
Predicting Interruptibility for Manual Data Collection:
A Cluster-Based User Model

 Aku Visuri1, Niels van Berkel2, Chu Luo2,
Jorge Goncalves2, Denzil Ferreira1, Vassilis Kostakos2

1Center for Ubiquitous Computing, University of Oulu, 2The University of Melbourne
1{first.last}@oulu.fi, 2{n.vanberkel;chul3;jorge.goncalves;vassilis.kostakos}@unimelb.edu.au

ABSTRACT
Previous work suggests that Quantified-Self applications can
retain long-term usage with motivational methods. These
methods often require intermittent attention requests with
manual data input. This may cause unnecessary burden to the
user, leading to annoyance, frustration and possible
application abandonment. We designed a novel method that
uses on-screen alert dialogs to transform recurrent
smartphone usage sessions into moments of data
contributions and evaluate how accurately machine learning
can reduce unintended interruptions. We collected sensor
data from 48 participants during a 4-week long deployment
and analysed how personal device usage can be considered
in scheduling data inputs. We show that up to 81.7% of user
interactions with the alert dialogs can be accurately predicted
using user clusters, and up to 75.5% of unintended
interruptions can be prevented and rescheduled. Our
approach can be leveraged by applications that require self-
reports on a frequent basis and may provide a better
longitudinal QS experience.

Author Keywords
Smartphones; Self-reports; Quantified-self; Interruptibility

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Quantified-Self (QS) applications are often criticised for
lacking sustained long-term use [17, 24, 45]. While most
users of QS applications start with an inherent motivation for
self-monitoring, their engagement tends to decrease over
time and the applications are subsequently abandoned. User
motivation can be positively affected with user-driven
insights [4], but collecting sufficient amount of data to

generate such insights can introduce a reliance on manual
data collection [3]. Choe et al. [8] recently highlighted the
frequent requirement of self-reports in self-monitoring
applications. Fritz et al. [15] report that the higher the effort
to use an application, the shorter the lifetime of the
application. As QS relies on continuous tracking [42], the
issues presented here are core challenges within this
application space. More critically, applications’
abandonment often leads to the users returning to their old
habits in the end [24].

Bentley et al. [3] use Android notifications to remind users
to log data and increase the quantity of logged data. Our
approach extends this work by presenting opportunistically
displayed on-screen alert dialogs, shown during active
smartphone use. These dialogs enable the user to log data
directly, and do not require the user to launch a separate
application, which is often the case with notification
reminders. Notifications have some drawbacks as they can
be presented to user even when the user is not present, and
can exist on the background. Dialogs and notifications differ
as notifications do not require immediate interaction from the
user. The requirement for interaction with a dialog can,
however, be experienced as interrupting. We attempt to
mitigate this side-effect by pre-emptively predicting their
likelihood of interruption. Specifically, we infer user
interruptibility by reconstructing the in-situ context of the
user using multiple sensors on their smartphone in real time.
The field of inferring human interruptibility using sensors is
widely explored under the umbrella of interruptibility [14]:
recognising opportune moments to triggering notifications
[22, 35, 39], effect of interruptions on quality of logged data
[30], as well as the effect of interruptions on interactions and
task completion [27].
The reliance on continuous data logging inherently increases
users’ compliance effort and may overwhelm them if
performed over extended periods of time. We propose a
method to reduce the data logging burden. We base our
method on the frequency and brief nature of the large
majority of smartphone usage sessions [11, 41, 46], as well
as the frequent non-task oriented nature of smartphone usage
[6, 28, 38]. By transforming these recurrent moments of brief
smartphone usage (e.g., ‘killing time’ [6]) into data
contributions for QS applications, the quantity of logged data
increases while the effort associated with data input is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
MobileHCI '17, September 04-07, 2017, Vienna, Austria
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5075-4/17/09…$15.00
http://dx.doi.org/10.1145/3098279.3098532.

reduced. We analyse different smartphone user usage
patterns - frequency and duration of use [46, 47], and
interaction styles [10] - to form groups of users with similar
traits, improving the prediction accuracy of presenting alert
dialogs in an uninterrupting fashion.

We present the findings of a 4-week long study measuring
alert dialogs’ interruptibility and applicability in a QS
context. Specifically, we deploy a mobile QS application
which provides on-screen alert dialogs as an input
mechanism for data logging. A total of 48 participants used
our application for life-logging and we measured their
interactions and attitudes towards the alert dialogs. We
conduct a post-study survey to gather qualitative feedback.
We evaluate several machine-learning classifiers’ overall
performance and power to minimise interruptions. We
demonstrate the feasibility of how machine learning
classifiers can decrease the frequency of interrupting
prompts with the use of on-device sensors that measure the
surrounding context, and the context of device usage. By
clustering users into groups, we improved classifiers’
accuracy without a required training period. The use of
frequently occurring input prompts can benefit quantified-
self applications in enabling opportunistic self-reported data
input, crucial for longitudinal use.

RELATED WORK
The field of interruptibility research aims to determine a
user’s availability, readiness, and interest in a given content
element [14]. Social and behavioural cues allow humans to
assess a person’s level of interruptibility [2, 19]. In 2005,
Fogarty et al. [14] found that relatively simple external
sensors can be used to successfully construct a model on a
person’s interruptibility. However, these sensors must be
installed in the environment of the user pre-emptively (e.g.,
to detect if a conversation is taking place).
Untimely interruptions affect the user in various forms, e.g.
increased cognitive and information overload [34], delayed
task completion [27], or reduced quality of logged
information [30]. Okoshi et al. [34] showcase two methods
to successfully address the problem of disruptive
interruptions: 1) rescheduling interruptions to arrive at
another time, and 2) mitigating the number or frequency of
such interruptions. Successful timing of interruptions has a
positive effect on both time management and task efficiency
[22].
Using machine learning to detect interruptibility has proven
to be a successful method in the past. Interruptibility has been
assessed e.g., through analysing both mobile phone sensor
data (e.g., device posture [39], acceleration sensor [20]),
wearable devices with embedded sensors [25], and high-
level data such as application usage patterns or location data
[35, 38, 39]. From select features, predictions can be made
regarding the user’s interruptibility, e.g., using activity
breakpoints [33], or rules [29] to decide when and what kind
of push notifications to present to the user. A variety of
machine learning classifiers exist to create a general users’

