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Abstract

Can online behaviour be used as a proxy for studying urban mobility? The increasing availability of digital mobility traces
has provided new insights into collective human behaviour. Mobility datasets have been shown to be an accurate proxy for
daily behaviour and social patterns, and behavioural data from Twitter has been used to predict real world phenomena such
as cinema ticket sale volumes, stock prices, and disease outbreaks. In this paper we correlate city-scale urban traffic patterns
with online search trends to uncover keywords describing the pedestrian traffic location. By analysing a 3-year mobility
dataset we show that our approach, called Location Archetype Keyword Extraction (LAKE), is capable of uncovering
semantically relevant keywords for describing a location. Our findings demonstrate an overarching relationship between
online and offline collective behaviour, and allow for advancing analysis of community-level behaviour by using online
search keywords as a practical behaviour proxy.
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Introduction

Research has shown that the study of urban mobility can offer

insight into human behaviour [1–3]. One mechanism that makes

this possible is the concept of a location attractor [4] in urban

environments, i.e. that certain locations attract individuals

exhibiting a particular behaviour deviating from routine move-

ment. For instance, a sports stadium becomes such an attractor

when it hosts sports events, causing individuals interested in sports

to alter their daily routine and visit the stadium. Along the same

lines researchers have also attempted to understand the relation-

ship between mobility and behaviour by linking mobility traces

corpuses to geospatial configuration [5].

However, capturing urban mobility traces is challenging and

often requires infrastructure that can be expensive and complex to

maintain. For this reason, researchers have increasingly studied

online behaviour datasets to uncover patterns in collective human

behaviour. Online datasets are convenient to capture and analyse,

and previous work has already noted their potential. For example,

trends in online search activity have been shown useful in

providing models of real world phenomena such as influenza

outbreaks, stock market activity, and consumer behavior [6–10].

One example is the search volume of the keyword ‘‘flu’’ which

correlates with the outbreak of influenza as recorded in national

health statistics [6,8,11]. These models typically rely on the careful

choice of search keywords that are expected to correspond with a

particular real-world phenomenon.

In this paper we set out to investigate the relationship between

urban mobility and online keyword search volume. Because both

urban mobility [1–5] and keyword search volume [6–10] correlate

with collective behaviour, we hypothesise that they may be linked

directly. Evidence of such a relationship would suggest that urban

mobility can be studied by using online data as a proxy, provided

that the appropriate keywords can be identified.

In this paper we make a number of contributions. Specifically:

N We show that urban mobility patterns can be modelled using a

set of search keywords. This means that the mobility at

particular locations can be modelled using the popularity of

certain keywords over time.

N We show that these keywords appear to be semantically

relevant to the respective locations. This suggests a strong

relationship between urban mobility and online search

behaviour.

N We fully describe our process (called Location Archetype

Keyword Extraction, or LAKE), which relies on publicly

available tools. This means that other researchers can

immediately validate our approach by using LAKE with their

own data.

N We demonstrate that the reason for LAKE’s effectiveness is the

existence of location archetypes. This means that mobility

across semantically relevant locations correlates highly, and

therefore LAKE identifies keywords that are relevant to

semantically similar locations.

N We also provide evidence that the correlation of mobility at

any two locations is also geographically bound, specifically

inversely related to their distance.
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The implications of our findings are diverse. First, we provide

evidence of a link between urban mobility and online search

behaviour. Furthermore, our work presents a cheap way to

estimate pedestrian mobility at urban locations using search

keywords as a proxy. Finally, our findings show that our method

can also characterise urban locations given mobility data, which is

a valuable input for interactive systems operating in urban

environments.

Materials and Methods

Data Provision
Our approach uses online search data provided by Google.

According to analytics firm NetMarketShare, Google’s share of

global online searches was 84.14% in November 2012, making it

the biggest online search engine in terms of volume of executed

searches. Thus, we argue it provides the most comprehensive

search data for us.

Google Trends is a publicly available online tool by Google that

provides insights into temporal and spatial volumes of search

queries from the search engine. Its main purpose is to model over

time the popularity of keywords used in search queries. Building

on top of this tool, Google Correlate can identify web search queries

whose temporal frequency best correlates with any user-specified

temporal pattern [12]. Google Correlate requires a time series

data in date-value pairs as an input. The format of the input data is

a two-dimensional vector of form [dd/mm/yyyy, value]. The tool

then attempts to find search queries whose temporal patterns

match the input data. The tool operates on a national level, such

that the popularity within a particular nation is considered.

