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ABSTRACT  
Previous work suggests that Quantified-Self applications can 
retain long-term usage with motivational methods. These 
methods often require intermittent attention requests with 
manual data input. This may cause unnecessary burden to the 
user, leading to annoyance, frustration and possible 
application abandonment. We designed a novel method that 
uses on-screen alert dialogs to transform recurrent 
smartphone usage sessions into moments of data 
contributions and evaluate how accurately machine learning 
can reduce unintended interruptions. We collected sensor 
data from 48 participants during a 4-week long deployment 
and analysed how personal device usage can be considered 
in scheduling data inputs. We show that up to 81.7% of user 
interactions with the alert dialogs can be accurately predicted 
using user clusters, and up to 75.5% of unintended 
interruptions can be prevented and rescheduled. Our 
approach can be leveraged by applications that require self-
reports on a frequent basis and may provide a better 
longitudinal QS experience. 
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INTRODUCTION  
Quantified-Self (QS) applications are often criticised for 
lacking sustained long-term use [17, 24, 45]. While most 
users of QS applications start with an inherent motivation for 
self-monitoring, their engagement tends to decrease over 
time and the applications are subsequently abandoned. User 
motivation can be positively affected with user-driven 
insights [4], but collecting sufficient amount of data to 

generate such insights can introduce a reliance on manual 
data collection [3]. Choe et al. [8] recently highlighted the 
frequent requirement of self-reports in self-monitoring 
applications. Fritz et al. [15] report that the higher the effort 
to use an application, the shorter the lifetime of the 
application. As QS relies on continuous tracking [42], the 
issues presented here are core challenges within this 
application space. More critically, applications’ 
abandonment often leads to the users returning to their old 
habits in the end [24]. 

Bentley et al. [3] use Android notifications to remind users 
to log data and increase the quantity of logged data. Our 
approach extends this work by presenting opportunistically 
displayed on-screen alert dialogs, shown during active 
smartphone use. These dialogs enable the user to log data 
directly, and do not require the user to launch a separate 
application, which is often the case with notification 
reminders. Notifications have some drawbacks as they can 
be presented to user even when the user is not present, and 
can exist on the background. Dialogs and notifications differ 
as notifications do not require immediate interaction from the 
user. The requirement for interaction with a dialog can, 
however, be experienced as interrupting. We attempt to 
mitigate this side-effect by pre-emptively predicting their 
likelihood of interruption. Specifically, we infer user 
interruptibility by reconstructing the in-situ context of the 
user using multiple sensors on their smartphone in real time. 
The field of inferring human interruptibility using sensors is 
widely explored under the umbrella of interruptibility [14]: 
recognising opportune moments to triggering notifications 
[22, 35, 39], effect of interruptions on quality of logged data 
[30], as well as the effect of interruptions on interactions and 
task completion [27].  
The reliance on continuous data logging inherently increases 
users’ compliance effort and may overwhelm them if 
performed over extended periods of time. We propose a 
method to reduce the data logging burden. We base our 
method on the frequency and brief nature of the large 
majority of smartphone usage sessions [11, 41, 46], as well 
as the frequent non-task oriented nature of smartphone usage 
[6, 28, 38]. By transforming these recurrent moments of brief 
smartphone usage (e.g., ‘killing time’ [6]) into data 
contributions for QS applications, the quantity of logged data 
increases while the effort associated with data input is 
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reduced. We analyse different smartphone user usage 
patterns - frequency and duration of use [46, 47], and 
interaction styles [10] - to form groups of users with similar 
traits, improving the prediction accuracy of presenting alert 
dialogs in an uninterrupting fashion.  

We present the findings of a 4-week long study measuring 
alert dialogs’ interruptibility and applicability in a QS 
context. Specifically, we deploy a mobile QS application 
which provides on-screen alert dialogs as an input 
mechanism for data logging. A total of 48 participants used 
our application for life-logging and we measured their 
interactions and attitudes towards the alert dialogs. We 
conduct a post-study survey to gather qualitative feedback. 
We evaluate several machine-learning classifiers’ overall 
performance and power to minimise interruptions. We 
demonstrate the feasibility of how machine learning 
classifiers can decrease the frequency of interrupting 
prompts with the use of on-device sensors that measure the 
surrounding context, and the context of device usage. By 
clustering users into groups, we improved classifiers’ 
accuracy without a required training period. The use of 
frequently occurring input prompts can benefit quantified-
self applications in enabling opportunistic self-reported data 
input, crucial for longitudinal use.  

RELATED  WORK  
The field of interruptibility research aims to determine a 
user’s availability, readiness, and interest in a given content 
element [14]. Social and behavioural cues allow humans to 
assess a person’s level of interruptibility [2, 19]. In 2005, 
Fogarty et al. [14] found that relatively simple external 
sensors can be used to successfully construct a model on a 
person’s interruptibility. However, these sensors must be 
installed in the environment of the user pre-emptively (e.g., 
to detect if a conversation is taking place). 
Untimely interruptions affect the user in various forms, e.g. 
increased cognitive and information overload [34], delayed 
task completion [27], or reduced quality of logged 
information [30]. Okoshi et al. [34] showcase two methods 
to successfully address the problem of disruptive 
interruptions: 1) rescheduling interruptions to arrive at 
another time, and 2) mitigating the number or frequency of 
such interruptions. Successful timing of interruptions has a 
positive effect on both time management and task efficiency 
[22]. 
Using machine learning to detect interruptibility has proven 
to be a successful method in the past. Interruptibility has been 
assessed e.g., through analysing both mobile phone sensor 
data (e.g., device posture [39], acceleration sensor [20]), 
wearable devices with embedded sensors [25], and high-
level data such as application usage patterns or location data 
[35, 38, 39]. From select features, predictions can be made 
regarding the user’s interruptibility, e.g., using activity 
breakpoints [33], or rules [29] to decide when and what kind 
of push notifications to present to the user. A variety of 
machine learning classifiers exist to create a general users’ 