interruptibility model: a) trees, such as Random Forests [5]
or C4.5; b) Bayesian classifiers, such as Naïve Bayes; or c)
Support Vector Machines (SVM), such as LibSVM. For
these models, researchers select similar classifier features,
e.g., Poppinga et al. [39] explored the correlation between
different smartphone sensors and user interruptibility, where
time of day and screen coverage are good predictors. Pielot
[36] analysed the availability of mobile phone users to accept
incoming calls using a variety of contextual data (e.g.,
physical activity, screen status, day of the week) in addition
to similar hardware sensors.
Users have distinguishable traits of device usage in terms of
session frequencies and durations [46, 47], application
selection [48, 49], and interactions [10]. Higher-level
contextual features are able to construct the user’s personal
preferences in detail. Pielot et al. [37] model the user’s
attentiveness to messages from instant messaging
applications using past behavioural usage data from these
applications. When analysing the user’s level of boredom
[38], additional measures are analysed to obtain a higher
degree of user context: audio jack state, airplane mode status,
network activity, screen orientation, and current foreground
application. On the other hand, recent work has put more
focus on modelling user groups to achieve higher accuracies.
Zhao et al. [49] and Welke et al. [48] analysed application
usage and inferred several distinct user types with
identifiable characteristics.
Previous work has shown the disruptive nature of
smartphone information push methods, such as notifications
[40]. The distractive nature is relevant for those applications
or services that aim to use push methods to collect user data
- for example applications in the area of QS or experience
sampling. Mehrotra et al. [30, p.1] highlight this challenging
balance for ESM studies: “obtaining high quality data with
ESM is challenging, as users may fail to respond honestly,
or may even ignore the questionnaire prompts if they
perceive the study as too burdensome”. To address the issue
of burdensome notifications, researchers have explored
various potential solutions. Context inference is used to
assess the user’s interruptibility in both the current and future
contexts to decide the best time for interruption in terms of
quality of the content of the response [30]. Hsieh et al. [21]
display feedback to participants following an ESM
questionnaire to make the submission of data more
personally relevant. Leiva et al. [27] explore preventive
methods, such as preparing the user to leave the current task
before the interruption, and ways to guide the user back to
the task by e.g. replaying the UI interactions prior to
interruption.
Quoting Okoshi et al. [34, p.2]: “Rather than forcing users
to manually check whether new information is available,
notifications instead push new information to users, resulting
in faster and increased awareness.” The authors state that
‘interruptive overload’ can either be targeted through a)
scheduling (deferring) notifications, or b) mitigation of the

amount of notifications. As an end result, the Attelia
middleware for notification management [34], reduced the
cognitive load of the arriving notifications by 46%, and
increased the response times (i.e., users were quicker to
interact with the notification) by 13%. Here, we aim to use
machine learning to detect opportune moments for
quantified-self data input (as alert dialogs), reducing the
burden of data input requests and increase the response
times.
OPPORTUNE INTERRUPTION USING ALERT DIALOGS
In an attempt to solve the issue of users being burdened by
the requirement of continuous logging [3, 15, 42], we argue
that by inferring situations in which the user is not actively
performing a task, opportune moments for data contributions
can be identified. Brown et al.’s [6] large scale study of
mobile device use recognised three use types, where the user
is not actively performing a task:

• Occasioning use is initiated by the device (e.g. an arriving
notification from a messaging application) and creates a
timeframe where the user can naturally attend to the device.

• Filling time enables otherwise ‘dead time’ to be put into
use (e.g., enjoying a video game or browsing social media
via the smartphone).

• Micro-breaks, similar to micro-usage of application use
[11], are brief sessions of device usage where the user
shortly interrupts his main tasks or activity.

For all of these usage types, users do not necessarily have a
clear task during the usage session - it is therefore less likely
that the user experiences interruption when presented with an
input prompt. Van Berkel et al. [46] analyse smartphone
usage sessions based on sensor data tracked from
participants’ devices, and categorise usage sessions into
continuing and new sessions, and these sessions indicate
either chosen or forced breaks in smartphone use. By
identifying otherwise unproductive usage sessions with in-
situ context of the smartphone, we aim to partially transform
these sessions into self-report data contributions (i.e.,
effective quantified-self data).

One must keep the required interaction with a prompt short
[43, 44]. Thus, a method needs to be developed that is a)
quick to interact with, and b) when necessary, easy to
dismiss. Approaches by previous work that leverage brief
interactions are Slide to X [43] and Twitch crowdsourcing
[44], both of which utilise the smartphone unlocking event
to collect data. Our chosen interaction modality is an alert
dialog - used predominantly on desktop environments and
web browsers, but sparingly on smaller screens. When used
for the presentation of information, alert dialogs are
habitually ignored [7] and also found to be disruptive [31].
Akhawe et al. [1] performed a large-scale assessment of
browser warning dialogs and conclude that the design of the
dialog window has a tremendous impact on both the user
experience and user’s responsiveness to the dialog.

Two common issues with mobile information presentation
methods are cognitive overload [27, 40] and interruption of
the user’s main task. We believe that, if presented and timed
carefully, an alert dialog can minimise both issues. Alert
dialogs are occasionally used in tandem with the Experience
Sampling Method [26], and the response rates when used in
this way are generally quite high. For example, Van Berkel
et al. [46] report 83.78% response rate and average response
time of less than 3 seconds. The interruptive nature of push
notifications is also diminished when the source of the
interruption is deemed as beneficial to the user [40]. We
argue that this is also the case for QS applications, and the
interruptive nature of prompts originating from these
applications is reduced.

Our hypothesis is that, by leveraging naturally appearing
periods of smartphone use where the user is not actively
performing a task (i.e. aimlessly juggling applications while
bored [6, 28]), we can transform such usage sessions into
data contributions. This can increase the quantity and quality
of the data gathered by QS applications and potentially
motivate users to continue self-monitoring, if the user’s
interruptibility can be predicted before deciding whether or
not to present the input prompts. Alert dialogs can potentially
fill these conditions based on their inherent properties,
described in Table 1.

Predicting Interruption In-Situ
To present alert dialogs at appropriate times (R2), we must
be able to predict whether an alert dialog would be
considered interrupting in the current context. Context is
described by properties such as physical elements of the
surrounding environment [9]. When considering a
smartphone, context also includes the internal measured
through the device, e.g., the chosen application or battery
status. Based on the understanding of mobile context, and the
contextual information logged by previous work [35-39], we
capture those contextual factors which have been shown to
impact the user’s response to interruptions – factors related
to usage session, battery, application use, network status,
physical activity, and time of the day. An important element
of alert dialogs is the requirement for interaction, and as the
alert dialog is presented on top of any other interface
elements, it shifts the user’s focus from a previous task. This
can result in high probability of interruption.

 Description

 R

eq
ui

re
m

en
ts

 R1 Alert dialogs can be interacted with very
briefly.

R2 Alert dialogs can be presented to the user at
appropriate times.

R3 Alert dialogs are easy to remove.
R4 Alert dialogs can be quickly generated

(users prefer no loading screens [16, 32]).
Table 1. Conditional requirements for effortless self-reports.

Due to the brief interaction times associated with alert
dialogs, we assume that the context of the event does not
change during the interaction, according to conditions R1
(brief interactions) and R3 (quick dismissal). In our
application, user can interact with the alert dialog by
accepting or dismissing the dialog, and by either contributing
data or opting not to contribute. The response interaction
label is logged with the in-situ context. We then proceed to
analyse the dataset in terms of whether the context of an
instance could predict the interactions with the dialog. We
argue that the cost of unwanted interruptions is higher to the
user than the cost of potentially missed data contributions.
Thus, our aim is to minimise the number of events where a
dialog was generated but ultimately experienced as
unwanted.
LIFETRACKER APPLICATION
Based on our four requirements (Table 1), we developed a
QS application called LifeTracker to collect data using alert
dialogs as the go-to method, and to collect user interactions
with the alert dialogs. LifeTracker logs self-reported data,
and sensor data logged on the background using the AWARE
framework [12, 13] to collect the in-situ context of each
presented dialog and securely synchronise the data to a
remote server. To infer the context, we collect the sensor data
motivated by previous work, data related to the usage
session, and data related to the interactions with the
LifeTracker application. We choose not to gather privacy
sensitive information, such as application use or location
data. Summary of tracked information is listed in Table 2.