We independently collected urban mobility traces using a

network of WiFi access points across our city. An access point was

installed in each of the locations in our study, and we calculated

the number of unique devices detected by the access point per day

of the study. We normalise this data and use it as an

approximation of the pedestrian flows in various locations. One

pedestrian flow vector can therefore be used to describe pedestrian

activity at one location for the duration of our study. Using one

such vector as an input, the Google Correlate tool provides a list of

the top-10 search keywords whose popularity best matches the

pedestrian flow vector over time. The top search keywords are

ranked in terms of the correlation’s r coefficient.

Data Collection
To investigate the relationship between urban mobility and

online search activity we collected a longitudinal dataset of city-

scale mobility, and used the Google Correlate tool to match time-

series mobility data with search keywords. We collected mobility

traces using a municipal WiFi network between January 2009 and

May 2012. The network consists of 1300 access points covering a

large portion of the area of the city of Oulu, Finland (shown in

Figure 1). The network is free, open, and available in a number of

public locations including schools, libraries, health clinics, and

public squares.

We also calculated the daily number of visitors at a variety of

locations by considering the number of unique devices that used

the WiFi network at a particular location. For example, Figure 2

shows the number of unique devices detected in our University

over a period of 4 weeks in 2009. This analysis is possible because

each device uses a unique identifier, and each of the 1300 access

points is uniquely identifiable by our software. Each device that

accesses the network is assigned a unique identifier (ID). If a device

connects to the network for the first time, the device ID will be

determined based on the MAC address of the device using a one-

way hash function. When a device connects to the network, our

software records the device ID, the date and time, and ID of the

WiFi access point that can be used to infer the location. The ID of

a device or access point does not change over time. Thus, we were

able to determine how many unique devices have accessed the

network at specified location on each day for a given time period.

A limitation of this approach is that if a user has multiple WiFi

devices, our analysis will infer that multiple users have accessed the

network.

Some locations have multiple overlapping access points installed

to cope with high network demand. In these cases, our analysis

treats those access points as an aggregate ‘‘virtual’’ access point.

This ensures that a device is only recorded once in that area or

building, even though it may actually associate with multiple

access points. We manually inspected the locations in our analysis

and we defined virtual points in this manner. For example, all

access points across the 3 floors of the library were aggregated into

a single virtual access point, and similarly the lobbies in our

university were all aggregated into a single virtual access point.

The same is true for the access points high schools, where we

coded the data so that each high school is a single virtual point.

Overall, we defined 12 virtual access points in our analysis

representing 84 real access points.

Visual Interpretation of the Data
We are able to generate time-series data describing the number

of visitors across the city as well as at a particular location, for

example at our University. The total number of devices detected

across the city during the whole study is shown in Figure 3, and

clearly demonstrates an upward trend underlying the varying

seasonal patterns. We hypothesize that this upward trend is due to

the increasing penetration of WiFi enabled lightweight devices

such as smartphones and tablets during the study period [13].

The time-series data for a particular location, our University, is

shown in Figure 4 along with a normalisation process aimed at

retaining the seasonal patterns but discarding the overarching

upward trend in the number of WiFi devices detected. This

upward trend affects the results obtained in our analysis, because

in addition to the seasonal patterns it also takes into account the

upward trend of the data. As a result, search queries that have

become increasingly popular since 2009 are ranked higher when

we conduct our analysis using just the raw pedestrian flow data.

Because our analysis is more focused on the seasonal patterns of

the data, we perform the normalization process described next.

Data Normalization
We illustrate our normalisation procedure using the data

collected from the main lobby areas of our University. Figure 4

visualizes the effects of our normalization method. The pedestrian

flow data shown in Figure 4a was collected in our University, and

shows that the beginning of the semester in autumn is relatively

busy when freshmen start their studies, while the amount of

students decreases gradually during the year. A sharp drop in the

amount of pedestrians can also be seen during the Christmas

holidays.

To filter out the upward trend component and maintain the

seasonal patterns, we denote the university time-series data as a

vector K, where a value Ki is the number of devices detected on ith

day of our study in that location. The vector T is a vector where

value Ti is the total amount of devices detected on ith day in the

whole city.

