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A B S T R A C T

We present the results of our experiment aimed to comprehensively understand the combination of 1) how
smartphone users interact with their notifications, 2) what notification content is considered important, 3) the
complex relationship between the interaction choices and content importance, and lastly 4) establish an in-
telligent method to predict user's preference to seeing an incoming notification. We use a dataset of notifications
received by 40 anonymous users in-the-wild, which consists of 1) qualitative user-labelled information about
their preferences on notification's contents, 2) notification source, and 3) the context in which the notification
was received. We assess the effectiveness of personalised prediction models generated using a combination of
self-reported content importance and contextual information. We uncover four distinct user types, based on the
number of daily notifications and interaction choices. We showcase how usage traits of these groups highlight
the requirement for notification filtering approaches, e.g., when specific users habitually neglect to manually
filter out unimportant notifications. Our machine learning-based predictor, based on both contextual sensing and
notification contents can predict the user's preference for successfully acknowledging an incoming notification
with 91.1% mean accuracy, crucial for time-critical user engagement and interventions.

1. Introduction

Mobile notifications allow applications to inform users of incoming
messages, new system events, and reminders, without requiring explicit
interaction. Users receive upwards from 60 daily notifications
(Pielot et al., 2014; Shirazi et al., 2014), of which many are considered
unimportant by the recipient. In response, researchers aim to reduce the
interruptive nature of unwanted notifications (Mehrotra et al., 2016;
Okoshi et al., 2015; Oliveira et al., 2014; Poppinga et al., 2014) via
sensing technologies or by understanding the qualitative nature of no-
tifications. While a large body of work exists on predicting notification-
driven interruptibility through situational context, these methods fail to
capture the other side of the challenge - is a notification important to

the user. Thus, there is a need for better understanding of the re-
lationship between interacting with notifications – how users choose to
interact – and the perceived importance of the notification contents.

Here, we aim to understand the underlying importance of individual
notifications, how users interact with them, and which factors influence
their interaction choices. To investigate the motivation for interacting
with notifications, we use self-reported information about the im-
portance of notification contents, notification source, as well as the
context of presentation. We capture the motivation in terms of notifi-
cations the user would prefer to see regardless of the interaction, e.g.,
notifications that should be presented even if habitually ignored or
dismissed, and the notifications that the user might consider irrelevant
or disrupting. Our findings highlight the diverse nature of users’
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strategy for manually filtering out notifications in terms of how often
users opt to interact with notifications and the interaction choices, and
the ever-present need for a notification management system, aiming to
prevent information overload - especially considering how frequently
users neglect to manually filter out excess notifications.

We also evaluate a notification management system based on these
principles. Our system predicts notification importance based on se-
mantic analysis of the similarity of arriving notification and previous
notifications. The system also passively collects information about the
user's context and combines the aforementioned importance with user
context to create a detailed prediction model used to assess whether the
user wishes to see the new notification or not. This combined approach
shows vast improvements over previous similar systems, highlighting
how understanding notification contents can further increase prediction
accuracy in filtering out unwanted notifications.

2. Related work

The role of smartphones has moved away from simple messaging
and news-reading to an extended tool aiming to help the user in other
aspects of life, e.g., personal health, work, or keeping up with larger
social circles, noteworthy when presenting notifications from different,
but equally important sources (Gouveia et al., 2015). The notification
content (Fischer et al., 2010) and the identification of opportune mo-
ments for presenting notifications (Fischer et al., 2011; Iqbal and
Bailey, 2008; Pejovic and Musolesi, 2014; Poppinga et al., 2014) both
play a vital role in notifications’ receptivity. Additional factors also
impact the pursuant interactions, such as social relationships in case of
messaging applications (Mehrotra et al., 2016).

Mehrotra et al.’s PrefMiner (Mehrotra et al., 2016) is a tool for
mining user's notification preferences and to generate intelligent and
easily understandable rules to hide or show selected notifications.
PrefMiner generates suggestions like (“Stop notifications from Face-
book that contain ‘candy’ and ‘crush’ words in the title”). The article
also confirms the notion of reminder notifications; notifications that
contain important information from the calendar or alarm events, and
that such notifications are habitually dismissed. Other work uses con-
text-awareness (Ho and Intille, 2005; Oliveira et al., 2014) and iden-
tified breakpoints (e.g., breaks between application use) in smartphone
usage activities (Fischer et al., 2011) to predict user interruptibility.
Clark (Clark, 1996) finds that the user's response to an interruption can
be: a) acknowledgment and an agreement to handle the interruption
later (i.e., defer) or b) a decline to handle the interruption (i.e., dismiss).
The previous work on interruptibility focus on three methods for mi-
tigating interruptive effects of e.g., notifications or incoming calls.
These are i) defer (Dingler and Pielot, 2015; Iqbal and Bailey, 2008), ii)
dismiss (Mehrotra et al., 2016), or iii) identifying opportune moments
for interruption delivery (Pielot et al., 2017).

Applications rely on mobile notifications to present information to
the user, to request their attention, or to elicit phone use. As more
applications trigger notifications, the amount of daily notifications is
drastically increased (Pielot et al., 2014; Shirazi et al., 2014). Users
select which notifications to interact with (i.e., click) and which to
dismiss (i.e., swipe away). Such choice can depend on a multitude of
factors associated with either notification contents or presentation
context (Fischer et al., 2010; Mehrotra et al., 2016). Notifications are
inherently disruptive and distractive (Shirazi et al., 2014).
Leiva et al. (2012) tried to overcome disruptions by either preparing the
user to be interrupted or guiding the user when returning to the task.
Alas, users do place value on receiving notifications, as long as the
sources are of importance to them (Shirazi et al., 2014). For example,
Samahi Shirazi et al.’s large-scale assessment of mobile notifications
validates that users value notifications differently depending on the
notifications’ source. Some notifications are expected to be swiped
away – triggered by user-initiated actions (e.g., download completed) or
from system events (e.g., battery running low) – accomplishing a simple

goal of informing the user. While a portion of notifications are deemed
as unimportant or unwanted, only a fraction of mobile phone users
consciously manage their notification settings (Westermann et al.,
2015).

Notifications from messaging applications and updates on people or
events, such as the news, are deemed important (Fischer et al., 2010;
Shirazi et al., 2014). Meanwhile, notifications not associated with
communication applications are often received less favorably (Lopez-
Tovar et al., 2015; Mehrotra et. al., 2015). Whether this reduced at-
tention is due to being overwhelmed with other (mainly communica-
tion) notifications, or because of the actual content is perceived as less
useful, is yet to be explored. The use of computer-mediated commu-
nication is also shown to be an indicator of user availability and
openness to further cues (Mathur et al., 2016; Pielot, 2014; Pielot et al.,
2015), which begs to question whether the user's current state of mind
is influenced by communication applications to be more receptacle to
interruptions, or whether the use of communication applications
showcases breaks in concentrations and other tasks. Identifying such
breakpoints in smartphone usage has been shown to be a valuable tool
in recognising opportune moments for notification delivery
(Fischer et al., 2011).