The application has three different logging schemas (i.e., set
of tracked variables) custom-designed for different types of
self-monitoring needs: mood, physical exercise, and flu-like
symptoms (Figure 1 top left). Each schema has multiple

Variable Description
Data contribution Data logged in the current usage session

Dialog delay Delay (s) of dialog generation since device
unlock

Session duration Duration (s) of the usage session
Call Call during the current usage session

No. of sessions Number of usage sessions in the last five
minutes

Last session Time (s) since the last usage session
Session type New or continuing session, using a 45 second

threshold as described in [46]
Last interaction Time (s) since last interaction with the

LifeTracker application
Last contribution Time (s) since last data contribution
Wi-Fi availability Availability of Wi-Fi connection

Internet availability Availability of internet connectivity
Network type Cellular network connection type
Battery level Battery level (%)

Battery charging Charging state of the smartphone
Proximity Smartphone screen covered or uncovered

Physical activity Physical activity of the user
(Google Activity Recognition API)

Hour Hour of the day
Day Day of the week

Table 2. Contextual variables collected by the LifeTracker
application.

Figure 1. Views from LifeTracker application. Top: Schema

selector (top left) and alert dialog (top right). Bottom:
Application’s main interface.

variables that can be logged – not mandatory – once per hour
or once per day. For example, the exercise schema allows
participants to log their number of stretching sessions (daily)
as well as their experienced level of dehydration (hourly).
The data is captured using the alert dialogs (Figure 1 top
right), or by explicitly launching the application (Figure 1
bottom).

In addition to collecting data, the LifeTracker application
also enables the user to view historical data using
visualisations of weekly, daily, and hourly granularity. This
feedback, in combination with the choice of a logging
schema, ensures the inherent interest to interact with the
application. This ensures the study does not simply collect
‘clicks’ – the data captured is also useful to the user. This
becomes evident later as we show that users frequently
interact with the application during the experiment.

User can interact with the alert dialog in three ways: 1)
dismiss the dialog (left-most option in Figure 1 top right), 2)
accept the dialog (right-most option), or 3) launch the
LifeTracker application (second from right). The choice of
interaction (dismiss, accept, or application launch) is
separate from the data contributions, so it is possible for the
user to e.g. contribute data, but simultaneously specify that
the dialog was experienced as interrupting (by clicking
dismiss) or choose not to contribute anything, but accept the
dialog nonetheless. This allows us to collect context-rich
data on participant interaction with the dialogs. It should also
be noted that all interaction choices immediately remove the
dialog from the view.
We designed the alert dialogs for brief interactions. Each
variable requires minimal touch interactions. The variables
are logged by three input modalities: three-tier scales,
numeric ranges, or multiple choice - which can require more
than one interaction. The application actively monitors the
screen events of the smartphone. An alert dialog is only
generated if the user is actively using the smartphone (screen
is in unlocked state) and dialogs are at least five minutes
apart. No alert dialogs are shown if a phone call is taking
place and dialogs are automatically discarded after 60
seconds if left unattended. Upon unlocking the screen or after
five minutes of continuous use, there is a probability for the
application to generate an alert dialog. The probability of an
alert dialog being presented starts at 50% for all participants.
Depending on the user’s interaction with the dialog, this
chance will be adjusted for the next dialog presentation (+5%
upon accept, -5% upon dismissing the dialog). This probably
has a minimum of 5% and a maximum of 95%. This
guarantees a lower burden on users who habitually select the
dismiss option. After an alert dialog is removed, the
combination of the collected context parameters (Table 2),
and label (accept, dismiss, or application launch) of the
response are stored.

Daily variables are only prompted after 6pm, as it makes
little sense to ask a user to report incomplete information.
More dialogs are generated later in the day (after 6pm) than
during day-time (before 6pm), as users interact with their
devices frequently and can quickly log all necessary prompts
during each day-time hour. This is not necessarily the case
after 6 pm, when the application requires significantly more
information, e.g., the amount of daily exercise or calorie
intake.
EXPERIMENTAL SETUP
We recruited 48 participants (36 males, 12 females, aged 21-
53 years old, M = 28.04, SD = 6.71) using mailing lists at our
University on a first-come first-served basis. Each
participant was required to own and use a mobile phone with
Android 5.0 (Lollipop) or newer. The participants had
varying academic backgrounds, ranging from Humanities
and Law to Engineering and Natural Sciences. A total
number of 16 participants had previously used a QS
application. Previous usage of QS applications was not

described as a requirement for the study. Understandably, the
participant group is not a representation of general
population, as the group consists mostly of young adults and
university level students. However, as we show later in our
results, the participant group is more diverse than initially
thought, and they can provide useful insights to our research
contributions. As the application could be considered as
being disruptive to the user’s everyday device usage, we
compensated each user with 3 Euros for each day of
participation.

We invite each participant to a study intake session in our
lab. Here, we briefly explained the application’s
functionality, and mitigated users’ privacy and security
concerns: the data is anonymised, transferred and stored
securely in a remote server through AWARE’s enforced data
privacy and security protocols (e.g., encryption certificates,
compression, and pseudonymous identifiers). Participants
read and signed a consent form and we clarified any pending
questions they might have. We demonstrated the
functionality of the application, the different input methods
(alert dialogs and the application), and how to interact with
the alert dialogs.

We instructed them to use the LifeTracker application as
they saw fit: we made clear they were not required to accept
the alert dialogs, neither were they required to log all
requested data (i.e., all parameters of a set of tracked
variables). We also asked them to fill a short survey with
demographic information and answer the following set of
questions:
• Q1) “Do you often read the arriving notifications

immediately?”, on a 4-point scale (Never, Sometimes,
Usually, Always).

• Q2) “What kind of applications (categories) do you use on
your personal smartphone?”, according to a selection from
Play Store categories, including the “Other” category,
which allows the user to be more specific using free text.

• Q3) “Would you describe your smartphone use as active
(frequent short periods of time), passive (only check when
you are prompted by e.g. a notification), or mixed?”

• Q4) “Would you describe yourself as a technology
enthusiast?”, on a 4-point scale (Definitely not, Not really,
Somewhat, Definitely).

After the four-week study period concluded, we invited each
participant to fill an open-ended post-study survey to gather
insights on the experienced interruptive nature and their
experience with the application. We also asked the
participants to describe “What influenced your decision to
answer or reject a dialog?” (Q5).

Our experiment was designed to capture how users interact
with the presented alert dialogs, rather than how they interact
with the application itself. While the application offers
benefits to the user via visualisations and potentially
increased self-perception, as we did not validate the quality
of the logged data in this experiment, we opted not to
investigate our application’s end-user benefits.

 Dialog accepted
(non-interrupting)

Dialog dismissed
(interrupting)

Data
contributed

A. Non-
interrupting, data

contributed
(N = 8,099)

C. Interrupting,
data contributed

(N = 374)

No data
contributed

B. Non-
interrupting, no
data contributed

(N = 7,490)

D. Interrupting,
no data contributed

(N = 3,277)

Table 3. Combinations of class labels based on interaction
choice and existence of data contribution.

RESULTS
Participants interacted with a total of 19287 dialogs (daily
mean = 13.63, SD = 10.11) and made 17,917 data
contributions, of which 12,233 (68.3%) originated from the
alert dialogs. From these 19287 dialogs, 15,434 (80.0%)
were accepted, 3658 (19.0%) were dismissed, and 195
(1.0%) resulted in an application launch. A total number of
8,452 (43.9%) dialogs resulted in data contributions and an
average of 10.25 daily contributions were made via dialogs,
verified by a t-test (t(47) = 62.807, p < .05). We aggregate
395,344 screen events from the participants’ smartphones
into 82,332 (daily mean = 61.25, SD = 51.57) usage sessions
- the period between screen becoming unlocked and either
turning off or returning to locked state - with a mean duration
of 4 minutes and 16 seconds. Based on the difference
between the high dialog acceptance ratio (80.0%, N = 15434)
and the number of data contributions from dialogs (N =
12,233), we observe that not all accepted dialogs resulted in
data contributions.