interruptibility model: a) trees, such as Random Forests [5] 
or C4.5; b) Bayesian classifiers, such as Naïve Bayes; or c) 
Support Vector Machines (SVM), such as LibSVM. For 
these models, researchers select similar classifier features, 
e.g., Poppinga et al. [39] explored the correlation between 
different smartphone sensors and user interruptibility, where 
time of day and screen coverage are good predictors. Pielot 
[36] analysed the availability of mobile phone users to accept 
incoming calls using a variety of contextual data (e.g., 
physical activity, screen status, day of the week) in addition 
to similar hardware sensors. 
Users have distinguishable traits of device usage in terms of 
session frequencies and durations [46, 47], application 
selection [48, 49], and interactions [10]. Higher-level 
contextual features are able to construct the user’s personal 
preferences in detail. Pielot et al. [37] model the user’s 
attentiveness to messages from instant messaging 
applications using past behavioural usage data from these 
applications. When analysing the user’s level of boredom 
[38], additional measures are analysed to obtain a higher 
degree of user context: audio jack state, airplane mode status, 
network activity, screen orientation, and current foreground 
application. On the other hand, recent work has put more 
focus on modelling user groups to achieve higher accuracies. 
Zhao et al. [49] and Welke et al. [48] analysed application 
usage and inferred several distinct user types with 
identifiable characteristics. 
Previous work has shown the disruptive nature of 
smartphone information push methods, such as notifications 
[40]. The distractive nature is relevant for those applications 
or services that aim to use push methods to collect user data 
- for example applications in the area of QS or experience 
sampling. Mehrotra et al. [30, p.1] highlight this challenging 
balance for ESM studies: “obtaining high quality data with 
ESM is challenging, as users may fail to respond honestly, 
or may even ignore the questionnaire prompts if they 
perceive the study as too burdensome”. To address the issue 
of burdensome notifications, researchers have explored 
various potential solutions. Context inference is used to 
assess the user’s interruptibility in both the current and future 
contexts to decide the best time for interruption in terms of 
quality of the content of the response [30]. Hsieh et al. [21] 
display feedback to participants following an ESM 
questionnaire to make the submission of data more 
personally relevant. Leiva et al. [27] explore preventive 
methods, such as preparing the user to leave the current task 
before the interruption, and ways to guide the user back to 
the task by e.g. replaying the UI interactions prior to 
interruption. 
Quoting Okoshi et al. [34, p.2]: “Rather than forcing users 
to manually check whether new information is available, 
notifications instead push new information to users, resulting 
in faster and increased awareness.” The authors state that 
‘interruptive overload’ can either be targeted through a) 
scheduling (deferring) notifications, or b) mitigation of the 



amount of notifications. As an end result, the Attelia 
middleware for notification management [34], reduced the 
cognitive load of the arriving notifications by 46%, and 
increased the response times (i.e., users were quicker to 
interact with the notification) by 13%. Here, we aim to use 
machine learning to detect opportune moments for 
quantified-self data input (as alert dialogs), reducing the 
burden of data input requests and increase the response 
times.  
OPPORTUNE  INTERRUPTION  USING  ALERT  DIALOGS  
In an attempt to solve the issue of users being burdened by 
the requirement of continuous logging [3, 15, 42], we argue 
that by inferring situations in which the user is not actively 
performing a task, opportune moments for data contributions 
can be identified. Brown et al.’s [6] large scale study of 
mobile device use recognised three use types, where the user 
is not actively performing a task: 

•  Occasioning use is initiated by the device (e.g. an arriving 
notification from a messaging application) and creates a 
timeframe where the user can naturally attend to the device. 

•  Filling time enables otherwise ‘dead time’ to be put into 
use (e.g., enjoying a video game or browsing social media 
via the smartphone). 

•  Micro-breaks, similar to micro-usage of application use 
[11], are brief sessions of device usage where the user 
shortly interrupts his main tasks or activity. 

For all of these usage types, users do not necessarily have a 
clear task during the usage session - it is therefore less likely 
that the user experiences interruption when presented with an 
input prompt. Van Berkel et al. [46] analyse smartphone 
usage sessions based on sensor data tracked from 
participants’ devices, and categorise usage sessions into 
continuing and new sessions, and these sessions indicate 
either chosen or forced breaks in smartphone use. By 
identifying otherwise unproductive usage sessions with in-
situ context of the smartphone, we aim to partially transform 
these sessions into self-report data contributions (i.e., 
effective quantified-self data). 

One must keep the required interaction with a prompt short 
[43, 44]. Thus, a method needs to be developed that is a) 
quick to interact with, and b) when necessary, easy to 
dismiss. Approaches by previous work that leverage brief 
interactions are Slide to X [43] and Twitch crowdsourcing 
[44], both of which utilise the smartphone unlocking event 
to collect data. Our chosen interaction modality is an alert 
dialog - used predominantly on desktop environments and 
web browsers, but sparingly on smaller screens. When used 
for the presentation of information, alert dialogs are 
habitually ignored [7] and also found to be disruptive [31]. 
Akhawe et al. [1] performed a large-scale assessment of 
browser warning dialogs and conclude that the design of the 
dialog window has a tremendous impact on both the user 
experience and user’s responsiveness to the dialog. 

Two common issues with mobile information presentation 
methods are cognitive overload [27, 40] and interruption of 
the user’s main task. We believe that, if presented and timed 
carefully, an alert dialog can minimise both issues. Alert 
dialogs are occasionally used in tandem with the Experience 
Sampling Method [26], and the response rates when used in 
this way are generally quite high. For example, Van Berkel 
et al. [46] report 83.78% response rate and average response 
time of less than 3 seconds. The interruptive nature of push 
notifications is also diminished when the source of the 
interruption is deemed as beneficial to the user [40]. We 
argue that this is also the case for QS applications, and the 
interruptive nature of prompts originating from these 
applications is reduced. 

Our hypothesis is that, by leveraging naturally appearing 
periods of smartphone use where the user is not actively 
performing a task (i.e. aimlessly juggling applications while 
bored [6, 28]), we can transform such usage sessions into 
data contributions. This can increase the quantity and quality 
of the data gathered by QS applications and potentially 
motivate users to continue self-monitoring, if the user’s 
interruptibility can be predicted before deciding whether or 
not to present the input prompts. Alert dialogs can potentially 
fill these conditions based on their inherent properties, 
described in Table 1. 