From the viewpoint of context influencing attentiveness, previous
literature has taken either the approach of evaluating the influence of
single variables, or comprehensive systems considering a combination
of contextual factors. The effect of time of day alone has been shown
not to be a sufficient variable (Westermann et al.,2016 ). Another
consideration was the influence of the user's physical location on no-
tification attentiveness, but while a user was shown to be more avail-
able while at work (Sarker et al., 2014), the response times to notifi-
cations to did not vary depending on location (Mehrotra et al., 2015).
Physical activity, namely the breaks between activities, often indicate
attentiveness (Ho and Intille, 2005). Similarly, any task or activity re-
quiring concentration is shown to be a poor moment for interruptions
(Pejovic et al., 2015). Other smartphone-based sensors can also extend
this understanding, e.g., the ringer mode and vibration settings are
shown to influence the speed at which people attend to new messages
and notifications (Pielot et al., 2014; Oliveira et al., 2014). Pielot et al.
(Oliveira et al., 2014) show that simple features extracted from the
phone can predict attentiveness to mobile instant messages and reduce
the interruptive nature of such generated notifications. The user's at-
tentiveness to presented notifications and engaging with notifications
can be measured in more detail via machine learning models
(Pielot et al., 2017). Fischer et al. (2010) analyse the impact of mobile
notifications’ content and their timing on user receptivity and conclude
that content is a more important factor than timing when considering
the interruptive nature of notifications. Okoshi et al. (2017) deployed a
large-scale interruptibility estimation logic and demonstrated that by
deferring notifications to a more appropriate time of the day the re-
sponse time can be significantly reduced. Previously, they investigated
ways to reduce the user's cognitive load due to interrupting notifica-
tions (Okoshi, 2017). Lastly, De Russis and Roffarello considered ways
to include user preferences, in addition to context, in notification de-
livery (Russis and Roffarello, 2017).

While a larger portion of previous work aims at identifying oppor-
tune moments for delivering notifications similar to the opt-in concept
(i.e., when should a notification be shown), another approach is aimed
at comprehensively managing notifications through opting out of un-
wanted notifications. Mehrotra et al. (2016) suggest that usable inter-
ruptibility and notification management systems should attempt to
achieve the goal of reducing interruptions without compromising the
reception of any useful and important information. Useful measure-
ments for notifications’ acceptance include response time (Fischer et al.,
2011; Oliveira et al., 2014), and click rates (Mehrotra et al., 2016;
Shirazi et al., 2014). Dismissed notifications are considered either re-
jected or unwanted by the user. However, the content of such notifi-
cations can still be of value to the user - we argue that dismissed
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notifications may contain valuable content and should be considered as
acknowledged and having fulfilled their purpose. Assuming these no-
tifications are always unwanted will undeniably lead to reducing the
amount of useful and important information to the user, thus compro-
mising the main goal of notification management systems.

2.1. Contribution

Previous literature has analysed smartphone notifications from the
stance of i) notifications as a source of distraction, or ii) methods to
mitigate notifications as distractions with the use of notification man-
agement techniques. The end outcomes of notifications in terms of in-
teractions - “what happens to notifications and why?” - and which factors
influence this decision, remain underexplored. The main contribution
of our work is to develop a systematic understanding of notifications –
which types of notifications are considered important, how users interact
with notifications, and why. Finally, our contributions include a deeper
understanding of the underlying reasons for interaction choices via
combining contextual and qualitative information and showcase how to
improve the intelligence of notification management systems by mer-
ging these two information sources.

The paper is structured as follows: first, we start by describing the
data collection methodology and analysis used to determine the re-
lationship between content importance and user's interaction choices
with notifications. Second, we uncover distinct manual notification
filtering mechanisms identified from within our study participants.
Third, we describe our implemented combined notification manage-
ment system and its effectiveness. While each section briefly discusses
the significance of these results, a full-fledged discussion is included at
the end of the paper.

3. Notification diary

We developed an application called Notification Diary to collect
contextual and user-originated qualitative information about notifica-
tions - the user-perceived importance of the notifications - and how
users interacted with those notifications. We deployed Notification
Diary on Google's Play Store and made intermittent advertisement
campaigns using social media, and on our university campus. The data
collection occurred during the first quarter of 2017 (i.e., January -
March). The application contains a consent form and information about
the purpose of the application, i.e., data collection for research pur-
poses, and includes both a short tutorial and guidelines on how to ap-
propriately use the application. These ensure all participants are
equally informed of the experiment and the capabilities of the appli-
cation. A total of 40 anonymous users installed and used the application
for an average of 12.2 days (SD = 14.41, ranging from 3 to 73 days,
IQR = 4–7). We collected the demographic information available in
Google's Play Store application analytics, but this information merely
shows the installation country, and thus we have no further information
on the users.

The Notification Diary application essentially has three modalities,
which overlap during use. We will briefly introduce each mode here,
and then explain further details of the application in the following
sections.

• Mode A - Data Collection and Training: The application initially
begins by simply collecting notification-related information and
requests the user to periodically rate past notifications according to
their content importance and timing of delivery.
• Mode B – Predictive Modelling: After the user has rated 50 past
notifications, he is asked to activate the predictive modelling, which
will then generate machine learning classifiers that use the historical
data collected to predict whether the user would deem an incoming
notification important or not – essentially whether the user would
wish to see the new notification or not.

• Mode C – Predictive Intervention: Lastly, the user has the option
to allow the application to intervene with incoming notifications in
an experimental mode: based on the predictive modelling, the ap-
plication will hide incoming notifications it deems unimportant.

Mode A is ubiquitous during use, as it is always activated. The other
modes require their predecessors, the user needs to opt into them when
prompted, and the user is allowed to opt out at any given time. Thus,
the application essentially has three combined modes of operation
(mode A activated, A+ B activated, or A+ B+ C activated).Mode C is
an experimental mode, and it was up to the user to activate and de-
activate the mode at their leisure. We did not log when this mode was
active, which could be considered a limitation to our experiment. For
Mode B, we can detect when the mode was activated based on i) the
generated machine learning classifiers, and ii) the predictions made by
the classifiers (each notification entry is embedded with a prediction
even if there is an intervention). The inclusion ofMode C also generates
a complexity within the experiment, as now the experiment is poten-
tially both observational (Mode A and/or B activated) and interven-
tional (when Mode C is activated).

3.1. Data collection

Notification Diary collects data from notifications on the user's
smartphone passively (using background processes and sensor read-
ings) and actively (using retroactive user-reported information). We
collect four different types of information: 1) quantitative information
logged from the smartphone, 2) contextual information of the situation
when the notification arrived, 3) notification information and content
(only stored locally on the phone to ensure privacy) and 4) qualitative
annotations about the notification content and timing of its presenta-
tion, provided by the user. We also collect the end outcome for each
notification, i.e., how was it eventually removed – whether the user
interacted with the notification via clicking or dismissing it. The sum-
mary of the collected sensor and the user-reported information is pre-
sented in Table 1.

3.2. Extracting notification interactions

On Android, access to notifications’ state is limited across applica-
tions. We implement a method that indirectly infers user interaction via
the foreground applications on the smartphone by means of an
Accessibility Service. Most notifications allow only simple interactions,
i.e., swipe to dismiss, or click to launch the application. Based on this
assessment, notification interactions can be extracted by collecting data
on the active foreground application after a notification is removed
from the notification tray, as shown in Fig. 1.