We therefore created a separate classification scheme for our
interruptibility analysis. We create a matrix of class labels in
which we aggregated both the action (user contributed data
or opted to not contribute) and interaction with the dialog
(dialog accepted or dismissed), as shown in Table 3. Due to
technical malfunctioning, 47 dialogs did not have a
corresponding usage session. As some participants
habitually accepted all dialogs, either mistakenly or to
remove the dialog as fast as possible, this broader
classification offers a more detailed understanding of the
user’s willingness to contribute data through the dialog.

This classification labels dialogs as ‘interrupting’ based on
the user interaction (accept or dismiss), and on the actual
contribution of data. For example, in class B the user selects
the accept interaction (indicating it was non-interrupting) to
hide the dialog but did not contribute any data from the
dialog. Whether this class was considered as interrupting or
not, and in what sense – did the user feel the data contribution
cumbersome or was the dialog generated in an inopportune
time? - does not have a clear generic answer. In class C the
user contributed data, but defined the dialog as interrupting
by hiding the dialog with the “Do not bother me” button.
Class A and D provide the clearest desired dialogue
interaction, dialogs that were accepted and data was
contributed should always be shown (A), or dialogs that were
always dismissed with no contributed should be always
deferred (D). For classes B and C this decision is more
ambiguous. In our analysis, we do not specify which action
should be taken, but merely report whether each class is
accurately predicted. An argument could be made for
combining some of the classes (such as C and D as
‘interrupting’), but we want to keep the different
classification so that separate actions (e.g. defer, hide, show,
and other possibilities) can be mapped separately to each
class.

We begin by benchmarking a collection of machine learning
classifiers and use the whole data set to build a general
model, per classifier, using Weka [18]. The features are
described in Table 2 and the class labels are described in
Table 3. In Table 4 we highlight the best performing
classifier, Random Forest, which we use in our analysis
hereafter. Random Forest uses an internal unbiased
validation measure called out-of-bag (OOB) accuracy [5],
which removes the need for cross-validation. We use this
out-of-bag accuracy as a way to measure and compare
classifier accuracies. Random Forest functions by building N
classifiers with M (max = 15) features each and classifies
based on a voting mechanism from all N classifiers. To
optimise the Random Forest size N (number of trees) and the
number of features M used for each tree, we ran ten passes
of the classifier for M = [5:10] and N = {250, 500, ..., 2000}
and select N = 1500 and M = 5 as the optimal parameters.

Figure 2. Measurement of machine learning accuracy using Out-of-bag error rates for different evaluation approaches and different
classes (Table 3).

Classifier Type Classifier Name Accuracy ROC
Bayesian NaiveBayes 39.82% 0.7
Bayesian BayesNet 72.58% 0.783

Tree J48 74.29% 0.690
Tree RF 77.29% 0.830
Rules DT 68.98% 0.717
Meta Bagging 73.37% 0.770
Meta RandomSubSpace 75.43% 0.811
Lazy LWL 51.76% 0.771

Functions LibSVM 43.09% 0.510
Functions SMO 61.60% 0.620
Table 4. Benchmarked machine learning classifiers.

As our dialog acceptance ratio was high (80.0%), we first
analysed the distribution of the four classes in our dataset and
observed that overfitting still exists for the A (42.0%) and B
classes (38.9%, 81.9% combined). As Random Forests are
shown to perform poorly for a biased dataset, we mitigate
this by downsampling all overfitted classes from hereafter
using random downsampling - half of all samples above the
mean (of all four classes) are discarded at random. Due to the
randomisation of discarded samples, we perform multiple
passes of tests when necessary to minimise the bias due to
any non-removed samples being overrepresented in the
training data.

Predicting User Interactions
As our study setting aims to understand individual users, we
do not attempt to simply generalise across our entire dataset.
Instead, we take two separate approaches to classify user
actions to understand how the classifier performs for a
previously unknown user in predicting both whether the user
would be interrupted by the dialog, and whether the user
would be willing to contribute data.

We use two extremities as relative benchmarks. First, we
trained and evaluated a general model with 20% of the data
removed and used as testing data (to represent previously
unknown interaction patterns), and iterated 20 times. Second,
we evaluated a classifier for each user separately, built solely
on their own data, and iterated 5 times per user. In this first
approach, we leverage the leave-one-out method by
extracting and using each user’s own data as test data, and
train the model with the user’s own data excluded. This gives
us insight about each separate user’s fit into a more general
model, without biasing the training data with instances of the
user’s own tracked data. This also offers us an assessment of
how well a general classifier performs for a previously
unknown user.

In our second approach, we experimented if a middle ground
can exist between the two extremities of general and user
models. The general model assumes we can use all existing
data as training data for all (new) users, while the user model
assumes that each (new) user first needs to collect personal

Classifying
method

Description of use

General
model

Classifier built from all available training
data.

User model Classifier built from each user’s personal
data.

Leave-one-
out

Each user is extracted from the dataset, and
used as test data while the remaining dataset
is used as training data.

User
clustering

Similar users are assigned into clusters, and
leave-one-out is applied to each user in each
cluster, with the remaining cluster data as
training data.

Table 5. Different classifying methods applied to our dataset.

training data. We leverage the concept of user types with
identifiable traits and generated user clusters based on our
pre-study questionnaire, combined with device usage
patterns (hours of active smartphone usage). Each cluster
contains users who share similar pre-determined traits - e.g.,
inquired upon application installation (Q1-Q4, p.5) - and
information regarding their device use (e.g., “Please specify
during which period of the day you are most actively using
your smartphone”). We create k = {4,5,6,7,8} different
clusters of users and use the leave-one-out mechanism for
each of the users within these clusters (Table 5).Since we are
using a separate testing set for each of our cases, we report
both the internal out-of-bag accuracy for the training data
(agreement within the users represented by the training data),
as well as the out-of-bag accuracy of the test data (how well
the test data, representing a previously unknown user, fits
into the training data). We first perform the classification for
general and user models. The internal mean out-of-bag
accuracy is 79.0% (SD = 0.86%) for general model, and
80.4% (SD = 7.91) for the user models. The test out-of-bag
accuracy is 72.6% (SD = 0.36%) for general and 79.1% (SD
= 16.06%) for user. This showcases how the classifiers are
in high internal agreement for both types, but personalised
user models react more accurately to the testing data.

Next, we evaluate our first approach, the leave-one-out
method. The out-of-bag accuracy is similar to the general
model (M = 78.7%, SD = 0.27%, 48 trials). This is expected,
as the training data is similar in both cases. However, the test
out-of-bag accuracy is considerably lower (M = 68.1%, SD
= 12.7%). This highlights the problem of fitting previously
unknown users to a general model, and raises the need for a
solution that 1) can be considered accurate, and 2) does not
require the collection of training data before being useful.

