. Do TMT, Blom J, Gatica-Perez D (2011) Smartphone usage in
the wild: a large-scale analysis of applications and context. In:
Proceedings of the 13th international conference on multimodal
interfaces. ACM, pp 353–360

13. Falaki H, Mahajan R, Kandula S, Lymberopoulos D, Govindan R,
Estrin D (2010) Diversity in smartphone usage. In: Proceedings of
the 8th international conference on mobile systems, applications,
and services. ACM, pp 179–194

14. Ferreira D, Dey A, Kostakos V (2011) Understanding human-
smartphone concerns: a study of battery life. Pervas Comput,
19–33

15. Ferreira D, Ferreira E, Goncalves J, Kostakos V, Dey AK
(2013) Revisiting human-battery interaction with an interactive
battery interface. In: Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing. ACM,
pp 563–572

16. Ferreira D, Goncalves J, Kostakos V, Barkhuus L, Dey AK
(2014) Contextual experience sampling of mobile application

micro-usage. In: Proceedings of the 16th international conference
on human-computer interaction with mobile devices & services.
ACM, pp 91–100

17. Ferreira D, Kostakos V, Dey AK (2015) Aware: mobile context
instrumentation framework. Front ICT 2:6

18. Fischer JE, Greenhalgh C, Benford S (2011) Investigating
episodes of mobile phone activity as indicators of opportune
moments to deliver notifications. In: Proceedings of the 13th
international conference on human computer interaction with
mobile devices and services. ACM, pp 181–190

19. Genuer R, Poggi JM, Tuleau-Malot C (2010) Variable selection
using random forests. Pattern Recogn Lett 31(14):2225–2236

20. Google (2017) Activity recognition api, https://developers.
google.com/android/reference/com/google/android/gms/location/
ActivityRecognitionApi

21. Google (2017) Sensor, http://developer.android.com/reference/
android/hardware/Sensor.html

22. Ha JH, Chin B, Park DH, Ryu SH, Yu J (2008) Characteristics of
excessive cellular phone use in korean adolescents. CyberPsychol
Behav 11(6):783–784

23. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH (2009) The weka data mining software: an update. ACM
SIGKDD Explor Newslett 11(1):10–18

24. Joachims T (1998) Text categorization with support vector
machines: learning with many relevant features. Machine learning:
ECML-98, 137–142

25. Jones SL, Ferreira D, Hosio S, Goncalves J, Kostakos V (2015)
Revisitation analysis of smartphone app use. In: International joint
conference on pervasive and ubiquitous computing, UbiComp,
pp 1197–1208. https://doi.org/10.1145/2750858.2807542, http://
people.eng.unimelb.edu.au/vkostakos/files/papers/ubicomp15.pdf

26. Khalilia M, Chakraborty S, Popescu M (2011) Predicting disease
risks from highly imbalanced data using random forest. BMCMed
Inform Decis Making 11(1):51

27. Khoshgoftaar TM, Golawala M, Van Hulse J (2007) An empirical
study of learning from imbalanced data using random forest.
In: 19th IEEE International conference on tools with artificial
intelligence, 2007. ICTAI 2007, vol 2. IEEE, pp 310–317

28. Kostakos V, Musolesi M (2017) Avoiding pitfalls when using
machine learning in hci studies. Interactions 24(4):34–37

29. Krstic I (2016) Behind the scenes of ios security. Black Hat
30. Lane N, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell A

(2010) A survey of mobile phone sensing. IEEE Commun Mag,
48(9)

31. Lee M, Bak C, Lee JW (2014) A prediction and auto-execution
system of smartphone application services based on user context-
awareness. J Syst Archit 60(8):702–710

32. Liu Y, Xu C, Cheung SC (2013) Where has my battery
gone? finding sensor related energy black holes in smartphone
applications. In: 2013 IEEE International conference on pervasive
computing and communications (PerCom). IEEE, pp 2–10

33. Lu H, Yang J, Liu Z, Lane N, Choudhury T, Campbell A
(2010) The jigsaw continuous sensing engine for mobile phone
applications. In: Proceedings of the 8th ACM conference on
embedded networked sensor systems. ACM, pp 71–84