When a notification is removed from the notification tray (upper
part of Android's main interface), it is either removed programmatically
or by user interaction. When a notification is removed, we analyse
potential foreground activities taking place within the subsequent 7.5 s.
Most Android applications can cold start within this time.1 If the noti-
fication's source application package exists as one of the foreground
activities within this threshold the interaction is labeled as a click. Some
edge-cases exist, such as if the foreground application is already the
same package as the notification source (e.g., you receive a WhatsApp
notification from another group discussion while already actively using
the application). In this case when the notification is removed, and the
user remains in the same application, we are unable to verify whether
the notification was clicked or dismissed. The interaction for this noti-
fication is marked, but not included in either click or dismiss class. We
acknowledge that not all notifications are interacted with (i.e.,

1 http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.
html
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manually filtered out or clicked), as some are automatically removed or
replaced. These events are sub-categorised as automated events. Auto-
matically removed notifications are labeled as system dismissed and can
be removed for various reasons, e.g., the notification timing out, or the
information being received on another device.

Replaced notifications are sent by applications that leverage notifi-
cation stacks2 (e.g. ‘You have 4 new messages’) to combine multiple
notifications. The notifications included in the stack are posted re-
peatedly and update the same ‘title’ notification repeatedly. Each in-
dividual notification within a stack is also posted repeatedly, causing
the amount of arriving notifications to inflate quickly if this behaviour
is unaccounted for. Creating a stack of four messages requires an initial
message (1 notification arrived), the second message (the stack title –
You have 2 new messages – arrived, and the two message notifications
get repeated resulting in 3 new arriving notifications), the third (4
new messages including the stack title), and the fourth (5 new mes-
sages). Thus, instead of just receiving four individual notification(s),
the stack mechanism results in 13 notifications logged, with the same
notifications repeating over and over. With our approach of identifying
the replaced notifications, 12 out of these 13 (and beyond) notification
events are, in fact, from four individual notifications which become
marked as replaced and will not interfere with the overall notification
count appearing in the user's notification tray. Replaced notifications
are also updated in the database instead of the same entry inserted
multiple times as an entry. Thus, the replaced notifications are effec-
tively child-elements of a notification, can no longer be interacted with,
will remain flagged as replaced, but will not artificially inflate the
overall notification count.

All applications do not send their notifications according to the
standard Android-defined theme and functionality. For example,
clicking the Facebook Messenger notification does not create new
foreground activity because the application itself is not launched.
Clicking on a Google Play Store download and update notification does
not launch the application that generated the notification but still
eventually causes the notification to be discarded. Thus, we disregard
notifications from the following applications: clock, Android system,
Play Store downloads, and Facebook Messenger. Processing notifica-
tions from these sources would not yield the proper interactions for our
analysis. Some notifications also allow interactions within the notifi-
cation - e.g. Spotify (‘Next song), Chromecast (‘Play’), and WhatsApp
(‘Reply’) - without removing the notification from the tray. The context
and notification contents of all notifications that arrive on the device
are stored.

Notification Diary can also optionally automatically hide arriving

notifications; thus, these notifications are labeled as hidden. The process
of hiding notifications is based on machine learning predictions, using
contextual features, semantic analysis, and information given by the
user on content and timing to categorise arriving notification as either
shown or hidden. This process and the associated results are presented
later in this paper.

3.3. Labeling notification information

The application stores locally the information from each notifica-
tion, and retroactively asks the user to label each dismissed and clicked
notification in terms of how important it was (UL1, Table 1), and
whether or not the notification was presented at an appropriate time
(UL2) in a diary view. Diary view can be accessed by launching the
application, or clicking a notification sent occasionally by Notification
Diary informing the user of notifications with missing labels. When
labeling, the user is given information about the contents of the noti-
fication, source application, and the time when the notification was
interacted with. An example of the labeling interface - the main screen
of the application - is shown inFig. 2. The user can also ignore labeling a
certain notification if uncertain (‘Unsure’ option) of either timing or
notification contents, or simply wishes not to give labels for any par-
ticular notification (‘Skip’ option). Lastly, the application includes the
option to add comments on each labeled notification.

4. Furthering the knowledge in notification interactions

Total of 40 individuals contributed during our data collection
period. 113,197 notifications were generated in the dataset. Summary
of the logged notifications and their interactions are displayed in
Table 2. On average, users interacted with 12.3% of all notifications
(results of rows E and F in Table 2), and the majority of the interactions
(78.9%) are swipes. Daily notifications ranged from one notification to
2073 (M=313.4, SD=803.2, median= 185, IQR=64 - 393), and
number of daily interactions from zero to 1057 (M=49.8, SD=138.6,
median= 12.0, IQR=3.0 - 36.0) clicks or dismisses (ie., interaction
events). Majority of the notifications are replaced notifications – in-
dicating that user did not have the opportunity to react to the notifi-
cation or chose not to - or notifications dismissed by the OS (‘system
dismiss’)

4.1. Content importance

Notifications arriving from different sources are perceived and
preferred differently by users (Shirazi et al., 2014). It is considered that
user interactions with notifications are directly indicative of the per-
ceived importance or usefulness of the notification (Mehrotra et al.,

Table 1
List of the relevant sensor and user-reported information collected by Notification Diary application.

Contextual information
Location User's physical location using geofences that annotate encrypted location identifiers (for e.g., work, home)
Physical activity Physical activity of the user, using Google Awareness API (walking, still, running, in a vehicle, etc.)
Headphone jack Boolean state of the device headphone jack (whether earphones are plugged in or not)
Ringer mode State of the device ringer mode (silent, vibration, normal)
Screen state State of the device screen mode (off, on, locked, unlocked)
Battery information The battery level (%) of the device, and the charging state (whether the charging cable is plugged in or not)
Network information Boolean state of Internet connectivity and Wi-Fi availability
Foreground application The current foreground application on the smartphone, stored as the unique application package name
Notification information
Source application The package name of the application emitting the notification
Contents The title and message text extracted from the notification contents, configured by the application that emitted the notification
Notification outcome How the notification was eventually removed from the notification tray; due to user clicking or swiping away the notification, being automatically

discarded by the system, being replaced, or being hidden by Notification Diary's predictions (refer to Fig. 1)
User labels (UL)
UL1: importance The user–perceived importance and/or relevance of the notification contents on scale of 0–5
UL2: timing of notification The user–perceived interruptive nature of the notification on a scale of 0–5

2 https://developer.android.com/guide/topics/ui/notifiers/notifications.
html
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2016; Okoshi et al., 2017). We first investigate if the relationship be-
tween notifications and user interactions is more complex than we
previously assumed - i.e. is the choice of interaction directly indicative
of the notification's perceived importance.