Our second approach aims to mitigate these issues by
constructing user profiles. We utilise demographic
information (age, sex), the pre-study survey (Q1-Q4, p.5),
and each user’s device usage patterns (usage frequency
during different hours of day) to form user groups with a total

of 40 dimensions, using the k means clustering algorithm.
The choice of clustering dimensions was purposely selected
outside of machine learning features to reduce the bias of
clustering choices on the actual classifier. According to these
dimensions, from the best performing configuration (k = 7)
we recognise identifiable characteristics of similarly acting
groups, that share very similar traits to groups in [49], e.g.,
users who frequently use their devices during night, or users
who leverage smartphone capabilities in their work. Cluster
3 consists of users (N = 9) with very balanced characteristics,
without any clear, extreme, or distinguishable extremities.
Users in clusters 6 and 7 also share no clear distinguishable
traits, and the clusters consist of less than five users and are
thus discarded from now on. These users with no clear
characteristics contribute 33% of all the users in our study
setting. These characteristics could still be identified
programmatically using black box methodology – i.e., by
creating clusters without clearly distinguishable
characteristics of the clusters. Following user groups can be
identified with distinguishable characteristics:

Cluster 1: Casual Users (10 users): Users in this group
report the most passive device usage style, low tech
enthusiasm, and slowest response rate to notifications. Their
device use is more frequent during evening (8-10pm) than
any other group. Also, this group has the highest (.50 > .25
for all participants) female ratio.

Cluster 2: Social Chatterers (7): The youngest age group
(M = 20.85 < 28.04 for all, SD = .38), and all users are male.
Users report frequent usage of communication apps, but do
not use many other applications. Smartphone usage is
balanced over the duration of the day (9am to 8pm), users
quickly respond to notifications, and are likely to consider
themselves tech enthusiasts.

Cluster 4: Night Owls (7): Most likely to use their
smartphones between 10pm and 8am. This group likely
consists of people with families abroad in different time
zones. Users in this group are likely to use communication
applications and otherwise displays a more mixed usage
style, with low versatility in application usage.

Cluster 5: Work On-the-go (8): These users report an
active usage style of their smartphones, respond to
interruptions quickly, and report using e.g. finance
applications frequently. Users in this group also have a daily
rhythm that does not involve smartphone usage after 10pm.
Demographically, this group is mostly male (.75 > .25 for all
participants) and is older, on average, than the other groups
(M = 35.6, SD = 2.69).

The leave-one-out method was then applied to each cluster
and the results are visualised in Figure 3 along with the test
results of previous methods (general model, user model, and
the leave-one-out). The clustering methods average between
80.6% and 81.9% (SD = 2.8% to 3.9%) for out-of-bag
accuracy and between 62.7% and 65.3% (SD = 13.0% to
16.5%) for test out-of-bag accuracy. The primary contributor

Figure 3. Random Forest accuracy for different machine
learning evaluation approaches, for both the test set and the

training set.

to reduced accuracy is likely the reduced amount of overall
data (most clusters have between 8 and 15 users, which
correlates to roughly 70-85% reduction in training data) for
the classifier when using the clustering approach. The
increased internal validation within the clusters is visible, as
a t-test on cluster configuration k=7 shows significantly (p <
.05, t = 3.20, df = 151.35,) higher mean accuracy (81.9%, SD
= 2.8%) when compared to the user models (80.4%, SD =
7.9%). The mean is higher for all cluster configurations, but
the results are not significant for other k values. Our main
finding is that within all these cluster configurations, the
groups of users selected using external factors performed as
well as or better than the highly personalised user models.

Preventing Unwanted Interruptions
As our class labels indicate both user’s willingness to
contribute data and their preference of interacting with an
alert dialog, we are also able to infer the likelihood of a
classifier preventing an unwanted dialog from being
generated. In addition to the overall accuracies of the
classifiers, the error rates within different classes are also
provided by the Random Forest classifier. The results for the
same groups are visualised in Figure 2. All the approaches
are accurate in predicting both the classes where users
selected the accept interaction (classes A and B) (M = 14.9%,
SD = 9.1% for A; M = 23.0%, SD = 9.6% for B), and manage
to reduce 26.2% (SD = 8.8%, user model excluded) of the
unwanted cases (D class indicating no data was contributed
and the user dismissed the dialog). The user models are
increasingly less likely (M = 62.0%, SD = 14.8%) to
accurately predict the D class, which is likely due to several

users having the A and B classes overrepresented in their
datasets (accepting all or a majority of presented dialogs).
The C class is problematic to predict accurately, but also
vastly underrepresented in the entire dataset (N = 374, 1.9%),
and unlikely to reduce the overall accuracy of any approach.
Similar to the overall accuracy, the user clusters are in higher
agreement for the D class than other approaches (M = 24.5%
< 26.2%, p < .05, t = 8.68, df = 180.33 after removing
outliers) according to a t-test, which can also be considered
the most important class for preventing unwanted
interruptions.

Understanding Context
To further understand how and why our users interact with
the dialogs in specific ways, we use feature extraction to gain
insights on each factor. MDA (Mean Decrease Accuracy)
shows the impact of each individual feature on the accuracy
of the classifier if the feature is removed, and MDI (Mean
Decrease Gini) is used as the impurity function. From the
features of the k=7 cluster’s classifier, we can also identify
characteristics of the individual clusters that differ from the
general model according to both tests (Mean Decrease
Accuracy and Mean Decrease Impurity). We report
alterations from the general model where both tests are in
agreement and the features were ranked in the top half of the
features.
Overall, the classifiers that used user clustering understood
changes in physical activity and proximity in more detail,
and individual clusters put weight on features such as
network type and hour (“Casual Users”, Cluster 1), Wi-Fi
and internet availability (“Night Owls”, Cluster 2), and
session duration (“Work On-the-go”, Cluster 5). Also, while
the general model used the dialog delay as the most
important feature, four out of five clusters found dialog delay
to be less impactful. The same applies for session type (new
or continuing session). The full averaged rankings for the
Cluster (k = 7) and the general model are visualised in Figure
4.

In our post-study survey, we gathered insights from the
participants regarding their experiences with the LifeTracker
application. Q5 was an open-ended question, so we
categorised the main reasons (one or more) for both
accepting or dismissing a dialog. Ten answers were
discarded from the categorisation due to low quality of the
answer or the lack of proper focus. In eighteen (54.5%)
answers the choice of interaction was due to a more
important priority task being performed on the smartphone
(P36: “Most of the occasions when I rejected a popup were
such that another application needed my concentration at
that exact moment.”). One participant reported the physical
activity (P12: “I would reject the dialog if it came during
work or exercise”), four reported on the time of the day, three
on the surrounding physical context, and two due to bad
mood.

The majority of responses only listed reasons for dismissing
a dialog. Three responses listed reasons specifically for
accepting a dialog, two of these reported the brief
interactions with the dialogs as reasons for accepting it (P17:
“If the question was just a button to select one option I mostly
answered them because it was nearly as quick as rejecting a
dialog.”) and one participant (P16) lack of anything better to
do. The responses in the ‘priority task’ category can also be
perceived as extensions of “lack of anything better to do”.
Some reasons correspond to the characteristics of the dialogs
(brief interactions), while some correspond to the features
used in the machine learning classifiers (e.g., hour, physical
activity, and lack of anything better to do are reflected in
session type and duration).

DISCUSSION
We set out to study the interruptive nature of an input method
designed to leverage user’s spare time and reduce the burden
required to make data contributions. These elements are key
when motivating long term usage of quantified-self
applications. Understanding of human interruptibility is
crucial when using potentially disrupting data input methods.