Therefore, the percentage of devices across the whole commu-

nity that were detected in the university is

Location Archetype Keyword Extraction
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W~
Kuni

T

where W is a vector containing the relational frequency of the

detected devices for each day of the study. The result of this

normalization is shown in Figure 4b but still entails an upward

trend. Given the strong annual pattern across all our data, we

apply minimum-maximum normalization on each year separately

to highlight the seasonal variations. The resulting normalized

vector can be denoted as

fW2009,:::,W2012g

where Wyear is a minimum-maximum normalized annual subset

from the vector W and is denoted as

Wk~
Wi-min(Wk)

max(Wk)-min(Wk)
,

where k~ 2009,2010,2011,2012f g
This normalization step further reduces the upward trend

component, and the results are shown in Figure 4c.

To validate our normalization method we rely on linear

regression and inspect the slope xi, r2 and p-value of the regression

lines in Figures 4a, 4b and 4c. This approach was used to validate

whether the upward trend component, estimated with a linear

Figure 1. A map showing all the WiFi access point locations. The map covers an area approximately 20km620km.
doi:10.1371/journal.pone.0063980.g001
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regression line, can be progressively eliminated. Our aim is to

derive a ‘‘stable’’ oscillating function with a linear regression line

whose slope is near zero and has low r2 value. The results of this

validation process are presented in the results section. Note that

our intention is to verify that a linear regression has a poor fit,

thereby suggesting that the linear trend in the data has been

largely eliminated.

Keyword Extraction
Using our normalisation approach we derive one time series per

location of interest in the city, and use each one to identify search

queries with similar temporal patterns on Google Correlate.

Effectively, we uploaded pairs of values of the format ,date,

value., using each day as a data point. Google correlate

aggregates this data into weekly values. Our analysis results in

the top 10 online search keywords used in Finland whose search

volume time series matches the pattern of pedestrian flows (using

Pearson’s correlation) at each location respectively.

Our results show that, when appropriate keywords are used, the

pedestrian flows at a location can be approximated with a degree

of accuracy of 0.7–0.9. However, our results did have an

unexpected element. Surprisingly, the results were keywords that

appeared to be semantically relevant to the locations. For example,

given the time series from the University data (Figure 4c) some of

the keywords we obtained are ‘‘research’’, ‘‘scholar’’ and ‘‘lecture’’

(Table 1). These terms were derived by feeding the normalised

data for each location to the Google Correlate tool and deriving

the top-10 search terms whose popularity matches the pedestrian

flow volume. We refer to this whole process as Location Archetype

Keyword Extraction (LAKE).

To verify that the results of LAKE were indeed semantically

relevant to the respective locations, we issued a questionnaire to 29

residents of our city (22 male, 7 female) with an average age of

30.5 (s = 9.5). Each respondent was given the following:

N a set of location names (High school, University, Library,

Camping, Ice Hockey Hall)

N a set of 16 keywords

N instructions to rate on a 5-point likert scale the semantic

similarity of each keyword to the respective location.

We constructed the set of words for each location by

aggregating and mixing.

N the top 10 keywords for that particular location derived using

our analysis

N 3 words selected at random

N 3 keywords from a different location.

Thus, each of the 15 respondents was given 5 locations and 16

words per location. The order of words for each location was

randomized. Respondents rated each word on a 5-point Likert

scale to indicate the semantic relevance of that word to the

respective location. No information was given to respondents

about how the words were derived, the respondents were recruited

Figure 2. Total number of unique devices detected at one location. The data demonstrates how over a period of 4 weeks in 2009 the
number of devices fluctuates on a daily pattern. The first data point in this plot is a Monday. The data also shows that weekends have distinctly less
activity.
doi:10.1371/journal.pone.0063980.g002

Figure 3. Total number of unique devices detected in the city
during the study period. The data demonstrates how over a period
of three years the volume of devices doubles, much unlike the
population of our city that has grown at more modest rates.
doi:10.1371/journal.pone.0063980.g003

Location Archetype Keyword Extraction

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e63980



via email, and all were natives and residents of our city. The

respondents were instructed to consider the broader context of the

locations, for instance the search term ‘‘marketing’’ refers to

‘‘marketing’’ as university studies (economics) or ‘‘product

marketing’’. The respondents were also encouraged to use online

search if they were unfamiliar with any of the queries. Locations

were identified only as their categorical names. No more details

about the locations or their whereabouts were given. Using this

method, we hypothesise that the top 10 keywords included within

the scrambled set of 16 words will receive higher ratings than the

set of random keywords, suggesting that LAKE produces

semantically relevant results. Furthermore, we hypothesize that

the top 10 keywords will receive higher rating that the 3 keywords

from a different location, suggesting that LAKE distinguishes

between locations. As we describe in the results section, both our

hypotheses were confirmed by the independent respondents.