Using the Chi-Squared test, we verify that the distribution of re-
ported content importance (on a scale from 0.5 to 5) is significantly
different for the clicked and dismissed notifications (N=2077,

x2 = 207.9, df = 10, p < .05). The average importance for clicked
notifications is 3.91, and 3.22 for the dismissed. However, while 49.2%
of the clicked notifications are ranked as high importance (5), 44.2% of
the dismissed notifications are similarly ranked as high importance. The
significant difference lies in the other end, as 12.6% of the clicked
notifications and 28.6% of the dismissed are ranked as low importance
(1 or below). As not every notification was labeled with user-provided
information, we verify the relationship between reported content im-
portance and interaction choice by investigating the labeled notifica-
tions specifically. Using the Chi-Squared test we can verify significance
between the two variables (N=2077, x2= 211.07, df= 9, p < .05)
and measure an acceptable effect size using Cramer's V (= 0.216).

As it is also reported that the source application of the notification
plays a role in its importance, we also wanted to explore whether the
interaction choice can apply to determining the importance of a noti-
fication, based solely on its source category. We apply an application
categorisation of each notification, according to its source application
package, resulting in a generic application category (e.g., “Social and
Internet”, “Productivity”, “Games”, etc.). The application category is
retrieved from the Google Play Store and then an additional generic
category is applied according to the original category. This gives each
notification a source application category from the Play Store, and a
more generic category where similar categories are bundled together
(e.g., all games, or social media applications). Using the user-given la-
bels of content importance, we measure the effect using Pearson's Chi-
Squared test between the reported content importance values, and the
application categories. We can verify that the category has an impact on
the content importance (N=2077, x2 = 1517, df = 190, p < .05).
However, as seen in Fig. 3 where the categories are ranked according to
their mean content importance (‘News’ highest, ‘Weather’ lowest), the
interactions with notifications (or the user's neglect to interact) from
different sources differ drastically, and the reported content importance
does not correlate with the interaction selections.

The interaction decision is clearly made separately on a notification-
to-notification basis and driven by a combination of factors. Previous
work suggests that users selectively prefer notifications from different
sources (Fischer et al., 2010; Shirazi et al., 2014), and explicit inter-
action with the notification is indicative of user preference on ulti-
mately seeing particular notifications (Mehrotra et al., 2016). Here, we
show that the interaction alone does not describe these user preferences
comprehensively, and larger factors impact the interaction decisions.
Consider the following combination of results:

Fig. 1. Overview of notifications' interaction states and events. When a notification is initially posted by the OS, Notification Diary keeps track of already existing
notifications and bundles replicated notifications to the ‘replaced’ class. Once a notification is ultimately discarded, each notification is classified to either being
automatically discarded (‘System dismiss’) or being interacted with via either clicking (‘Clicked’) or swiping (‘Dismissed’). The classification further includes au-
tomated events and events where the user explicitly interacts with the nofication.

Fig. 2. Interface from Notification Diary application highlighting the user-re-
port process. The top side shows the current assessed notification, then the
importance and timing of said notification are evaluated, and the ‘Skip’ and
‘Skip all from this application’ allow the user to discard notifications he opts not
to evaluate. The default Android Likert scale interface allows a scale of 0–5
Stars at 0.5 star interval, thus ‘four and a half-stars’ is a possible input. The
question mark icon shows a help dialog. User's current choices (3 out of 5, and
‘unsure’) are highlighted in yellow. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

A. Visuri, et al. International Journal of Human-Computer Studies 128 (2019) 72–85

76



• A high number of daily notifications (row C in Table 2), low inter-
action ratio with notifications (row D), and high number of ignored
or missed notifications (row G).
• Strong likelihood of swiping notifications considered important.
• Discrepancy between source application importance and interaction
choice (Fig. 3).

With these results we can reasonably say that the binary classifi-
cation of desired notifications using merely the interactions (click or
dismiss) as measurements is not only inadequate (based on how infre-
quently users interact), but also likely incorrect, as surely users place
value on more than just the 21.1% of notifications they opt to click, as
showcased by the high frequency of dismissed yet important notifica-
tions. As a side note, we do not advocate that measuring notification
importance by identifying clicked notifications is a faulty method, as
the ‘click’ an interaction choice is clearly indicative of importance. Our
results merely highlight the opposite – that assessing ‘dismissed’ noti-
fications as unwanted is unreliable and an incomplete method.

4.2. Understanding interaction choices

Aside from delivery context in terms of device usage and notifica-
tion contents, several other factors can influence the interaction choice.
Time of day can play a role in user availability and activeness to re-
spond (Berkel et al., 2017; Ferreira et al., 2014; Visuri et al., 2017), as
can fatigue due to information overload (Hiltz and Turoff, 1985;
Speier et al., 1999).

According to the Chi-Squared test there are differences in number of

notifications across different hours of the day (N=113,197,
x2 = 33,189, df = 23, p< .05) and using Pearson's correlation, we can
observe a reasonable effect size (r=0.38, p< .05) between the time of
day (hour using a 24-hour clock) and the number of hourly notifica-
tions. Majority of the notifications arrive after work hours (44.2% of all
notification arrive between 5 pm and 12 midnight). While there is a
significant effect on the hour of the day on user's interaction choice
(click, dismiss, replaced, system dismiss for each hour) with a notification
(Chi-Squared, N=113,197, x2 = 283,010, df = 95, p< .05), the only
noticeable difference in ratios between the interaction choices is from
4 pm to 6 pm, when users are more likely to click notifications. Our
assessment of the source of this behaviour is that it is likely associated
with daily work hours, and due to users e.g., actively responding to
messages received earlier during the day.

We hypothesise that one other factor influencing user's interaction
choice is being overloaded with information, i.e., becoming fatigued
and neglecting to interact when presented with larger quantities of
notifications. Initially, we use Pearson's product-moment correlation to
observe a weak correlation (r=0.192, p < .05) between the daily
number of arriving notifications and the daily number of clicked noti-
fications, and a strong correlation (r=0.833, p < .05) on the daily
number of dismissed notifications. Investigating this behaviour further,
both interaction types show increases in interactions, when the number
of daily notifications is relatively low compared to the average (e.g.,
below hundred daily notifications). However, user's attention span
seems to diminish as the number of daily notifications increase, as the
frequency at which notifications are interacted strongly dips beyond
this threshold.

Table 2
An overview of logged notifications, their interactions, and user-labelled information. A more detailed statistical analysis of notifications and their interaction
frequency, and different interaction tendencies (ie., neglecting to click certain or all notifications) is presented later in this article.

A Number of study participants: 40
B Total number of logged notifications: 113,197
C Average number of daily notifications: 313.4 (SD = 803.2, median = 185, IQR = 64–393)
D Average number of daily interactions: 49.8 (SD = 138.6, median = 12.0, IQR = 3.0–36.0) 15.8% of row C

Total number of: % of row B
E Clicked notifications 2968 2.6%
F Dismissed notifications 11,019 9.7%
G Replaced notifications 93,563 82.7%
H Automatically removed notifications 5614 5.0%
I User-labelled content importance 4520

Fig. 3. Interaction choices for different Play Store ap-
plication categories, ordered based on mean content
importance. From most important (top) to least im-
portant (bottom). The selected categories are those
which show statistically significant results, and the
content importance ranges from 4.5 (News and
Magazines) to 2.05 (Weather). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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To verify this impact on interaction frequencies, we apply a window
size of 20 on the number of arriving daily notifications and merge data
within each window (i.e., 0–20, 20–40, …). We combine windows with
mathematically insufficient number of samples for significant analysis
together to produce a significant mean ratio within each window of size
20 or larger. We then measure the interaction ratios using Pearson's
correlation and can reveal a negative correlation for both ratio of
clicked notifications (r = −0.85, p < .05) and dismissed notifications
(r=−0.82, p< .05). Analysing the different windows and the window
size's impact on the ratio, we can see that the overall willingness to
interact diminishes beyond the aforementioned 100 daily notifications,
although the effect is not as drastic for willingness to dismiss. The
difference in interaction ratio beyond and after the 100 notifications
received threshold is −0.106 for clicking, and −0.073 for dismissing,
and the dismiss ratio levels higher (at 0.119) than the click ratio (at
0.052). The different window sizes and corresponding interaction ratios
are visualised in Fig. 4. This implies that when users receive a higher
number of notifications, they more frequently neglect to interact with
these notifications.