Figure 4. Feature rankings for MDA (Mean Decrease Accuracy) and MDI (Mean Decrease Impurity) for cluster k = 7.

We present results for an interaction method designed to
fulfil specific requirements (Table 1) that are sculpted to
reduce the cognitive load of the input method [27], decrease
interaction time [43, 44, 46], and increase the quality of
logged data [30]. We also attempt to understand both
individual users and generic user types [48, 49] in order to
enable applications to understand user’s preferences without
reliance on general models (often incorrectly assuming that
all users behave similarly) or requiring an extensive training
period to work correctly.

Contributing Data via Alert Dialogs
Overall, the number of dialogs (13.63, SD = 10.11) presented
to our participants during each day of the study likely caused
a burden on their smartphone usage, since the application
only applied a very simple chance filter on the presentation
of dialogs. However, it is necessary to prompt a user of a
quantified-self application numerous times on a daily basis
to ensure sufficient amount of data contributions, in order to
generate meaningful insights. Considering the amount of
general smartphone usage sessions each user participated in
on a daily basis (M = 61.25, SD = 51.57), participants were
not constantly interrupted but still frequently prompted.

Truong et al. [43] report an average of 49.83 daily
contributions (compared to our 10.25) and [44] report a
37.4% task completion rate, but no number for daily
contributions. However, neither approach considered a ‘skip’
option so the users were always required to contribute in
order to unlock their device. Results of the aforementioned
study state that 44% of the study’s participants felt that a skip
option would have been necessary [44]. In [44], three of the
ten participants also report that the forced data input on
phone unlock significantly decreased the frequency of their
phone unlocking. The requirement of repeated contribution
and lack of a bypass method can significantly diminish the
quality of the data [30], and can cause unnecessary burden to
the user. The unlock screen interface also prohibits the user
from using passwords or secret gestures to securely unlock
his or her device - a limitation neither [30] or [44] addresses.
Minimising the amount of daily interruptions while
maximising the amount of data contributions is completed by
deferring interruptive prompts, and minimising the cognitive
load of the input method.

Dialogs and the use of lock screen as an input mechanism
inherently reduce the cognitive load by design, so the
remaining problem is to reduce the burden to the user, and
the number of interruptions. Predicting the interruptive
nature of an input method should be applied to all prompts,
and the two methods (self-report within the unlocking
interface, or prompting the user after unlocking the device)
can be used in tandem, as long as the user is not
overburdened and prompts are presented appropriately.
Previous work has addressed this challenge via either general
models; use of C4.5 machine learning classifier to predict
acceptance of notifications attains up to 77% accuracy [39],
and the InterruptMe library [35] offers up to 70% precision

and recall. [23] uses decision-theoretic (DT) models to create
user models that offer an increase in accuracy over a random
probing mechanism, but at the cost of significantly reduced
opportunities for self-reports. Additional take-away from our
results is that the interrupting nature should not be derived
directly from the interactions - as the ‘non-disrupting’ classes
(A and B) were overrepresented within the interactions.
When available, external measurements - like in our case
looking at the existence of a data contribution from a dialog
- can be more reliable as users can simply select any available
interaction to remove a disrupting prompt [7]. Based on
results in previous work and the accuracy of our benchmark
general model, a more accurate method is clearly needed,
that understands user’s preferences.

Understanding Personal Preferences
To understand in more detail how different machine learning
classifiers perform for previously unknown users, we
leverage the leave-one-out cross validation method. Users
are detached from the dataset one by one, the remaining data
is used as the training set, and the detached user’s data as a
testing set when applicable. To our knowledge, this method
has not been previously used as a method to understand
users’ personal preferences and users’ fit into general
models. As hypothesised, the leave-one-out method proves
less accurate (68.1%) than the general model (72.6%) with
the testing sets, and signifies how a general model is not
always applicable to the individuals within a general
population. This especially applies in situations where
personal usage traits vastly differ, such as for smartphone
usage [10, 46-49]. These personal differences were evident
in our study, even though our participant group was quite
homogenous by nature, in terms of sociological status, level
of education, and age.

We use features (Table 2) that attempt to both understand the
user’s external context (physical activity, time), and
smartphone usage (frequency of usage sessions and
interactions). The appropriateness of the selected features in
differentiating between users is apparent, as the personalised
user models are more accurate (M = 80.4%, SD = 7.9%) than
the general or leave-one-out, even with the reduced available
training data. In addition, the responses from our final
questionnaire following the four-week usage period
correspond to the selected features. Users reported frequently
dismissing the alert dialogs due to their physical activity,
time of day, or type of device usage session - factors that
directly correspond to the features selected for our machine
learning classifiers and that are previously used as significant
features [20, 35, 39]. This allows us to conclude that the
choice of features accurately reflected the user’s interaction
behaviour.

However, both the use of general models and personalised
user models have inherent problems. General models have
poor fit for individual users with specific usage and behavior
traits. Falaki et al. [10] report that smartphone users differ by
at least one or more orders of magnitude in their device usage

patterns. On the other hand, the use of personalised models
requires significant amount of collected training data - which
in turn requires time. We pick up on the recent trend [48, 49]
of identifying user groups and use this concept to create user
clusters based on external user reported features (e.g.,
description of smartphone use, usage patterns throughout the
day). We selected these dimensions for the clusters in order
to showcase that applications can leverage user provided
information to form preset configurations for new users of
which the application or system has no prior information.
The generated clusters had stronger inner agreement than the
classifiers constructed from other training datasets (Figure
3), indicating the validity of this approach. The cluster-based
classifiers were also most accurate in preventing unwanted
interruptions (Figure 2) - a key measurement considering the
interrupting nature of alert dialog as an input mechanism.

Feature ranking offers a glimpse inside the black box
implementation of the Random Forest classifier, and we can
observe how the different identifiable characteristics of
clusters affect the predictions (Figure 4), e.g. the differences
in physical activity patterns (MDI ranking in Figure 4) are
more detailed than in the general model. As for the users
within clusters, the “Work On-the-go” ranked session
duration higher than in the general model - this archetype is
involved in frequent short usage sessions, so interrupting this
type of user during messaging or an important work-related
call is likely unwanted. “Night Owls” ranked Wi-Fi and
internet availability higher, compared to other groups. This
group prioritises their longer device usage sessions - ones
where they are less interrupted - to occasions where they
have proper connectivity. And the “Casual Users” group put
more weight on hour, indicating that as they use their device
sparingly throughout the day, they prefer to be interrupted
when it is most convenient to them (e.g., during the evening
hours). The effect of these fine-grained pieces of information
become apparent through the way the classifiers function and
take different features into consideration for different user
types. These user clusters can also be generalised to an
extent, considering extremely similar user clusters were
generated in [49], consisting of “Night communicators”,
“Screen checkers”, who are quick to respond to incoming
prompts, and cluster of “Evening learners”, similar in
characteristics to our “Casual users”. We do not claim that
our findings are perfectly applicable to the general
population. We did not analyse the characteristics of roughly
third of our users (three clusters) as their usage traits were
difficult to distinguish sufficiently, or the groups were
considered too small. However, if the process of matching
users to user groups is done programmatically, the
automation process could also efficiently match these types
of users to predetermined groups.