Predicting  Interruption  In-Situ  
To present alert dialogs at appropriate times (R2), we must 
be able to predict whether an alert dialog would be 
considered interrupting in the current context. Context is 
described by properties such as physical elements of the 
surrounding environment [9]. When considering a 
smartphone, context also includes the internal measured 
through the device, e.g., the chosen application or battery 
status. Based on the understanding of mobile context, and the 
contextual information logged by previous work [35-39], we 
capture those contextual factors which have been shown to 
impact the user’s response to interruptions – factors related 
to usage session, battery, application use, network status, 
physical activity, and time of the day. An important element 
of alert dialogs is the requirement for interaction, and as the 
alert dialog is presented on top of any other interface 
elements, it shifts the user’s focus from a previous task. This 
can result in high probability of interruption. 

 Description 

   
  R

eq
ui
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m
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ts

 R1 Alert dialogs can be interacted with very 
briefly. 

R2 Alert dialogs can be presented to the user at 
appropriate times. 

R3 Alert dialogs are easy to remove. 
R4 Alert dialogs can be quickly generated 

(users prefer no loading screens [16, 32]). 
Table 1. Conditional requirements for effortless self-reports. 



Due to the brief interaction times associated with alert 
dialogs, we assume that the context of the event does not 
change during the interaction, according to conditions R1 
(brief interactions) and R3 (quick dismissal). In our 
application, user can interact with the alert dialog by 
accepting or dismissing the dialog, and by either contributing 
data or opting not to contribute. The response interaction 
label is logged with the in-situ context. We then proceed to 
analyse the dataset in terms of whether the context of an 
instance could predict the interactions with the dialog. We 
argue that the cost of unwanted interruptions is higher to the 
user than the cost of potentially missed data contributions. 
Thus, our aim is to minimise the number of events where a 
dialog was generated but ultimately experienced as 
unwanted. 
LIFETRACKER  APPLICATION  
Based on our four requirements (Table 1), we developed a 
QS application called LifeTracker to collect data using alert 
dialogs as the go-to method, and to collect user interactions 
with the alert dialogs. LifeTracker logs self-reported data, 
and sensor data logged on the background using the AWARE 
framework [12, 13] to collect the in-situ context of each 
presented dialog and securely synchronise the data to a 
remote server. To infer the context, we collect the sensor data 
motivated by previous work, data related to the usage 
session, and data related to the interactions with the 
LifeTracker application. We choose not to gather privacy 
sensitive information, such as application use or location 
data. Summary of tracked information is listed in Table 2. 

The application has three different logging schemas (i.e., set 
of tracked variables) custom-designed for different types of 
self-monitoring needs: mood, physical exercise, and flu-like 
symptoms (Figure 1 top left). Each schema has multiple  

Variable Description 
Data contribution Data logged in the current usage session 

Dialog delay Delay (s) of dialog generation since device 
unlock 

Session duration Duration (s) of the usage session 
Call Call during the current usage session 

No. of sessions Number of usage sessions in the last five 
minutes  

Last session Time (s) since the last usage session 
Session type New or continuing session, using a 45 second 

threshold as described in [46] 
Last interaction Time (s) since last interaction with the 

LifeTracker application 
Last contribution Time (s) since last data contribution 
Wi-Fi availability Availability of Wi-Fi connection 

Internet availability Availability of internet connectivity 
Network type Cellular network connection type 
Battery level Battery level (%) 

Battery charging Charging state of the smartphone 
Proximity Smartphone screen covered or uncovered 

Physical activity Physical activity of the user  
(Google Activity Recognition API) 

Hour Hour of the day 
Day Day of the week 

Table 2. Contextual variables collected by the LifeTracker 
application. 

  

  
Figure 1. Views from LifeTracker application. Top: Schema 

selector (top left) and alert dialog (top right). Bottom: 
Application’s main interface. 

variables that can be logged – not mandatory – once per hour 
or once per day. For example, the exercise schema allows 
participants to log their number of stretching sessions (daily) 
as well as their experienced level of dehydration (hourly). 
The data is captured using the alert dialogs (Figure 1 top 
right), or by explicitly launching the application (Figure 1 
bottom). 

In addition to collecting data, the LifeTracker application 
also enables the user to view historical data using 
visualisations of weekly, daily, and hourly granularity. This 
feedback, in combination with the choice of a logging 
schema, ensures the inherent interest to interact with the 
application. This ensures the study does not simply collect 
‘clicks’ – the data captured is also useful to the user. This 
becomes evident later as we show that users frequently 
interact with the application during the experiment. 



User can interact with the alert dialog in three ways: 1) 
dismiss the dialog (left-most option in Figure 1 top right), 2) 
accept the dialog (right-most option), or 3) launch the 
LifeTracker application (second from right). The choice of 
interaction (dismiss, accept, or application launch) is 
separate from the data contributions, so it is possible for the 
user to e.g. contribute data, but simultaneously specify that 
the dialog was experienced as interrupting (by clicking 
dismiss) or choose not to contribute anything, but accept the 
dialog nonetheless. This allows us to collect context-rich 
data on participant interaction with the dialogs. It should also 
be noted that all interaction choices immediately remove the 
dialog from the view. 
We designed the alert dialogs for brief interactions. Each 
variable requires minimal touch interactions. The variables 
are logged by three input modalities: three-tier scales, 
numeric ranges, or multiple choice - which can require more 
than one interaction. The application actively monitors the 
screen events of the smartphone. An alert dialog is only 
generated if the user is actively using the smartphone (screen 
is in unlocked state) and dialogs are at least five minutes 
apart. No alert dialogs are shown if a phone call is taking 
place and dialogs are automatically discarded after 60 
seconds if left unattended. Upon unlocking the screen or after 
five minutes of continuous use, there is a probability for the 
application to generate an alert dialog. The probability of an 
alert dialog being presented starts at 50% for all participants. 
Depending on the user’s interaction with the dialog, this 
chance will be adjusted for the next dialog presentation (+5% 
upon accept, -5% upon dismissing the dialog). This probably 
has a minimum of 5% and a maximum of 95%. This 
guarantees a lower burden on users who habitually select the 
dismiss option. After an alert dialog is removed, the 
combination of the collected context parameters (Table 2), 
and label (accept, dismiss, or application launch) of the 
response are stored. 