Interpretation of LAKE Analysis
The mechanism that enables LAKE to produce semantically

relevant keywords – without direct human intervention – is not

immediately evident. Besides the lack of direct human input, we

were puzzled by the fact that pedestrian flows are collected at a

particular location in our city, while the Google Correlate tool

operates on a national level. Given our findings, we hypothesise that

there must exist ‘‘location archetypes’’, instances of which are the

particular locations we observed with our WiFi network. For

example, we hypothesise that our university must be just one of

many instances of the ‘‘University archetype’’, and therefore

nation-wide online search queries must correlate with the

pedestrian flows at all instances of this location archetype. For

this reason we refer to the process we have described so far as

Location Archetype Keyword Extraction (LAKE), because we

hypothesize that it allows us to extract keywords referring to the

archetype of locations we study.

To investigate the existence of location archetypes, we analyse

longitudinal pedestrian flows collected from various locations that

we intuitively believe must belong to the same archetype: five high

schools in our city. The correlation of daily visitors at a number of

unrelated locations is shown in Figure 5a and contrasted with the

data for five distinct high schools in Figure 5b. The results

demonstrate that pedestrian flows at all the high schools correlate

strongly with each other (r.0.8), and thus are likely instances of a

‘‘High School archetype’’. Subsequently, the pedestrian flow data

from all high schools produce semantically relevant keywords

using our LAKE analysis.

This analysis relies on daily flows of pedestrians at various

locations. In our analysis we also considered using hourly-intervals

to compare locations, but the results were unreliable. When

considering hourly intervals, the Circadian rhythm becomes very

prominent. In other words, the ‘‘nominal’’ daily patterns take over,

with high activity during work hours and low activity during

nighttime and weekends. For this reason the analysis results in

high correlation patterns between most locations, and effectively

reduces the ability of our technique to differentiate between

locations.

Distance Effect on Correlation
An alternative explanation for the results in Figure 5 on the

correlation of pedestrian flows may be distance: the high

correlation in urban mobility between two locations may be due

to their physical proximity. This is a spatial phenomenon that has

previously been hypothesised [4]. We investigate whether the

strong correlations we identified may be due to spatial proximity in

addition to the existence of location archetypes. Because the

LAKE analysis operates on pedestrian flows, we expect that

locations close to each other are likely to strongly correlate with

each other regardless of their semantic relationship. Effectively, we

assume that a group of people moving across the city is likely to

register at multiple locations that may not be semantically relevant

to each other but be spatially proximal to each other.

To investigate this relationship, we constructed two matrices: a

distance matrix MD shown in Table 2 and a correlation matrix

MC, which can be seen in Table 3. The distance matrix has all the

locations of the study denoted with Li as rows and columns, and

Figure 4. Normalisation of pedestrian flows time series. Figure 4a shows the number of WiFi devices detected during the study period in the
lobby areas of our university. The data demonstrates strong seasonal patterns, for example showing that summer time is relatively quiet at the
University. At the same time, however, this time series shows an upward trend, reflecting the increasing number of WiFi devices using the network
across the city over time. To account for this increasing trend while maintaining the seasonal patterns, we normalise the data using a two-step
approach. First we calculate the percentage of all devices seen on any day that visit a particular location on that day. Results of this normalization
step are shown in Figure 4b. Subsequently, we apply an annual minimum-maximum normalisation filter to derive the time series in Figure 4c. The
effectiveness of our normalization method is verified using linear regression (in red), which shows that compared to the original data (x = 0.3324,
r2 = 0.2192, p,2.2e-16) the normalization in Figure 4b (x = 1.964e-05, r2 = 0.04205, p = 3.318e-12) and subsequently Figure 4c (x = 1.724e-06, r2 = –
0.000879, p = 0.9438) retain mostly seasonal patterns in variation.
doi:10.1371/journal.pone.0063980.g004
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their respective distances Dij from each other. The correlation

matrix is structured in a similar manner where correlation is

denoted with Cij. The diagonals of both matrices are left empty.