Our analysis is, to the best of our knowledge, the first attempt
to leverage this type of user differentiation, based on a
mixture of self-reported and sensor logged smartphone usage
behaviour. The cluster-based approach resulted in the highest
accuracy (Figure 3), and was most likely to reduce unwanted

interruptions (Figure 2), and had the highest prediction
accuracy within the training data set (Figure 3). The
prediction accuracies also show improvements over previous
work [35, 39]. These results are encouraging and we argue
this research can pave the way for intelligent applications
that can be personalised more effortlessly. Most importantly,
these applications no longer require extensive learning
periods or manually applied configurations. By inquiring
about the usage habits of new users, their requirements for
the application, and their preferences, it becomes possible to
match this information with an existing user base.
Applications are thus able to extract pre-generated group
models for each new user.

Limitations and Future Work
Although our application is not designed to merely collect
data, we focus our work on the data collection process, and
do not consider the quality of the logged data or what the
end-user benefits of using our application were.
Additionally, while our participant group was homogenous
in terms of demographics, they showed diversity in how they
use their smartphones, and our main aim was to validate our
proposed approach.

The machine learning models we use were not evaluated in-
the-wild, but our use of leave-one-out method offers us
insight in how accurately the classifier would react to
unforeseen events. Our aim is to replicate our approach in a
longer field study in the future. This would also verify the
impact of our approach in long-term application use.

CONCLUSION
QS applications habitually suffer from abandonment of use
and often the motivational methods aimed to increase the
longitude of use suffer from lack of data. We conducted a
four-week long user study with 48 users and analyse the use
of potentially intrusive on-screen alert dialogs as self-
reporting mechanisms. We identify five distinct user groups,
based on features external to their interactions, and showcase
how the Random Forest classifier can accurately predict user
interruptibility within these groups.

Personal applications should not rely on generalised models,
as differences in smartphone use between users have been
brought up repeatedly in literature, and also in the results we
have presented in this work. Different user types are more
active during different times of day, have different usage
styles in terms of usage session frequency and duration [46,
47], prefer different types of applications [48, 49], and
interact with their devices differently [10]. This leads to the
inclination to model users either individually, or within
specified user type groups. Applications can leverage our
approach to use historical data from their user base as
training data for new users, by matching characteristics of
new users to existing user groups. However, users should not
be overburdened by constantly requiring data contributions,
especially if multiple applications leverage the same method
and compete for user’s attention.

ACKNOWLEDGEMENTS
This work is partially funded by the Academy of Finland
(Grants 276786-AWARE, 286386-CPDSS, 285459-
iSCIENCE, 304925-CARE), the European Commission
(Grant 6AIKA-A71143-AKAI), and Marie Skłodowska-
Curie Actions (645706-GRAGE)

REFERENCES
1. Devdatta Akhawe and Adrienne Porter Felt. Year.

Alice in Warningland: A Large-Scale Field Study of
Browser Security Warning Effectiveness. In 22nd
USENIX Security Symposium, Washington, D.C.,
USENIX Association.

2. RG Barker. 1968. Ecological psychology : concepts
and methods for studying the environment of human
behavior. Stanford University Press, Stanford,
California.

3. Frank Bentley and Konrad Tollmar. 2013. The Power
of Mobile Notifications to Increase Wellbeing Logging
Behavior. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM,
1095-1098. 10.1145/2470654.2466140

4. Frank Bentley, Konrad Tollmar, Peter Stephenson,
Laura Levy, Brian Jones, Scott Robertson, Ed Price,
Richard Catrambone and Jeff Wilson. 2013. Health
Mashups: Presenting Statistical Patterns between
Wellbeing Data and Context in Natural Language to
Promote Behavior Change. ACM Transactions on
Computer-Human Interaction (TOCHI), 20 (5). 30.
10.1145/2503823

5. Leo Breiman. 2015. Random Forests. Machine
Learning October 2001, Volume 45 (1). 5-32.
10.1023/A:1010933404324

6. Barry Brown, Moira McGregor and Donald McMillan.
2014. 100 Days of iPhone Use: Understanding the
Details of Mobile Device Use. In Proceedings of the
16th International Conference on Human-computer
Interaction with Mobile Devices & Services, ACM,
223-232. 10.1145/2628363.2628377

7. Raymond Chen. 2003. The default answer to every
dialog box is “Cancel”, Microsoft.

8. Eun Kyoung Choe, Saeed Abdullah, Mashfiqui Rabbi,
Edison Thomaz, Daniel A Epstein, Felicia Cordeiro,
Matthew Kay, Gregory D Abowd, Tanzeem
Choudhury and James Fogarty. 2017. Semi-
Automated Tracking: A Balanced Approach for Self-
Monitoring Applications. IEEE Pervasive Computing,
16 (1). 74-84.

9. Anind K. Dey. 2001. Understanding and Using
Context. Personal Ubiquitous Comput., 5 (1). 4-7.
10.1007/s007790170019

10. Hossein Falaki, Ratul Mahajan, Srikanth Kandula,
Dimitrios Lymberopoulos, Ramesh Govindan and
Deborah Estrin. 2010. Diversity in Smartphone Usage.

In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ACM,
179-194. 10.1145/1814433.1814453

11. D. Ferreira, J. Goncalves, V. Kostakos, L. Barkhuus
and A. K. Dey. 2014. Contextual Experience Sampling
of Mobile Application Micro-Usage. In International
Conference on Human-Computer Interaction with
Mobile Devices and Services, 91-100.
10.1145/2628363.2628367

12. D. Ferreira, V. Kostakos and A. K. Dey. 2015.
AWARE: mobile context instrumentation framework.
Frontiers in ICT, 2 (6). 1-9. 10.3389/fict.2015.00006

13. Denzil Ferreira. 2013. Aware: A mobile context
instrumentation middleware to collaboratively
understand human behavior, Department of Computer
Science & Engineering University of Oulu Acta Univ.
Oul. C 458.

14. James Fogarty, Scott E. Hudson, Christopher G.
Atkeson, Daniel Avrahami, Jodi Forlizzi, Sara Kiesler,
Johnny C. Lee and Jie Yang. 2005. Predicting Human
Interruptibility with Sensors. ACM Trans. Comput.-
Hum. Interact., 12 (1). 119-146.
10.1145/1057237.1057243

15. Thomas Fritz, Elaine M. Huang, Gail C. Murphy and
Thomas Zimmermann. 2014. Persuasive Technology
in the Real World: A Study of Long-term Use of
Activity Sensing Devices for Fitness. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 487-496.
10.1145/2556288.2557383

16. D; Turban Gehrke, E. Year. Determinants of
successful Website design: relative importance and
recommendations for effectiveness. In Hawaii
International Conference on Systems Sciences, Hawaii,
USA. 10.1109/HICSS.1999.772943

17. Rúben Gouveia, Evangelos Karapanos and Marc
Hassenzahl. 2015. How Do We Engage with Activity
Trackers?: A Longitudinal Study of Habito. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
ACM, 1305-1316. 10.1145/2750858.2804290

18. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann and Ian H. Witten. 2009.
The WEKA Data Mining Software: An Update.
SIGKDD Explor. Newsl., 11 (1). 10-18.
10.1145/1656274.1656278

19. Mary Jo Hatch. 1987. Physical Barriers, Task
Characteristics, and Interaction Activity in Research
and Development Firms. Administrative Science
Quarterly, 32 (3). 387-399. 10.2307/2392911

20. Joyce Ho and Stephen S. Intille. Year. Using context-
aware computing to reduce the perceived burden of
interruptions from mobile devices. In Proceedings of

the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 909-918.
10.1145/1054972.1055100