Proving our hypothesis is still incomplete, as the previous results
merely generalises the behaviour, but the longitudinal effect of in-
formation overload is yet to be explored – how does the number of

notifications received affect the interaction choice for an individual
notification?

For each notification, we crawl the dataset for the number of noti-
fications that arrived at that specific user within six distinct time win-
dows – during the previous 60 s, 5 min, 10 min, 30 min, 60 min, and
4 h. We then combine the information from all users within each time
window and calculate an interaction ratio: the number of notifications
that the user interacted with within that time window vs. the total
number of notifications that arrived within that time window – and a
click ratio, according to the number of notifications within the time
window. For example, when two notifications were received within the
previous 60 s, users interacted with the new notification 70 times and
neglected to interact 1239 times, thus resulting in an interaction ratio of
0.053 for a 60-second time window and two notifications received. This
process is replicated for each time window and each number of pre-
vious notifications. In each window, we observe the effect of more
notifications arriving resulting in less interactions by first verifying the
existence of the difference with Chi-Squared (x2 = [750 … 6115] and
p < .05 for all windows) and measuring the size of the effect with
Cramer's V (value ranging from 0.081 to 0.232). Fig. 4 shows a com-
prehensive overview of this effect within the different time windows.

Next, we analyse where (for which time window) the effect of the
higher number of notifications resulting in fewer interactions is po-
tentially strongest, using Pearson's correlation. The effect is smallest
(r = −0.37) within a 60-second time window, increases up to 30 min
(r = −0.66), and then gradually diminishes again until it reaches si-
milar value than for the first window (r = −0.36, p < .05 for all
window sizes). As this indicates a significant effect, we then calculate
the interaction ratio in ten quantiles within each window. The results
are visualised in Fig. 5 with the red line annotating the overall mean
interaction ratio (12.3%).

Within all these time windows, users are significantly more likely to
interact with a new notification if no previous notifications had arrived
during the time window. The interaction ratio in these cases surpasses the
overall mean. The user's willingness to repeatedly interact also di-
minishes beyond 60 s, only to return at 30 min or more and even there
it is only apparent if only a small number of notifications had previously
arrived. For the first 60-second window, we see that the users remain
active, even if numerous (e.g., 15–20) notifications just arrived. Thus,
the average attention span regarding incoming notifications can see-
mingly be measured in seconds rather than minutes. This behaviour
often revolves around the use of communication applications and

Fig. 4. Interaction ratios for clicking and dismissing notifications, according to
the total number of received daily notifications. Interacting via ‘click’ shows a
sharp decline when receiving more than 100–120 daily notifications.

Fig. 5. Likelihood of a user interacting with a new notification according to number of previously arrived notifications within a specific time window. The red line
annotates the overall mean interaction ratio (12.3%).
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related correspondence. Overall, the results in Fig. 5 indicate that:

a) Users exhibit interaction fatigue quickly, i.e., users become re-
luctant to interact with arriving notifications.

b) The important information in the notification tray gets lost when
numerous notifications arrive simultaneously - or within a brief time
window, e.g., 5–30 s - and the users are unable to locate and interact
with specific notifications they otherwise would interact with.

c) The effects of b) can compound when and if users neglect to in-
teract (manually filter) away unnecessary information from the
notification tray.

In the next chapter, we aim to identify distinct usage styles and their
associated problems related to lack of interacting, and how prominent
those problems are. Lack of interaction with notifications quickly leads
to users’ devices being overwhelmed with notifications, which reduces
the usefulness of the medium and the amount of information provided
by notifications in general. Lack of interaction also highlights the need
for an automatic management system – as humans seemingly often
neglect or opt not to do so.

4.3. Limitations

As our experiment can be considered both an investigative and it
also partially intervenes with our study subjects, it is important to note
that intervening with the user's notifications (hiding unwanted ones)
leads to influence on interaction ratios. Effectively hiding unwanted
notifications can thus potentially increase the interaction ratios. We
also do not have concrete information on how often interventions
happened, as the activation and deactivation of Mode C was not logged
in our data set. However, based on the email feedback received from
our users Mode C was seen as disruptive and confusing. This leads us to
believe that it was merely experimented with, not continuously used,
and thus has no large impact on the interaction data.

Additionally, as the analysis presented in Sections 4 and 5 largely
evaluated one factor to another (e.g., likelihood of interaction and
number of previous notifications, as in Fig. 5) and thereby ignored any
external factors which may affect user decisions in opening notifica-
tions. Maybe the user was having a conversation when the notification
arrived, or maybe the user was expecting a message and the decision for
any individual notification was not influenced by simply the number of
prior notifications. Similarly, our intervention is an external factor al-
ready embedded within the analysed data, and we argue that the

statistical significance of our revealed findings ultimately trumps these
combined external factors.

5. Distinct notification filtering styles and habits

As the interaction choices differ for each individual user, with each
user having personal preferences and configurations – such as installed
applications and generic smartphone usage traits, we next aim to dif-
ferentiate between different types of users. Identifying groups of users as
opposed to generalising, or treating each user individually, can be an
effective mean of identifying similarities in users (Meyer et al., 2017),
and in developing accurate and autonomous intelligent systems
(Visuri et al., 2017). Clustering methods allow us to differentiate be-
tween different usage styles according to, in our case, the interaction
frequencies and the number of arriving notifications.

With our dataset of 40 users, we apply a k-means clustering algo-
rithm and iterate with varying number of clusters with k=[2:10] to
represent a varying number of different user types. Since the centroids
generated by k-means can have slight internal variance (i.e., the results
for the same dataset for k value x can produce slightly different results),
we also iterate through each value of k ten times. We then measure an
evaluation score for each cluster configuration using a scoring me-
chanism using both Davies-Bouldin and Dunn indices. Both indices
measure the level of internal agreement of the clusters (intra-cluster
similarity) and the separation between clusters (distances between
generated clusters). Both indices have the same (50%) weight for the
evaluation score. As the Davies-Bouldin index is minimised, the score is
inverted for the calculation of the evaluation score. Thus, the variables
help us identify a cluster configuration (which user belong to which
group) where each cluster contains users with similar usage styles, each
cluster contains a similar number of users, and the overall configuration
is not needlessly fragmented, i.e., some clusters only containing one or
two users. Based on the calculated evaluation scores for each unique
cluster configuration and a value of k, we identify the best configura-
tion to be the following four different user types, with their differences
highlighted in Fig. 6. As seen in the figure, the separation of clusters is
clear and evident.