We then use these two matrices to construct the scatterplot in

Figure 6, where each point in the scatterplot can be denoted with

coordinates (Dij, Cij) from the two matrices. In this figure each data

point is for a pair of locations. For each pair we use the Pearson’s r

correlation in pedestrian flows (Table 4) and the physical distance

between those two locations in meters (Table 3). We then plot

these two values along the y and x axes of the figure respectively. In

addition we use colour coding (green-blue-red) to indicate an

increasing expected semantic similarity that we expect for those

pairs. Our results confirm that distance is inversely related to the

correlation between locations, but only for locations that are not

semantically relevant. In the latter case, distance has little impact

on the correlation.

Results

In Figure 3 we verify that the total number of unique WiFi

devices detected across the city has indeed an upward trend

highlighted in red (xa = 3.383, r2a = 0.3125, pa,2.2e-16), and we

also verify that this trend is present in the University raw data in

Figure 4a (xb = 0.3324, r2b = 0.2192, pb,2.2e-16). Our first

normalisation step (Figure 4b) partially filters this trend by relying

on the percentage of devices detected in the University area for

each day of the study (xc = 1.964e-05, r2c = 0.04205, pc = 3.318e-12).

Our final normalisation step (Figure 4c) utilizes the annual

minimum-maximum normalization and adequately filters the

upward trend by resulting in a non-significant linear fit

(xd = 1.724e-06, r2d = –0.000879, pd = 0.9438). We summarize the

regression coefficients for each dataset in Table 4.

This normalization procedure shows that by calculating the

total percentage of the devices detected in the university in relation

Table 1. Top 10 search engine queries for various locations.

University r-value Ice hockey hall r-value

Helka (Helsinki university library) 0.914 sjl (Finnish ice hockey union) 0.726

google scholar 0.895 finnhockey 0.724

scholar 0.894 keilahalli (bowling hall) 0.722

tutkimus (research) 0.893 kiekko kaleva (hockey in local newspaper) 0.716

learning 0.887 sm-liiga nelonen (tv-channel with hockey) 0.715

optima oulu (student environment) 0.878 nelonen sm (same as above) 0.713

funktio (function) 0.876 jääkiekkoliitto (ice hockey union) 0.711

luento (lecture) 0.874 nelonen sm liiga (tv-channel, ice hockey) 0.707

development 0.872 lihapata (meat stew) 0.699

nelli (university e-library portal) 0.871 finhockey 0.699

Library r-value High school r-value

hietsun kirppis (flea market) 0.889 wilma kempele (student environment) 0.795

pistiäinen (stinging bee) 0.870 wilma kiiminki (student environment) 0.791

viinitila (wine farm) 0.864 helmi (student management system) 0.781

reitti (path) 0.863 wilma oulu (student environment) 0.771

lättähattu (509s dressing style/old train) 0.862 edu (news and info on education) 0.763

hietaniemen kirpputori (flea market) 0.860 wilma kuusamo (student environment) 0.758

hietalahden kirpputori (flea market) 0.859 pedanet (support for online learning) 0.747

museorautatie (museum railroad) 0.857 wilma raahe (student environment) 0.744

korppoo (island in Turku archipelago) 0.854 wilma kemi (student environment) 0.736

tammisaari (town) 0.853 varoitusmerkit (warning signs) 0.726

Camping r-value

festivaali (festival) 0.804

naantali majoitus (housing) 0.793

kalajoki camping 0.788

hanko majoitus (housing) 0.761

vesipuisto serena (water amusement park) 0.760

rauhalahti camping 0.759

rengastie kartta (map) 0.758

Högsåra (island in Hittinen archipelago) 0.756

kuhan uistelu (zander fishing) 0.740

The r-values reported are calculated byGoogle Correlate, and here we report the top-10 results for each location. In brackets are English translations where necessary.
doi:10.1371/journal.pone.0063980.t001
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to the whole city network, and by then performing annual

minimum-maximum normalization we can filter the trend

component in the data (xb.xc.xd and r2b.r2c.r2d). By filtering

the trend component we highlight the underlying seasonal patterns

of pedestrian flows in the original pedestrian flow data and thus

are able to identify search engine queries and keywords that

fluctuate with seasons, rather than queries that are trending over

time.