21. Gary Hsieh, Ian Li, Anind Dey, Jodi Forlizzi and Scott
E. Hudson. 2008. Using Visualizations to Increase
Compliance in Experience Sampling. In Proceedings of
the 10th International Conference on Ubiquitous
Computing, ACM, 164-167.
10.1145/1409635.1409657

22. Shamsi T. Iqbal and Brian P. Bailey. 2008. Effects of
Intelligent Notification Management on Users and
Their Tasks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, 93-
102. 10.1145/1357054.1357070

23. Ashish Kapoor and Eric Horvitz. Year. Experience
sampling for building predictive user models: a
comparative study. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM, 657-666. 10.1145/1357054.1357159

24. Evangelos Karapanos. 2015. Sustaining User
Engagement with Behavior-change Tools. interactions,
22 (4). 48-52. 10.1145/2775388

25. Nicky Kern, Bernt Schiele and Albrecht Schmidt.
2007. Recognizing context for annotating a live life
recording. Personal and Ubiquitous Computing, 11 (4).
251-263. 10.1007/s00779-006-0086-3

26. Reed Larson and Mihaly Csikszentmihalyi. 1983. The
Experience Sampling Method. In Flow and the
Foundations of Positive Psychology, Wiley Jossey-
Bass, 41-56.

27. Luis A. Leiva, Matthias Böhmer, Sven Gehring and
Antonio Krüger. 2012. Back to the app: the costs of
mobile application interruptions. In MobileHCI'12,
291-294. 10.1145/2371574.2371617

28. Aleksandar Matic, Martin Pielot and Nuria Oliver.
Year. Boredom-computer interaction: boredom
proneness and the use of smartphone. In Proceedings
of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, ACM, 837-841.
10.1145/2750858.2807530

29. Abhinav Mehrotra, Robert Hendley and Mirco
Musolesi. 2016. PrefMiner: Mining User’s Preferences
for Intelligent Mobile Notification Management. In
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, ?

30. Abhinav Mehrotra, Jo Vermeulen, Veljko Pejovic and
Mirco Musolesi. 2015. Ask, But Don't Interrupt: The
Case for Interruptibility-Aware Mobile Experience
Sampling. In Adjunct Proceedings of the 2015 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015
ACM International Symposium on Wearable
Computers, ACM, 723-732. 10.1145/2800835.2804397

31. Motamedi S., M. Hasheminejad and Choe P. Year.
Driving Safety Considered User Interface of a
Smartphone: An Experimental Comparison |
SpringerLink. In International Conference on Cross-
Cultural Design, Springer. 10.1007/978-3-319-20934-
0_15

32. F. F Nah. 2003. A Study on Tolerable Waiting Time:
How Long Are Web Users Willing to Wait? In 9th
Americas Conference on Information Systems, Tampa,
FL, USA. 10.1080/01449290410001669914

33. Mikio Obuchi, Wataru Sasaki, Tadashi Okoshi, Jin
Nakazawa and Hideyuki Tokuda. Year. Investigating
interruptibility at activity breakpoints using smartphone
activity recognition API. In Proceedings of the 2016
ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct, ACM, 1602-1607.
10.1145/2968219.2968556

34. Tadashi Okoshi. Year. Attelia: Reducing user's
cognitive load due to interruptive notifications on smart
phones. In Pervasive Computing and Communications
(PerCom), 2015 IEEE International Conference on,
IEEE. 10.1109/PERCOM.2015.7146515

35. Veljko Pejovic and Mirco Musolesi. 2014.
InterruptMe: Designing Intelligent Prompting
Mechanisms for Pervasive Applications. In
Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
ACM, 897-908. 10.1145/2632048.2632062

36. Martin Pielot. 2014. Large-scale Evaluation of Call-
availability Prediction. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, ACM, 933-937.
10.1145/2632048.2632060

37. Martin Pielot, Rodrigo de Oliveira, Haewoon Kwak
and Nuria Oliver. 2014. Didn't You See My Message?:
Predicting Attentiveness to Mobile Instant Messages.
In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, ACM,
3319-3328. 10.1145/2556288.2556973

38. Martin Pielot, Tilman Dingler, Jose San Pedro and
Nuria Oliver. 2015. When Attention is Not Scarce -
Detecting Boredom from Mobile Phone Usage. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
ACM, 825-836. 10.1145/2750858.2804252

39. Benjamin Poppinga, Wilko Heuten and Susanne Boll.
2014. Sensor-Based Identification of Opportune
Moments for Triggering Notifications. Pervasive
Computing, IEEE, 13 (1). 22-29.
10.1109/MPRV.2014.15

40. Alireza Sahami Shirazi, Niels Henze, Tilman Dingler,
Martin Pielot, Dominik Weber, Albrecht Schmidt,
Alireza Sahami Shirazi, Niels Henze, Tilman Dingler,
Martin Pielot, Dominik Weber and Albrecht Schmidt.

Year. Large-scale assessment of mobile notifications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 3055-3064.
10.1145/2556288.2557189

41. Tapio Soikkeli, Juuso Karikoski and Heikki
Hämmäinen. 2011. Diversity and End User Context in
Smartphone Usage Sessions. In International
Conference on Next Generation Mobile Applications,
Services and Technologies, IEEE, 7-12.
10.1109/NGMAST.2011.12

42. Melanie Swan. 2013. The Quantified Self:
Fundamental Disruption in Big Data Science and
Biological Discovery. Big Data, 1 (2). 85-99.
10.1089/big.2012.0002

43. Khai N. Truong, Thariq Shihipar and Daniel J. Wigdor.
2014. Slide to X: unlocking the potential of smartphone
unlocking. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems,
3635-3644.

44. Rajan Vaish, Keith Wyngarden, Jingshu Chen,
Brandon Cheung, Michael S. Bernstein, Rajan Vaish,
Keith Wyngarden, Jingshu Chen, Brandon Cheung and
Michael S. Bernstein. Year. Twitch crowdsourcing:
crowd contributions in short bursts of time. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 3645-3654.
10.1145/2556288.2556996

45. N. van Berkel, C. Luo, D. Ferreira, J. Goncalves and V.
Kostakos. 2015. The Curse of Quantified-Self: An
Endless Quest for Answers. In International Joint
Conference on Pervasive and Ubiquitous Computing
Adjunct, 973-978. 10.1145/2800835.2800946

46. Niels van Berkel, Chu Luo, Theodoros
Anagnostopoulos, Denzil Ferreira, Jorge Goncalves,
Simo Hosio and Vassilis Kostakos. 2016. A
Systematic Assessment of Smartphone Usage Gaps. In
Conference on Human Factors in Computing Systems,
4711-4721. 10.1145/2858036.2858348

47. A. Visuri, Z. Sarsenbayeva, N. van Berkel, J.
Goncalves, R. Rawassizadeh, V. Kostakos and D.
Ferreira. 2017. Quantifying Sources and Types of
Smartwatch Usage Sessions. In Conference on Human
Factors in Computing Systems.
10.1145/3025453.3025817

48. Pascal Welke, Ionut Andone, Konrad Blaszkiewicz and
Alexander Markowetz. Year. Differentiating
smartphone users by app usage. In Proceedings of the
2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, ACM, 519-523.
10.1145/2971648.2971707

49. Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang,
Shijian Li, Zhaohui Wu, Gang Pan and Anind K. Dey.
Year. Discovering different kinds of smartphone users
through their application usage behaviors. In
Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
ACM, 498-509. 10.1145/2971648.2971696