Daily variables are only prompted after 6pm, as it makes 
little sense to ask a user to report incomplete information. 
More dialogs are generated later in the day (after 6pm) than 
during day-time (before 6pm), as users interact with their 
devices frequently and can quickly log all necessary prompts 
during each day-time hour. This is not necessarily the case 
after 6 pm, when the application requires significantly more 
information, e.g., the amount of daily exercise or calorie 
intake. 
EXPERIMENTAL  SETUP  
We recruited 48 participants (36 males, 12 females, aged 21- 
53 years old, M = 28.04, SD = 6.71) using mailing lists at our 
University on a first-come first-served basis. Each 
participant was required to own and use a mobile phone with 
Android 5.0 (Lollipop) or newer. The participants had 
varying academic backgrounds, ranging from Humanities 
and Law to Engineering and Natural Sciences. A total 
number of 16 participants had previously used a QS 
application. Previous usage of QS applications was not 

described as a requirement for the study. Understandably, the 
participant group is not a representation of general 
population, as the group consists mostly of young adults and 
university level students. However, as we show later in our 
results, the participant group is more diverse than initially 
thought, and they can provide useful insights to our research 
contributions. As the application could be considered as 
being disruptive to the user’s everyday device usage, we 
compensated each user with 3 Euros for each day of 
participation. 

We invite each participant to a study intake session in our 
lab. Here, we briefly explained the application’s 
functionality, and mitigated users’ privacy and security 
concerns: the data is anonymised, transferred and stored 
securely in a remote server through AWARE’s enforced data 
privacy and security protocols (e.g., encryption certificates, 
compression, and pseudonymous identifiers). Participants 
read and signed a consent form and we clarified any pending 
questions they might have. We demonstrated the 
functionality of the application, the different input methods 
(alert dialogs and the application), and how to interact with 
the alert dialogs. 

We instructed them to use the LifeTracker application as 
they saw fit: we made clear they were not required to accept 
the alert dialogs, neither were they required to log all 
requested data (i.e., all parameters of a set of tracked 
variables). We also asked them to fill a short survey with 
demographic information and answer the following set of 
questions: 
•  Q1) “Do you often read the arriving notifications 

immediately?”, on a 4-point scale (Never, Sometimes, 
Usually, Always). 

•  Q2) “What kind of applications (categories) do you use on 
your personal smartphone?”, according to a selection from 
Play Store categories, including the “Other” category, 
which allows the user to be more specific using free text. 

•  Q3) “Would you describe your smartphone use as active 
(frequent short periods of time), passive (only check when 
you are prompted by e.g. a notification), or mixed?” 

•  Q4) “Would you describe yourself as a technology 
enthusiast?”, on a 4-point scale (Definitely not, Not really, 
Somewhat, Definitely). 

After the four-week study period concluded, we invited each 
participant to fill an open-ended post-study survey to gather 
insights on the experienced interruptive nature and their 
experience with the application. We also asked the 
participants to describe “What influenced your decision to 
answer or reject a dialog?” (Q5). 

Our experiment was designed to capture how users interact 
with the presented alert dialogs, rather than how they interact 
with the application itself. While the application offers 
benefits to the user via visualisations and potentially 
increased self-perception, as we did not validate the quality 
of the logged data in this experiment, we opted not to 
investigate our application’s end-user benefits. 



  Dialog accepted 
(non-interrupting) 

Dialog dismissed 
(interrupting) 

Data 
contributed 

A. Non-
interrupting, data 

contributed  
(N = 8,099) 

C. Interrupting,  
data contributed  

(N = 374) 

No data 
contributed 

B. Non-
interrupting, no 
data contributed  

(N = 7,490) 

D. Interrupting,  
no data contributed  

(N = 3,277) 

Table 3. Combinations of class labels based on interaction 
choice and existence of data contribution. 

RESULTS  
Participants interacted with a total of 19287 dialogs (daily 
mean = 13.63, SD = 10.11) and made 17,917 data 
contributions, of which 12,233 (68.3%) originated from the 
alert dialogs. From these 19287 dialogs, 15,434 (80.0%) 
were accepted, 3658 (19.0%) were dismissed, and 195 
(1.0%) resulted in an application launch. A total number of 
8,452 (43.9%) dialogs resulted in data contributions and an 
average of 10.25 daily contributions were made via dialogs, 
verified by a t-test (t(47) = 62.807, p < .05). We aggregate 
395,344 screen events from the participants’ smartphones 
into 82,332 (daily mean = 61.25, SD = 51.57) usage sessions 
- the period between screen becoming unlocked and either 
turning off or returning to locked state - with a mean duration 
of 4 minutes and 16 seconds. Based on the difference 
between the high dialog acceptance ratio (80.0%, N = 15434) 
and the number of data contributions from dialogs (N = 
12,233), we observe that not all accepted dialogs resulted in 
data contributions. 

We therefore created a separate classification scheme for our 
interruptibility analysis. We create a matrix of class labels in 
which we aggregated both the action (user contributed data 
or opted to not contribute) and interaction with the dialog 
(dialog accepted or dismissed), as shown in Table 3. Due to 
technical malfunctioning, 47 dialogs did not have a 
corresponding usage session. As some participants 
habitually accepted all dialogs, either mistakenly or to 
remove the dialog as fast as possible, this broader 
classification offers a more detailed understanding of the 
user’s willingness to contribute data through the dialog.  