The LAKE analysis was also applied to five locations of

semantically different archetypes. The results of the human

assessment of the search queries can be seen in Table 5. The

keywords obtained through our analysis were rated consistently

more relevant one a 5-point Likert scale (a = 0.982, Ravg = 3.407)

than random keywords (a = 0.948, Ravg = 1.620) or keywords from

different locations (a = 0.977, Ravg = 2.124). Our analysis found

semantically relevant keywords for a number of locations such as

high schools, a camping site, the university, and an ice hockey

arena.

Figure 5 demonstrates the effect of the physical distance

between pairs of locations on their correlation of pedestrian

volumes. In green we show location pairs that are not semantically

relevant, which as a set demonstrate an inverse effect between

distance and correlation of pedestrian volumes. In blue we show

location pairs that are semantically related to each other (pairs

consisting of the university and one high school). Finally, in red we

show location pairs that belong to the same location archetype

(pairs of high schools).

We find that for location pairs that are not semantically relevant

there exists an inverse effect between distance and correlation of

pedestrian volumes. This is not the case for pairs of locations

belonging to the same location archetype, or being semantically

relevant. The results show that for the green set distance has an

inverse effect on pedestrian flows correlation volumes (xrandom = –

6.285e-05, r2random = 0.11, prandom = 0.007). The effect of distance is

minimal in the blue and red groups (xuniversity = 2.647e-07,

r2university = -0.327, puniversity = 0.910; xhighschools = 4.075e-06, r2high-

schools = 0.051, phighschools = 0.172).

Finally, we constructed a scatterplot for more than 30000

random pairwise combinations of locations from our dataset.

Figure 7 shows the results, which confirm an inverse underlying

relationship between physical distance and pedestrian flow

correlation between pairs of locations (xrandom = –1.188e-02, r2ran-

dom = 0.01012, prandom,2.2e-16). The scatterplot contains some

vertically clustered set of points at distance = 10, 12 and 15

kilometres, highlighting spatial clusters of WiFi access points and

the polycentric nature of the region.

Discussion and Conclusion

Our results demonstrate two important findings. First, we

demonstrate that LAKE can be used to identify keywords that

Figure 5. Scatterplot matrices showing pedestrian flow. Here we can see pedestrian flows for (a) various types of locations and (b) high
schools. In this figure each scatterplot is for a pair of locations. Each scatterplot data point is for a particular day of our study, and indicates the
correlation of pedestrian flows for the two locations on that particular date. Data points are color-coded by season to account for seasonal variations.
Reading the scatterplots: to locate the scatterplot for a pair of locations, the row-column intersection cell need to be inspected below the diagonal.
Similarly, the correlation values are at the row-column intersection cell above the diagonal.
doi:10.1371/journal.pone.0063980.g005

Table 2. Distance matrix for all locations.

Location L1 L2 … Lj

L1 – D12 … D1j

L2 D21 – … D2j

… … … – …

Li Di1 Di2 … –

Each cell Dij denotes the distance in meters between locations Li and Lj.
doi:10.1371/journal.pone.0063980.t002
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strongly correlate with urban mobility at particular locations. This

means that subsequently monitoring the popularity of these

keywords can indeed offer insights into the pedestrian flows of

that particular location. An important benefit of this approach is

that it can be cheap and convenient to collect data on keyword

popularity on large scale, thus making this analysis more

accessible.

A second, unexpected, finding of our work is that the keywords

produced by LAKE are semantically relevant to the respective

locations. Verification with human raters suggests that indeed the

keywords LAKE produced are semantically relevant to the

locations. In some cases this semantic relevance is contextually

derived, so we would expect only a resident of our city to be able to

identify this relationship.

Furthermore, our analysis of the distance between locations and

their mutual correlation shows that locations of the same

archetype correlate strongly with each other regardless of the

distance between them, while random locations show declining

correlation as their distance increases. These findings suggest that

pedestrian correlations are not only affected by seasonal variations,

but show also causal relationships in a local scale.

We note that do not argue that our technique can replace

existing ways of studying urban mobility. In fact, our technique

relies on the existence of detailed mobility data – if this data exists

in the first place, it can be used directly to conduct robust mobility

analyses. What our technique complements existing urban

mobility tools in two ways. First it allows us to identify keywords

that can subsequently be monitored more easily than collecting

urban mobility data. Second, it provides a way to derive

‘‘qualitative’’ data about the location in question, by generating

keywords that are semantically relevant to this location. In some

ways, these keywords can be understood as the broader context of

the environment in which the data was collected.