These groups show not only differences in the number of notifica-
tions, but significant differences in ways to respond to and manually
filter out notifications. The results seem to indicate similarities to the
previous chapter, as a high number of notifications seems to lead to less
frequent interactions, but similar low interaction frequency does not
exist for usage styles where only a handful of notifications were re-
ceived during the day. Personal differences are also showcased in more
detail, as the Group A members retain their interaction activity even
with a high number of daily notifications. The four groups and their
details are:

• Group A (N=5): Users who interact with notifications most fre-
quently (16.87% of all notifications), while receiving the second
highest number of daily notifications (M=242.5, SD=86.8).
• Group B (5): Show the highest negligence towards notifications
(87.6% replaced ratio) while also receiving the highest number of
daily notifications (M=329.9, SD=159.8).
• Group C (17): Receive the least notifications (M=60.2,
SD=49.9), and interact reasonable frequently (13.9%)
• Group D (13): Least active in clicking notifications (M=6.91 daily
clicks, < 20.3, 11.4, 9.8 for groups A, B, C, respectively), and ne-
glect notifications often (82.5%), with a reasonable number of daily
notifications (M=151.2, SD=142.6).

The most notable result is the high frequency of replaced notifica-
tions for all usage styles. Dividing the usage styles further into those
with passive interaction style (groups B and D) and active interaction
style (A and C), all groups still maintain retain relatively high negli-
gence to notifications. The lowest of which are A with 77.6% and C with

Fig. 6. Usage styles of different user groups according to the number of daily
notifications and the frequency of user interacting with notifications. Areas
denote the inner quantile range (IQR) and circles the mean values of each
group.
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83.2% replaced ratio. The problem with neglecting to filter away no-
tifications is not necessarily with information being directly lost, as
surely the notifications are at some point still seen by the user. The
problem relies more in the notification tray becoming overly cluttered,
at which point the information available in the notification tray sig-
nificantly diminishes. Imagine the notification tray containing more
than a few items, at which point some notifications shift away from the
initial view and become hidden in the bottom of the list. Optionally, the
information in bundled notifications is also limited, as the user has no
direct access to the notification contents (e.g., single messages), only to
the top-level notifications (e.g., ‘You have 12 new messages’). This be-
haviour, recognised quantitatively for the first time in this paper, sig-
nifies the importance of either active manual (via interaction) or in-
telligently autonomous notification filter mechanisms. In the next
chapter we explore this notion of intelligent filtering based on notifi-
cation contents, in addition to the more traditional purely contextual
filtering.

6. Combined (Content-Contextual) intelligent notification
filtering

In our application, the user can enable two options within the
prediction mode – an intelligent method for hiding unwanted notifi-
cations – which can be enabled once a required amount (50 labelled
samples) of training data is collected by the application. The first option
(prediction mode) enables the application to generate machine learning
models, and the second option (notification hiding) hides incoming
notifications according to the insight provided by the generated models.
We use both clicked notifications, and user-given labels as training data
for the models, and the prediction mode can be enabled once a
minimum of 50 training data points is acquired. The choice of 50 data
points is arbitrary, as the choice's goal is to provide predictions as soon
as possible after the beginning of use (within few days preferably) with
some (albeit limited) understanding of user's preferences in different
contexts. How the number of training data influences the model per-
formance can be highly individual and there can be significant varia-
tions, thus selecting an appropriate generalised value for all cases
would likely be unreasonable. The value could also be adapted ac-
cordingly and the process of initially enabling and testing the predic-
tions could also be automated.

Based on the user reported labeling of context and timing, and the
user interaction with the notification, we can map the preferred action
for each notification based on previous work: show, hide, or defer
(Clark, 1996; Mehrotra et al., 2015) (Table 3).

It is not intuitively clear what should be done about notifications
that are non-interrupting but contain no important information (third
result column marked with a *). To solve this ambiguity, we use a 70%
(contents) - 30% (timing) weighted average, based on the effect of
content and time of delivery of mobile interruptions, originally presented
in (Fischer et al., 2010). We choose the action (show or hide) according
to the value with a threshold of three (mean on a five-point scale used
for evaluation both variables) - values less than three indicate hide, and
higher than three indicate show. Clicked notifications are assumed to be
both of importance to the user and appropriately timed and are cate-
gorised as show. The action for deferring (i.e., delaying) notifications to a
later time was omitted from our application. We opted to use a binary

classification to show and hide to simplify the application, and our ex-
periment - adding the defer option would make both the prediction
mode functionality, as well as post-experiment analysis, overly com-
plex, as there would exist a subset of notifications functioning differ-
ently (deferred) than other notifications. To create a machine learning
model to predict whether a specific notification should be shown or
hidden to the user, in addition to the context we wish to also under-
stand the semantic characteristics of the arriving notifications and
process the data of existing notifications.

6.1. Text pre-processing

Our analysis identifies clusters (or bins) of related keywords that
appear in notifications, and then characterises each notification based
on which clusters of keywords it uses. This analysis is conducted for
each user independently and locally on their phone, and therefore the
keyword clusters vary between users.

All notification text is first pre-processed by transforming it to
lowercase, removing all non-alphabetical or numerical symbols and
stop-words (commonly used words) such as ‘and’, ‘to’, or ‘be’. We then
create a graph of related words, where nodes denote words, and words
that appear together in the same notification are connected by edges.
The weight of an edge is the frequency of those two words appearing
together. Each node also includes the frequency of a given word being
used within the dataset (‘size’). The nodes with the largest size are then
selected as k={10,15,20,25,30} centroids with a minimum distance of
at least two nodes apart from each other. Words that never appear with
other words (i.e. “islands”) are then discarded. The range of k values is
based on evaluating the prediction accuracy from data collected in our
pilot study, which showed that with k-values outside (above or below)
of this range the prediction accuracy rapidly deteriorates.

We then shuffle the nodes and create k clusters by assigning each
non-centroid node to a centroid (cluster) within distance d={1,2,3…}
and removing it from the next round of iteration, until no more nodes
remain. Shuffling ensures no bias based on e.g., first character of a node
(word). In case of a tie, nodes are placed in clusters based on their
weight (frequency of appearing together) to the node they share their
edge with. This operation creates k-word bins containing words that
appear together in the notification contents. Each word bin is then used
as an individual factor for the machine learning model, and the value of
the bin is the number of words in the notification contents that match
the contents of the bin.

6.2. Combined prediction analysis

After the user has labeled 50 notifications – the minimum amount of
training data we assume to create a somewhat accurate classifier – the
user has the option to enable predictions, resulting in the application
creating the first prediction model and then automatically updating this
model periodically every 48 h. At this point the user is also given an-
other option to enable, which is to purposedly intervene with incoming
notifications, selecting to hide them when they are deemed unwanted.
The prediction mode was typically activated 1–3 days after installation.

Since the computations are performed on the client we opted to
evaluate and rely on lightweight classifiers, which we evaluated using
data collected during our pilot testing. We use the C4.5 classifier, using

Table 3
Proposed actions for notification filtering based on user-reported information.

Was the notification appropriately timed?