This classification labels dialogs as ‘interrupting’ based on 
the user interaction (accept or dismiss), and on the actual 
contribution of data. For example, in class B the user selects 
the accept interaction (indicating it was non-interrupting) to 
hide the dialog but did not contribute any data from the 
dialog. Whether this class was considered as interrupting or 
not, and in what sense – did the user feel the data contribution 
cumbersome or was the dialog generated in an inopportune 
time? - does not have a clear generic answer. In class C the 
user contributed data, but defined the dialog as interrupting 
by hiding the dialog with the “Do not bother me” button. 
Class A and D provide the clearest desired dialogue 
interaction, dialogs that were accepted and data was 
contributed should always be shown (A), or dialogs that were 
always dismissed with no contributed should be always 
deferred (D). For classes B and C this decision is more 
ambiguous. In our analysis, we do not specify which action 
should be taken, but merely report whether each class is 
accurately predicted. An argument could be made for 
combining some of the classes (such as C and D as 
‘interrupting’), but we want to keep the different 
classification so that separate actions (e.g. defer, hide, show, 
and other possibilities) can be mapped separately to each 
class. 

We begin by benchmarking a collection of machine learning 
classifiers and use the whole data set to build a general 
model, per classifier, using Weka [18]. The features are 
described in Table 2 and the class labels are described in 
Table 3. In Table 4 we highlight the best performing 
classifier, Random Forest, which we use in our analysis 
hereafter. Random Forest uses an internal unbiased 
validation measure called out-of-bag (OOB) accuracy [5], 
which removes the need for cross-validation. We use this 
out-of-bag accuracy as a way to measure and compare 
classifier accuracies. Random Forest functions by building N 
classifiers with M (max = 15) features each and classifies 
based on a voting mechanism from all N classifiers. To 
optimise the Random Forest size N (number of trees) and the 
number of features M used for each tree, we ran ten passes 
of the classifier for M = [5:10] and N = {250, 500, ..., 2000} 
and select N = 1500 and M = 5 as the optimal parameters. 
 
 
 

Figure 2. Measurement of machine learning accuracy using Out-of-bag error rates for different evaluation approaches and different 
classes (Table 3). 



Classifier Type Classifier Name Accuracy ROC 
Bayesian NaiveBayes 39.82% 0.7 
Bayesian BayesNet 72.58% 0.783 

Tree J48 74.29% 0.690 
Tree RF 77.29% 0.830 
Rules DT 68.98% 0.717 
Meta Bagging 73.37% 0.770 
Meta RandomSubSpace 75.43% 0.811 
Lazy LWL 51.76% 0.771 

Functions LibSVM 43.09% 0.510 
Functions SMO 61.60% 0.620 
Table 4. Benchmarked machine learning classifiers. 

As our dialog acceptance ratio was high (80.0%), we first 
analysed the distribution of the four classes in our dataset and 
observed that overfitting still exists for the A (42.0%) and B 
classes (38.9%, 81.9% combined). As Random Forests are 
shown to perform poorly for a biased dataset, we mitigate 
this by downsampling all overfitted classes from hereafter 
using random downsampling - half of all samples above the 
mean (of all four classes) are discarded at random. Due to the 
randomisation of discarded samples, we perform multiple 
passes of tests when necessary to minimise the bias due to 
any non-removed samples being overrepresented in the 
training data. 

Predicting  User  Interactions  
As our study setting aims to understand individual users, we 
do not attempt to simply generalise across our entire dataset. 
Instead, we take two separate approaches to classify user 
actions to understand how the classifier performs for a 
previously unknown user in predicting both whether the user 
would be interrupted by the dialog, and whether the user 
would be willing to contribute data.  

We use two extremities as relative benchmarks. First, we 
trained and evaluated a general model with 20% of the data 
removed and used as testing data (to represent previously 
unknown interaction patterns), and iterated 20 times. Second, 
we evaluated a classifier for each user separately, built solely 
on their own data, and iterated 5 times per user. In this first 
approach, we leverage the leave-one-out method by 
extracting and using each user’s own data as test data, and 
train the model with the user’s own data excluded. This gives 
us insight about each separate user’s fit into a more general 
model, without biasing the training data with instances of the 
user’s own tracked data. This also offers us an assessment of 
how well a general classifier performs for a previously 
unknown user. 

In our second approach, we experimented if a middle ground 
can exist between the two extremities of general and user 
models. The general model assumes we can use all existing 
data as training data for all (new) users, while the user model 
assumes that each (new) user first needs to collect personal  

Classifying 
method 

 
Description of use 

General 
model 

Classifier built from all available training 
data. 

User model Classifier built from each user’s personal 
data. 

Leave-one-
out 

Each user is extracted from the dataset, and 
used as test data while the remaining dataset 
is used as training data. 

User 
clustering  

Similar users are assigned into clusters, and 
leave-one-out is applied to each user in each 
cluster, with the remaining cluster data as 
training data. 

Table 5. Different classifying methods applied to our dataset. 

training data. We leverage the concept of user types with 
identifiable traits and generated user clusters based on our 
pre-study questionnaire, combined with device usage 
patterns (hours of active smartphone usage). Each cluster 
contains users who share similar pre-determined traits - e.g., 
inquired upon application installation (Q1-Q4, p.5) - and 
information regarding their device use (e.g., “Please specify 
during which period of the day you are most actively using 
your smartphone”). We create k = {4,5,6,7,8} different 
clusters of users and use the leave-one-out mechanism for 
each of the users within these clusters (Table 5).Since we are 
using a separate testing set for each of our cases, we report 
both the internal out-of-bag accuracy for the training data 
(agreement within the users represented by the training data), 
as well as the out-of-bag accuracy of the test data (how well 
the test data, representing a previously unknown user, fits 
into the training data). We first perform the classification for 
general and user models. The internal mean out-of-bag 
accuracy is 79.0% (SD = 0.86%) for general model, and 
80.4% (SD = 7.91) for the user models. The test out-of-bag 
accuracy is 72.6% (SD = 0.36%) for general and 79.1% (SD 
= 16.06%) for user. This showcases how the classifiers are 
in high internal agreement for both types, but personalised 
user models react more accurately to the testing data. 

Next, we evaluate our first approach, the leave-one-out 
method. The out-of-bag accuracy is similar to the general 
model (M = 78.7%, SD = 0.27%, 48 trials). This is expected, 
as the training data is similar in both cases. However, the test 
out-of-bag accuracy is considerably lower (M = 68.1%, SD 
= 12.7%). This highlights the problem of fitting previously 
unknown users to a general model, and raises the need for a 
solution that 1) can be considered accurate, and 2) does not 
require the collection of training data before being useful. 