How can Location-bound Data Correlate with National-
level Data?

It is not clear why location-bound pedestrian flows correlate

with search engine query data, which is collected at a national

level. The collected location-bound pedestrian flows represent a

non-negligible part of the population of our country and the city.

Even if other potential queries are correlated and compared with

our data, only the relevant search queries show significant

correlations (r .0.8).

Therefore, we find these results meaningful and believe that this

phenomenon indeed demonstrates a latent relationship between

online and offline community behaviour in terms of spatial and

temporal activity. Specifically, we believe that the locations act as

population attractors, in which the visitors’ movement frequencies

and patterns create a unique ‘‘fingerprint’’ for each location,

which becomes the main factor in the correlation process. These

unique, archetype-specific pedestrian flow characteristics can then

be identified using LAKE.

The findings of this paper would clearly be stronger if a larger

number of location archetypes were investigated. Unfortunately

there are no more location archetypes included in our data that

can be reliably analyzed. This is because our data is captured from

a public WiFi network that is only deployed in public spaces and

governmental buildings. Many of these buildings house a mixture

of facilities or services, and therefore they data we collect at those

locations are not ‘‘clean’’. The archetypes we have presented in

this paper are all locations that have a rather well-defined purpose,

and therefore our results can be reliably verified.

Table 3. Pedestrian flow correlation Matrix for all locations.

Location L1 L2 … Lj

L1 – C12 … C1j

L2 C21 – … C2j

… … … – …

Lm Ci1 Ci2 … –

Each cell Cij denotes the Pearson’s correlation in daily pedestrian flows between
locations Li and Lj.
doi:10.1371/journal.pone.0063980.t003

Table 4. Summary of the linear regression analysis.

Figure r2 xi (slope) p-value

3 0.31250 3.3830 ,2.2e-16

4a 0.21920 0.3324 ,2.2e-16

4b 0.04205 1.964e-05 3.318e-12

4c 20.00879 1.724e-06 0.9438

Values of the normalization procedure from each dataset in Figures 3 and 4.
doi:10.1371/journal.pone.0063980.t004

Figure 6. Distance affects pedestrian flow correlations. Corre-
lation in pedestrian flows is affected by distance (in meters) between
two locations. Orange dots are pairs of high schools, and blue dots are
pairs consisting of the university and high schools. Green dots are pairs
of semantically irrelevant locations. Regression lines are included with
the colour of the respective category. We identify two trends in this
data. With the green colour we show location pairs that are not
semantically relevant, which demonstrate an inverse effect between
distance and correlation of pedestrian volumes (xrandom = –6.285e-05,
r2

random = 0.11, prandom = 0.007). In orange we show location pairs that
are semantically relevant (pairs of high schools) and in blue we show
location pairs that are highly related to each other (pairs consisting of
the university and one high school). We find that for both sets of pairs
distance has no significant effect on the pair’s correlation of pedestrian
flows (xuniversity = –2.647e-07, r2

university = –0.327, puniversity = 0.910;
xhighschools = 4.075e-06, r2

highschools = 0.051, phighschools = 0.172).
doi:10.1371/journal.pone.0063980.g006
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Application of the Keywords’ Semantic Relevance
We have described a methodology to ‘‘convert’’ pedestrian flow data

[14] into phrases that are semantically relevant to particular areas and

contexts and also that can be used as a proxy for estimating the volume

of that data. This approach can have a substantial impact on how we

design and implement contextual and situated computer systems.

These keywords can be used to identify relevant media, services, data,

and advertisements in urban computing systems.

One straightforward mechanism to implement this is to actually

use web search tools to identify relevant media. For instance, using

Google’s ‘‘image search’’ with the queries our technique identifies,

we believe that we are able to retrieve location images that are

semantically relevant to the locations in our study. Similarly, our

approach could be used for advertising purposes. For example

Google’s advertising tools can be used to retrieve advertisements

relevant to the keywords identified in our analysis. We believe that

these example cases would provide substantial impact on urban

pervasive computing and advertising, and therefore they need

further studying and assessments by human participants.