34. Oulasvirta A, Rattenbury T, Ma L, Raita E (2012) Habits make
smartphone use more pervasive. Pers Ubiquit Comput 16:105–114

35. Pielot M (2014) Large-scale evaluation of call-availability
prediction. In: Proceedings of the 2014 ACM international
joint conference on pervasive and ubiquitous computing. ACM,
pp 933–937

36. Pielot M, Dingler T, Pedro JS, Oliver N (2015) When attention
is not scarce-detecting boredom from mobile phone usage. In:
Proceedings of the 2015 ACM international joint conference on
pervasive and ubiquitous computing. ACM, pp 825–836

https://doi.org/10.1145/2632048.2632100
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/reference/android/hardware/Sensor.html
https://doi.org/10.1145/2750858.2807542
http://people.eng.unimelb.edu.au/vkostakos/files/papers/ubicomp15.pdf
http://people.eng.unimelb.edu.au/vkostakos/files/papers/ubicomp15.pdf


Pers Ubiquit Comput

37. Pielot M, de Oliveira R, Kwak H, Oliver N (2014) Didn’t you see
my message?: predicting attentiveness to mobile instant messages.
In: Proceedings of the 32nd annual ACM conference on human
factors in computing systems. ACM, pp 3319–3328

38. Poppinga B, Heuten W, Boll S (2014) Sensor-based identification
of opportune moments for triggering notifications. IEEE Pervas
Comput 13(1):22–29

39. Shin C, Hong JH, Dey AK (2012) Understanding and prediction
of mobile application usage for smart phones. In: Proceedings
of the 2012 ACM conference on ubiquitous computing. ACM,
pp 173–182

40. Song J, Sörös G, Pece F, Fanello SR, Izadi S, Keskin C, Hilliges
O (2014) In-air gestures around unmodified mobile devices. In:
Proceedings of the 27th annual ACM symposium on user interface
software and technology. ACM, pp 319–329

41. Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in
random forest variable importance measures: illustrations, sources
and a solution. BMC Bioinform 8(1):25

42. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston
BP (2003) Random forest: a classification and regression tool for
compound classification and qsar modeling. J Chem Inf Comput
Sci 43(6):1947–1958

43. Truong KN, Shihipar T, Wigdor DJ (2014) Slide to x: unlocking
the potential of smartphone unlocking. In: Proceedings of the 32nd
annual ACM conference on human factors in computing systems.
ACM, pp 3635–3644

44. Verkasalo H (2009) Contextual patterns in mobile service usage.
Pers Ubiquit Comput 13(5):331–342

45. Xu Y, Lin M, Lu H, Cardone G, Lane N, Chen Z, Campbell
A, Choudhury T (2013) Preference, context and communities:
a multi-faceted approach to predicting smartphone app usage
patterns. In: Proceedings of the 2013 international symposium on
wearable computers. ACM, pp 69–76

46. Yan T, Chu D, Ganesan D, Kansal A, Liu J (2012) Fast app
launching for mobile devices using predictive user context. In:
Proceedings of the 10th international conference on mobile
systems, applications, and services. ACM, pp 113–126

47. Yuan Y, Raubal M, Liu Y (2012) Correlating mobile phone usage
and travel behavior–a case study of harbin, china. Comput Environ
Urban Syst 36(2):118–130

48. Zhuang Z, Kim KH, Singh JP (2010) Improving energy efficiency
of location sensing on smartphones. In: Proceedings of the 8th
international conference on mobile systems, applications, and
services. ACM, pp 315–330


	Energy-efficient prediction of smartphone unlocking
	Abstract
	Introduction
	Related work
	Smartphone usage patterns
	Context-aware services on smartphones

	Methodology
	Data collection and features
	Analysis
	Measures

	Results and optimisation
	Regression approaches
	Classification approaches
	Random forests parameter tuning
	Optimisation regarding class imbalance for random forests

	Feature evaluation in classification
	Classification using only software-related context
	Personalised model in classification
	The new user cold start problem
	Energy consumption

	Discussion
	Regression methods
	Classification methods
	Software-related context
	Energy efficiency in unlocking prediction

	Deployment of unlocking prediction: personalised model and cold start
	Limitations and future work

	Conclusion
	Appendix 1 
	Publisher's Note
	References