Our second approach aims to mitigate these issues by 
constructing user profiles. We utilise demographic 
information (age, sex), the pre-study survey (Q1-Q4, p.5), 
and each user’s device usage patterns (usage frequency 
during different hours of day) to form user groups with a total 



of 40 dimensions, using the k means clustering algorithm. 
The choice of clustering dimensions was purposely selected 
outside of machine learning features to reduce the bias of 
clustering choices on the actual classifier. According to these 
dimensions, from the best performing configuration (k = 7) 
we recognise identifiable characteristics of similarly acting 
groups, that share very similar traits to groups in [49], e.g., 
users who frequently use their devices during night, or users 
who leverage smartphone capabilities in their work. Cluster 
3 consists of users (N = 9) with very balanced characteristics, 
without any clear, extreme, or distinguishable extremities. 
Users in clusters 6 and 7 also share no clear distinguishable 
traits, and the clusters consist of less than five users and are 
thus discarded from now on. These users with no clear 
characteristics contribute 33% of all the users in our study 
setting. These characteristics could still be identified 
programmatically using black box methodology – i.e., by 
creating clusters without clearly distinguishable 
characteristics of the clusters. Following user groups can be 
identified with distinguishable characteristics: 

Cluster 1: Casual Users (10 users): Users in this group 
report the most passive device usage style, low tech 
enthusiasm, and slowest response rate to notifications. Their 
device use is more frequent during evening (8-10pm) than 
any other group. Also, this group has the highest (.50 > .25 
for all participants) female ratio. 

Cluster 2: Social Chatterers (7): The youngest age group 
(M = 20.85 < 28.04 for all, SD = .38), and all users are male. 
Users report frequent usage of communication apps, but do 
not use many other applications. Smartphone usage is 
balanced over the duration of the day (9am to 8pm), users 
quickly respond to notifications, and are likely to consider 
themselves tech enthusiasts.  

Cluster 4: Night Owls (7): Most likely to use their 
smartphones between 10pm and 8am. This group likely 
consists of people with families abroad in different time 
zones. Users in this group are likely to use communication 
applications and otherwise displays a more mixed usage 
style, with low versatility in application usage. 

Cluster 5: Work On-the-go (8): These users report an 
active usage style of their smartphones, respond to 
interruptions quickly, and report using e.g. finance 
applications frequently. Users in this group also have a daily 
rhythm that does not involve smartphone usage after 10pm. 
Demographically, this group is mostly male (.75 > .25 for all 
participants) and is older, on average, than the other groups 
(M = 35.6, SD = 2.69). 

The leave-one-out method was then applied to each cluster 
and the results are visualised in Figure 3 along with the test 
results of previous methods (general model, user model, and 
the leave-one-out). The clustering methods average between 
80.6% and 81.9% (SD = 2.8% to 3.9%) for out-of-bag 
accuracy and between 62.7% and 65.3% (SD = 13.0% to 
16.5%) for test out-of-bag accuracy. The primary contributor 

Figure 3. Random Forest accuracy for different machine 
learning evaluation approaches, for both the test set and the 

training set. 

to reduced accuracy is likely the reduced amount of overall 
data (most clusters have between 8 and 15 users, which 
correlates to roughly 70-85% reduction in training data) for 
the classifier when using the clustering approach. The 
increased internal validation within the clusters is visible, as 
a t-test on cluster configuration k=7 shows significantly (p < 
.05, t = 3.20, df = 151.35,) higher mean accuracy (81.9%, SD 
= 2.8%) when compared to the user models (80.4%, SD = 
7.9%). The mean is higher for all cluster configurations, but 
the results are not significant for other k values. Our main 
finding is that within all these cluster configurations, the 
groups of users selected using external factors performed as 
well as or better than the highly personalised user models.  

Preventing  Unwanted  Interruptions  
As our class labels indicate both user’s willingness to 
contribute data and their preference of interacting with an 
alert dialog, we are also able to infer the likelihood of a 
classifier preventing an unwanted dialog from being 
generated. In addition to the overall accuracies of the 
classifiers, the error rates within different classes are also 
provided by the Random Forest classifier. The results for the 
same groups are visualised in Figure 2. All the approaches 
are accurate in predicting both the classes where users 
selected the accept interaction (classes A and B) (M = 14.9%, 
SD = 9.1% for A; M = 23.0%, SD = 9.6% for B), and manage 
to reduce 26.2% (SD = 8.8%, user model excluded) of the 
unwanted cases (D class indicating no data was contributed 
and the user dismissed the dialog). The user models are 
increasingly less likely (M = 62.0%, SD = 14.8%) to 
accurately predict the D class, which is likely due to several 



users having the A and B classes overrepresented in their 
datasets (accepting all or a majority of presented dialogs). 
The C class is problematic to predict accurately, but also 
vastly underrepresented in the entire dataset (N = 374, 1.9%), 
and unlikely to reduce the overall accuracy of any approach. 
Similar to the overall accuracy, the user clusters are in higher 
agreement for the D class than other approaches (M = 24.5% 
< 26.2%, p < .05, t = 8.68, df = 180.33 after removing 
outliers) according to a t-test, which can also be considered 
the most important class for preventing unwanted 
interruptions. 

Understanding  Context  
To further understand how and why our users interact with 
the dialogs in specific ways, we use feature extraction to gain 
insights on each factor. MDA (Mean Decrease Accuracy) 
shows the impact of each individual feature on the accuracy 
of the classifier if the feature is removed, and MDI (Mean 
Decrease Gini) is used as the impurity function. From the 
features of the k=7 cluster’s classifier, we can also identify 
characteristics of the individual clusters that differ from the 
general model according to both tests (Mean Decrease 
Accuracy and Mean Decrease Impurity). We report 
alterations from the general model where both tests are in 
agreement and the features were ranked in the top half of the 
features. 
Overall, the classifiers that used user clustering understood 
changes in physical activity and proximity in more detail, 
and individual clusters put weight on features such as 
network type and hour (“Casual Users”, Cluster 1), Wi-Fi 
and internet availability (“Night Owls”, Cluster 2), and 
session duration (“Work On-the-go”, Cluster 5). Also, while 
the general model used the dialog delay as the most 
important feature, four out of five clusters found dialog delay 
to be less impactful. The same applies for session type (new 
or continuing session). The full averaged rankings for the 
Cluster (k = 7) and the general model are visualised in Figure 
4.  