Furthermore, our findings also point to a future direction in applying

our technique. Using LAKE we can initially assign keywords to each

location. Subsequently, we can conduct pairwise comparisons between

locations to identify their degree of correlation, as shown in Figures 6        &

extend each location’s set of keywords by incorporating the keywords

from the other location, coupled with a weight. Hence, for each

location we can derive an extended set of associated keywords, some of

which would be weighted. What this approach offers us is a way to

extend LAKE by taking advantage of our findings in Figure : nearby

locations are more likely to correlate with each other. Therefore, the

extended set of keywords for a particular location could include

keywords that are relevant to nearby locations as well. This is an

approach that we intend to evaluate in the future.

Limitations
Our data collection system utilizes hardware MAC addresses to

identify unique devices in the network. If a single pedestrian is carrying

or using multiple WiFi devices to access the network, he will be detected as

if multiple pedestrians in the vicinity of the access point. Similarly, our

method does not take into account if the detected device is stationary.

For instance, residents living in the vicinity of an AP will be detected

and registered as pedestrians every day, even if the AP was accessed

from a residence and is stationary for the whole duration of the study.

In future work these limitations could be assessed by detecting the

direction from which the WiFi connection requests came to the AP and

the signal strength of the connection.

Furthermore, our analysis found that adopting a different

normalisation algorithm leads to some changes in the extracted

keywords, particular beyond the top-20. This is not surprising

since a different normalisation process results in changes to the

Table 5. Results of the questionnaire on LAKE analysis.

Location Wordset (words) Cronbach’s a Average relevance (1–5)

Highschool LAKE analysis (10) 0.966 3.662

Highschool Random (3) 0.971 2.080

Highschool LAKE from other locations (3) 0.995 2.816

Highschool All words (16) 0.979 3.207

University LAKE analysis (10) 0.890 4.479

University Random (3) 0.862 1.391

University LAKE from other locations (3) 0.975 2.678

University All words (16) 0.986 3.563

Library LAKE analysis (10) 0.768 1.479

Library Random (3) 0.528 1.437

Library LAKE from other locations (3) 0.402 2.609

Library All words (16) 0.912 1.683

Camping LAKE analysis (10) 0.966 3.610

Camping Random (3) 0.969 1.701

Camping LAKE from other locations (3) –0.230 1.241

Camping All words (16) 0.984 2.808

Ice hockey hall LAKE analysis (10) 0.989 3.803

Ice hockey hall Random (3) 0.955 1.494

Ice hockey hall LAKE from other locations (3) 0.561 1.275

Ice hockey hall All words (16) 0.993 2.897

All LAKE analysis (10*5) 0.982 3.407

All Random (3*5) 0.948 1.620

All LAKE from other locations (3*5) 0.977 2.124

Total All words (16*5) 0.985 2.831

Here we show for each location three sets of keywords and their respective results. Each row is an individual test case. The interrater agreement (Cronbach’s alpha)
across all results was a = 0.976 suggesting a strong agreement between the raters and the relevance or non-relevance of keywords to all the locations. For most of the
cases, respondents agree that the words obtained using LAKE are more relevant to a location than words from random location wordsets or totally random words.
doi:10.1371/journal.pone.0063980.t005
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fluctuations in data. For this reason we have followed a

normalisation process described in the section ‘‘Data normaliza-

tion’’ that does not rely on regression or opaque algorithms, but

rather is based on a simple and explicit process that is justified by

the nature of the data. Particularly, our normalization process

looks at percentages of the whole population that visit a particular

location, and also applies an annual min-max normalization step

to account for incremental changes to the number of wireless

devices in a city over time.

Conclusion
By utilizing the LAKE analysis presented in this study, we have

shown a way to algorithmically identify online search queries that are

semantically relevant to the location where pedestrian data is collected.

In addition, we have shown that locations that are close to each other

are likely to have correlating pedestrian flows. As the distance between

a pair of locations increases, the correlation between the pedestrian

flows remains high if the locations are semantically similar. Otherwise,

distance has an inverse effect on pedestrian flow correlation.

Our work enables a new approach to investigating population

mobility patterns between online and offline worlds by exploiting

automated data collection methods and datasets. Our findings

provide insight for modelling and understanding human behaviour

as reflected by urban mobility, and our technique provides a

mechanism for identifying appropriate search keywords to model

arbitrary real-world collective behaviour. Finally, we expect that

the LAKE analysis will enable researchers to reconsider the

relationship between online and physical patterns, and further

contribute to the analysis of community-level behaviour.
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