Yes No

Are the contents important or relevant? Yes Always show the notification Defer until next use
No Preferably hide* Always hide the notification
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the WEKA java library (Hall et al., 2009), due to its efficiency in pre-
vious work using similar factor types (Matic et al., 2015), and perform
all calculations during run-time in the application, as a background
process. The choice of more complex classifiers, e.g., Random Forest or
SVM, was due to mobile run-time analysis, e.g., battery over increased
computation time.

Using the combination of contextual variables and the notification
content analysis we built a machine learning classifier using the dis-
missed and clicked notifications as training data. The classifier uses two
classes (show and hide) to determine the outcome of each notification.
For dismissed notifications, the class label is based on the weighted
average (Fischer et al., 2010) of the importance (0.7 wt) and timing (0.3
wt) provided by the user, or the value of an individual entry (im-
portance or timing) if the user was unsure for either value. For clicked
notifications, the class is directly set as show.

The model is trained and created on the client, as we wanted to
ensure the user's privacy and withhold them from having to share no-
tification contents (e.g., private messages, emails) with the researchers.
The calculations for creating new models are automatically performed
every 48 h and updated if the new model is considered more accurate
than the previously used model. The process is performed as a back-
ground activity and is only performed when the device is charging.

The application creates the training data from the available in-
formation on the device and performs balancing of the data by down
sampling the majority class appropriately. This reduces the bias due to
overfitting. A classifier is then generated for each cluster size
k={10,15,20,25,30} and each classifier is evaluated using 10-fold
cross-validation. We use a combination of correctly classified instances,
ROC-area, ratio of false negatives and false positives, and Kappa to
compare between evaluation results. Classifier accuracy and ROC de-
scribe the overall accuracy of the model, while the Kappa statistic in-
dicates how much better the model performs compared to a random
guess (0…1, higher is better). Each of the five features is normalised to
[0,1] range (if not in that range already, e.g., the ROC-area) and has an
equal weight in determining the evaluation score, which – similarly to
determining the cluster configuration – has a value ranging from zero to
one. The classifier with the best evaluation score is then stored along-
side the training data, and the generated word bins (clusters) for se-
lected cluster size k. The process of iterating through different k (word
bin) values, generating the word bins, and training and evaluating each
created classifier takes approximately 1–5 min (measured during our
piloting phase), depending on the amount of training data and device
capabilities. The user is presented with statistics (such as overall ac-
curacy and the estimated probability of important notifications being
falsely hidden) of the generated model, and a summary of words that
were either considered important and unimportant. This creates some
sense of transparency to the user regarding what information is influ-
encing the predictions.

Arriving notifications are classified using the currently stored clas-
sifier and the word bins associated with each classifier. The current
device usage context is extracted when the notification arrives, and the
notification contents are mapped to the corresponding word bins. The
notification instance is then classified as show or hide by the stored
machine learning model and the decision is sent to the OS in case the
notification is deemed as unwanted and should be discarded. The no-
tifications classified as hide are automatically discarded from the noti-
fication tray by Notification Diary. The process of handling an arriving
notification is detailed in Fig. 7.

However, Android's NotificationListener class only allows access to
notifications that are pending by other applications. The user still re-
ceives cues of these incoming notifications if unattended - since
Notification Diary only observes them after they are already posted
with any accompanied cues. When the prediction mode is enabled, by
default Notification Diary mutes all alarms, vibrations, and sounds, and
plays corresponding sound cues or vibration when needed (e.g., if a
notification with a cue arrives, or if there is an incoming call), similar to

(Rosenthal et al., 2011). This approach ensures that the user does not
receive these cues when notifications arrive, and unwanted notifica-
tions can then be silently discarded.

6.3. Predicting notification relevance

As enabling the prediction mode in the Notification Diary applica-
tion partly interferes with normal smartphone use by silencing the
device, not every user felt comfortable using this mode. A total of 33
users generated a total of 313 machine learning models (M=9.28,
SD = 15.75, IQR = 1–5) during their use, with an average of 215.69
(SD = 289.55, IQR = 101.5–251.0) training data points. Classifier
accuracy and ROC describe the overall accuracy of the model, while the
Kappa statistic indicates how much better the model performs com-
pared to a random guess (0…1, higher is better). The mean classifier
accuracy is 91.1% (SD = 5.8%), ROC 81.1% (SD = 15.4%), and Kappa
0.65 (SD = 0.25).

Table 4 shows the summary of the different groups, and the gen-
erated models and their accuracy. Analysing the accuracy character-
istics of different user groups with the use of one-way ANOVA we can
identify significant (F=3.88, p < .05) differences in the Kappa values
across the groups. We use ANOVA as each sub-group has its own dis-
tribution of accuracy features. In this case, lower Kappa values indicate
overfitting to displaying notifications too frequently, and this occurs
more in models generated by members of Group C and Group D – the
groups of users who generally received fewer notifications. As both
clicked notifications, indicating user preference to said notification, and
the user-provided labels are used to train the models, we can also see
the added influence of user-given labels on the models’ performance.
This effect is highlighted on group A on the ROC-area and kappa sta-
tistic, which are more reliable indicators of model performance than
accuracy, as the accuracy can be more strongly influenced by over-
fitting.

While our models are accurate, the false positive rates of either
showing or hiding a notification indicate differences in performance. The
false positive rate (FPR) of showing an unwanted notification is sig-
nificantly higher than the false negative ratio (0.29 > 0.04, t=17.85,
p< .05 using Student's t-test), indicating that the generated models are
likely biased towards showing notifications. This can be due to multiple
reasons, of which one likely candidate is the user indicating high con-
tent importance for the majority of the notifications, causing the
training data to be overfitted for the show class. The best performing
models, however, are the ones where such bias does not exist and FPR is
significantly lower. There is a strong negative correlation between both
Kappa and FPR (r = −0.95, p < .05) and ROC and FPR (r = −0.87,
p < .05), which indicates the importance of FPR in overall model
performance. The overall model accuracy is highlighted by measuring
the number of clicks for notifications shown without predictions,
compared to those shown when the prediction model and automatic
filtering is enabled.

The relationship between the interventions being active and how
the user perceives the usefulness of this mode is complicated, as it is
partly seen as both intrusive and rather confusing. The confusion likely
revolves due to the suboptimal implementation due to OS limitations –
the mode intervenes with user's normal ringer modes etc. The problem
of intrusiveness, however, likely stems from the inaccuracies. When the
prediction model – or the “AI” as a term that the user would likely use –
functions accurately it does so without causing any sense of intrusive-
ness or hindrance to the user, but human cognition reacts strongly to
any mistake such system makes. Thus, even if the system works ap-
propriately majority of the time, the user could still experience it as
intrusive if it performs a sufficient number of “mistakes”.

Although the activations of interventions (Mode C) were not mea-
sured – thus giving us no verifiable data into the relationships between
click ratios and performed interventions, a Chi-Squared test indicates
increases (N=113,197, p < .05, x2=34,376, df= 4) in click ratios

A. Visuri, et al. International Journal of Human-Computer Studies 128 (2019) 72–85

81



(0.07 > 0.01, N=27,385 for notifications including predictions,
N=85,812 for notifications without predictions) for automatic fil-
tering. This strongly indicates an influence and further investigations
should be taken to measure how such interventions actually elicit in-
teraction responses in all, or specific types of, users.