In our post-study survey, we gathered insights from the 
participants regarding their experiences with the LifeTracker 
application. Q5 was an open-ended question, so we 
categorised the main reasons (one or more) for both 
accepting or dismissing a dialog. Ten answers were 
discarded from the categorisation due to low quality of the 
answer or the lack of proper focus. In eighteen (54.5%) 
answers the choice of interaction was due to a more 
important priority task being performed on the smartphone 
(P36: “Most of the occasions when I rejected a popup were 
such that another application needed my concentration at 
that exact moment.”). One participant reported the physical 
activity (P12: “I would reject the dialog if it came during 
work or exercise”), four reported on the time of the day, three 
on the surrounding physical context, and two due to bad 
mood.  

The majority of responses only listed reasons for dismissing 
a dialog. Three responses listed reasons specifically for 
accepting a dialog, two of these reported the brief 
interactions with the dialogs as reasons for accepting it (P17: 
“If the question was just a button to select one option I mostly 
answered them because it was nearly as quick as rejecting a 
dialog.”) and one participant (P16) lack of anything better to 
do. The responses in the ‘priority task’ category can also be 
perceived as extensions of “lack of anything better to do”. 
Some reasons correspond to the characteristics of the dialogs 
(brief interactions), while some correspond to the features 
used in the machine learning classifiers (e.g., hour, physical 
activity, and lack of anything better to do are reflected in 
session type and duration). 

DISCUSSION  
We set out to study the interruptive nature of an input method 
designed to leverage user’s spare time and reduce the burden 
required to make data contributions. These elements are key 
when motivating long term usage of quantified-self 
applications. Understanding of human interruptibility is 
crucial when using potentially disrupting data input methods. 

Figure 4. Feature rankings for MDA (Mean Decrease Accuracy) and MDI (Mean Decrease Impurity) for cluster k = 7. 



We present results for an interaction method designed to 
fulfil specific requirements (Table 1) that are sculpted to 
reduce the cognitive load of the input method [27], decrease 
interaction time [43, 44, 46], and increase the quality of 
logged data [30]. We also attempt to understand both 
individual users and generic user types [48, 49] in order to 
enable applications to understand user’s preferences without 
reliance on general models (often incorrectly assuming that 
all users behave similarly) or requiring an extensive training 
period to work correctly. 

Contributing  Data  via  Alert  Dialogs  
Overall, the number of dialogs (13.63, SD = 10.11) presented 
to our participants during each day of the study likely caused 
a burden on their smartphone usage, since the application 
only applied a very simple chance filter on the presentation 
of dialogs. However, it is necessary to prompt a user of a 
quantified-self application numerous times on a daily basis 
to ensure sufficient amount of data contributions, in order to 
generate meaningful insights. Considering the amount of 
general smartphone usage sessions each user participated in 
on a daily basis (M = 61.25, SD = 51.57), participants were 
not constantly interrupted but still frequently prompted. 

Truong et al. [43] report an average of 49.83 daily 
contributions (compared to our 10.25) and [44] report a 
37.4% task completion rate, but no number for daily 
contributions. However, neither approach considered a ‘skip’ 
option so the users were always required to contribute in 
order to unlock their device. Results of the aforementioned 
study state that 44% of the study’s participants felt that a skip 
option would have been necessary [44]. In [44], three of the 
ten participants also report that the forced data input on 
phone unlock significantly decreased the frequency of their 
phone unlocking. The requirement of repeated contribution 
and lack of a bypass method can significantly diminish the 
quality of the data [30], and can cause unnecessary burden to 
the user. The unlock screen interface also prohibits the user 
from using passwords or secret gestures to securely unlock 
his or her device - a limitation neither [30] or [44] addresses. 
Minimising the amount of daily interruptions while 
maximising the amount of data contributions is completed by 
deferring interruptive prompts, and minimising the cognitive 
load of the input method.  

Dialogs and the use of lock screen as an input mechanism 
inherently reduce the cognitive load by design, so the 
remaining problem is to reduce the burden to the user, and 
the number of interruptions. Predicting the interruptive 
nature of an input method should be applied to all prompts, 
and the two methods (self-report within the unlocking 
interface, or prompting the user after unlocking the device) 
can be used in tandem, as long as the user is not 
overburdened and prompts are presented appropriately. 
Previous work has addressed this challenge via either general 
models; use of C4.5 machine learning classifier to predict 
acceptance of notifications attains up to 77% accuracy [39], 
and the InterruptMe library [35] offers up to 70% precision 

and recall. [23] uses decision-theoretic (DT) models to create 
user models that offer an increase in accuracy over a random 
probing mechanism, but at the cost of significantly reduced 
opportunities for self-reports. Additional take-away from our 
results is that the interrupting nature should not be derived 
directly from the interactions - as the ‘non-disrupting’ classes 
(A and B) were overrepresented within the interactions. 
When available, external measurements - like in our case 
looking at the existence of a data contribution from a dialog 
- can be more reliable as users can simply select any available 
interaction to remove a disrupting prompt [7]. Based on 
results in previous work and the accuracy of our benchmark 
general model, a more accurate method is clearly needed, 
that understands user’s preferences. 

Understanding  Personal  Preferences  
To understand in more detail how different machine learning 
classifiers perform for previously unknown users, we 
leverage the leave-one-out cross validation method. Users 
are detached from the dataset one by one, the remaining data 
is used as the training set, and the detached user’s data as a 
testing set when applicable. To our knowledge, this method 
has not been previously used as a method to understand 
users’ personal preferences and users’ fit into general 
models. As hypothesised, the leave-one-out method proves 
less accurate (68.1%) than the general model (72.6%) with 
the testing sets, and signifies how a general model is not 
always applicable to the individuals within a general 
population. This especially applies in situations where 
personal usage traits vastly differ, such as for smartphone 
usage [10, 46-49]. These personal differences were evident 
in our study, even though our participant group was quite 
homogenous by nature, in terms of sociological status, level 
of education, and age.  

We use features (Table 2) that attempt to both understand the 
user’s external context (physical activity, time), and 
smartphone usage (frequency of usage sessions and 
interactions). The appropriateness of the selected features in 
differentiating between users is apparent, as the personalised 
user models are more accurate (M = 80.4%, SD = 7.9%) than 
the general or leave-one-out, even with the reduced available 
training data. In addition, the responses from our final 
questionnaire following the four-week usage period 
correspond to the selected features. Users reported frequently 
dismissing the alert dialogs due to their physical activity, 
time of day, or type of device usage session - factors that 
directly correspond to the features selected for our machine 
learning classifiers and that are previously used as significant 
features [20, 35, 39]. This allows us to conclude that the 
choice of features accurately reflected the user’s interaction 
behaviour. 

However, both the use of general models and personalised 
user models have inherent problems. General models have 
poor fit for individual users with specific usage and behavior 
traits. Falaki et al. [10] report that smartphone users differ by 
at least one or more orders of magnitude in their device usage 



patterns. On the other hand, the use of personalised models 
requires significant amount of collected training data - which 
in turn requires time. We pick up on the recent trend [48, 49] 
of identifying user groups and use this concept to create user 
clusters based on external user reported features (e.g., 
description of smartphone use, usage patterns throughout the 
day). We selected these dimensions for the clusters in order 
to showcase that applications can leverage user provided 
information to form preset configurations for new users of 
which the application or system has no prior information. 
The generated clusters had stronger inner agreement than the 
classifiers constructed from other training datasets (Figure 
3), indicating the validity of this approach. The cluster-based 
classifiers were also most accurate in preventing unwanted 
interruptions (Figure 2) - a key measurement considering the 
interrupting nature of alert dialog as an input mechanism. 

Feature ranking offers a glimpse inside the black box 
implementation of the Random Forest classifier, and we can 
observe how the different identifiable characteristics of 
clusters affect the predictions (Figure 4), e.g. the differences 
in physical activity patterns (MDI ranking in Figure 4) are 
more detailed than in the general model. As for the users 
within clusters, the “Work On-the-go” ranked session 
duration higher than in the general model - this archetype is 
involved in frequent short usage sessions, so interrupting this 
type of user during messaging or an important work-related 
call is likely unwanted. “Night Owls” ranked Wi-Fi and 
internet availability higher, compared to other groups. This 
group prioritises their longer device usage sessions - ones 
where they are less interrupted - to occasions where they 
have proper connectivity. And the “Casual Users” group put 
more weight on hour, indicating that as they use their device 
sparingly throughout the day, they prefer to be interrupted 
when it is most convenient to them (e.g., during the evening 
hours). The effect of these fine-grained pieces of information 
become apparent through the way the classifiers function and 
take different features into consideration for different user 
types. These user clusters can also be generalised to an 
extent, considering extremely similar user clusters were 
generated in [49], consisting of “Night communicators”, 
“Screen checkers”, who are quick to respond to incoming 
prompts, and cluster of “Evening learners”, similar in 
characteristics to our “Casual users”. We do not claim that 
our findings are perfectly applicable to the general 
population. We did not analyse the characteristics of roughly 
third of our users (three clusters) as their usage traits were 
difficult to distinguish sufficiently, or the groups were 
considered too small. However, if the process of matching 
users to user groups is done programmatically, the 
automation process could also efficiently match these types 
of users to predetermined groups. 

Our analysis is, to the best of our knowledge, the first attempt 
to leverage this type of user differentiation, based on a 
mixture of self-reported and sensor logged smartphone usage 
behaviour. The cluster-based approach resulted in the highest 
accuracy (Figure 3), and was most likely to reduce unwanted 

interruptions (Figure 2), and had the highest prediction 
accuracy within the training data set (Figure 3). The 
prediction accuracies also show improvements over previous 
work [35, 39]. These results are encouraging and we argue 
this research can pave the way for intelligent applications 
that can be personalised more effortlessly. Most importantly, 
these applications no longer require extensive learning 
periods or manually applied configurations. By inquiring 
about the usage habits of new users, their requirements for 
the application, and their preferences, it becomes possible to 
match this information with an existing user base. 
Applications are thus able to extract pre-generated group 
models for each new user. 

Limitations  and  Future  Work  
Although our application is not designed to merely collect 
data, we focus our work on the data collection process, and 
do not consider the quality of the logged data or what the 
end-user benefits of using our application were. 
Additionally, while our participant group was homogenous 
in terms of demographics, they showed diversity in how they 
use their smartphones, and our main aim was to validate our 
proposed approach. 

The machine learning models we use were not evaluated in-
the-wild, but our use of leave-one-out method offers us 
insight in how accurately the classifier would react to 
unforeseen events. Our aim is to replicate our approach in a 
longer field study in the future. This would also verify the 
impact of our approach in long-term application use. 

CONCLUSION  
QS applications habitually suffer from abandonment of use 
and often the motivational methods aimed to increase the 
longitude of use suffer from lack of data. We conducted a 
four-week long user study with 48 users and analyse the use 
of potentially intrusive on-screen alert dialogs as self-
reporting mechanisms. We identify five distinct user groups, 
based on features external to their interactions, and showcase 
how the Random Forest classifier can accurately predict user 
interruptibility within these groups.  

Personal applications should not rely on generalised models, 
as differences in smartphone use between users have been 
brought up repeatedly in literature, and also in the results we 
have presented in this work. Different user types are more 
active during different times of day, have different usage 
styles in terms of usage session frequency and duration [46, 
47], prefer different types of applications [48, 49], and 
interact with their devices differently [10]. This leads to the 
inclination to model users either individually, or within 
specified user type groups. Applications can leverage our 
approach to use historical data from their user base as 
training data for new users, by matching characteristics of 
new users to existing user groups. However, users should not 
be overburdened by constantly requiring data contributions, 
especially if multiple applications leverage the same method 
and compete for user’s attention. 
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