Exploring the table and the previously reported differences in in-
teraction frequencies in more detail, it becomes evident that the models
generated by Group A are most accurate likely due to a) high number of
labelled notifications indicating in more detail how users perceive the
notification content, and b) high interaction frequency, again enabling
more detailed training data. The lower labeling frequencies cause the
generated models to likely suffer from overfitting. If most the in-
formation gained in the training data are the clicked notifications, i.e.
desired notifications, this leads to lower values in kappa statistic and
artificially high accuracy.

7. Discussion

Intelligent notification management systems traditionally assess the
user's situation via usage context for delivering notifications. The im-
portance of individual notifications (and their delivery context) is
measured via click-ratios under the binary assumption that clicked
notifications are desired and important, while dismissed notifications
are not seen as important. This notion has been the basis of multiple
works (Mehrotra et al., 2016; Okoshi et al., 2017; Pielot et al., 2017),
and while the importance of individual notifications’ contents has been
revealed to hold more information about the user's preference than the

situation, it has proven difficult to effectively train autonomous in-
telligent management mechanisms to understand the importance of
individual notifications. We set out to investigate this binary nature of
notification interactions in more detail, hoping to both verify the va-
lidity of previous assumptions and to collect more detailed information
about notification interactions in general.

Previous work suggests (Fischer et al., 2010; Shirazi et al., 2014)
that a notification's source plays a big role in the user's preference to see
a notification. While certainly true, individual details play a much
larger role in the user's preferences, as indicated by the data collected in
our study. The ratio of clicking, dismissing, or ‘ignoring’ notifications
vary significantly across different notification source categories, and
even for individual notifications that are labeled according to their
perceived importance. Thus, drawing conclusions on notification im-
portance solely from the interactions or the source is not supported by
our results. The interaction choice is likely a result of a much larger set
of features including the notification source, notification contents,
perceived importance of the type of notifications, and the enveloping
context (i.e., the situation in which the smartphone was used).

The notion of click ratios as evaluators of user's preference or at-
tentiveness to notifications is warranted in some cases – namely when
the users opt in to certain notifications, e.g., to particular news items or
prompts in (Okoshi et al., 2015; Pielot et al., 2017) – but can be in-
efficient when attempting to comprehensively manage notifications.
Such systems require the knowledge of which notifications are con-
sidered unwanted. Considering the binary categorisation of clicked no-
tifications as inherently desired, and the ambiguous nature of dismissed

Fig. 7. Stages of the prediction analysis
from the beginning (Top left: new no-
tification arrives in the notification
tray) to the end (Top right: the notifi-
cation is handled). Once the notifica-
tion arrives, the text contents and the
current context are extracted, the text
is matched to the local word database
consisting of word bins for the current
best performing classifier (Bottom-left),
and then this new notification instance
is classifier to either ‘show’ or ‘hide’
(Bottom-right).

Table 4
Summary of collected variables and statistics of generated machine learning models.

Group A Group B Group C Group D Total

Total # of users 5 5 17 13 40
Total # of notifications 16,599 12,121 20,995 63,482 113,197
Total # of labelled notifications 1658 (10.0%) 130 (1.1%) 1252 (6.0%) 1503 (2.4%) 4543 (4.0%)
Mean # of daily notifications 1185.643 527.0 134.58 377.87 313.4
Machine Learning Model Accuracy

Total # of created models 18 86 166 41 313
Mean # of training data per model 302 ± 779 221 ± 69 128 ± 90 300 ± 488 186 ± 272
Mean accuracy 90.6% ± 5.4% 90.4% ± 4.9% 92.0% ± 5.6% 89.6% ± 7.0% 91.1% ± 5.8%
Mean ROC-area 87.0% ± 11.4% 82.7%±8.0% 79.3% ± 18.0% 83.0% ± 15.9% 81.1% ± 15.4%
Mean Kappa 0.74 ± 0.21 0.70 ± 0.16 0.62 ± 0.30 0.66 ± 0.28 0.65 ± 0.27
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(or ignored) notifications, it is not possible to correctly assess which
notifications are actually unwanted (and thus should be opted out).
More details are required to correctly assess which notifications should
be filtered out.

7.1. Enhancing automatic notification filtering with semantic analysis

Previously generated and neglected notifications often ending up
taking unnecessary space in the notification tray. According to our
findings portion of users completely neglect to interact with notifica-
tions. This can lead to the notification tray becoming overcrowded, and
severely diminishing the quality of future information. When multiple
notifications are persistently bundled together the information pro-
vided by a new notification is minimal. New notifications are simply
added up to the bundle of notifications, and the item on the notification
tray offers no detailed information on the individual notifications. For
example, consider a case where you only see a notification with (e.g.,
‘You have 37 messages in 4 chats’ as the informative text. Similarly, too
many individual items in the notification tray can hide portions of the
information as only a limited amount of them can be shown at a time.
This further increases the need for ways to automatically filter out
unnecessary notifications.

Poppinga et al. (2014) used contextual variables to predict oppor-
tune moments to interrupt the user by presenting a notification and
reached a reasonable accuracy of 77%. Including semantic analysis of
the notification's content can increase accuracy by 14.8 percentage
points, resulting in an average accuracy of 91.1% in our experiment.
Okoshi et al. (2015) deployed a similar model in a real-world applica-
tion combining both notification contents (Yahoo news) and contextual
analysis to assess moments for delivering new items. Their work reports
that deferring the notifications accurately decreases the click delay and
that their approach continuously increased the click rate throughout
the experiment. We can observe similar results in increased click rates
(from 0.01 to 0.07) with the prediction mode enabled.

In (Fischer et al., 2011), a comparison was performed between user-
provided rules and personalised models, with the use of user given la-
bels to notifications, as well as the user's social circles. Our results show
an increase in comparison to the user-defined rules with the use of
Random Forest, which reached approximately 61% accuracy in filtering
out unwanted predictions. The computationally generated rule-based
approach used in PrefMiner (Ferreira et al., 2014) analysed the con-
tents and source of each notification, and while being highly sensitive
(i.e., was careful not to hide important notifications) reduced the
number of unwanted notifications by 48% overall. The measurement
used in PrefMiner (Ferreira et al., 2014) determined how many of the
dismissed notifications could be pre-filtered as unwanted. Combination
of these approaches results in a significantly higher prediction accu-
racy, and our best performing models highlight a low False Positive
Ratio (FPR), indicating that the users would receive significantly less
unwanted notifications.

7.2. User types and interaction burden

We showcase improvements in prediction accuracy using a combi-
nation of contextual features, and semantic analysis of notification
contents based on the varying content importance. The user perception of
notifications is based on details of individual notifications, as well as
personal preferences - after all, most notifications contain highly personal
content. It is known that smartphone users show diversity in their ap-
plication selections (Meyer et al., 2017), application use
(Okoshi, 2017), and responsiveness to prompts (Okoshi et al., 2017).
Our assumption is that this should be true for interacting with arriving
notifications as well. Our analysis reveals four distinct user groups, and
we can show diversity in the number of notifications different smart-
phone user groups receive, as well as how different user groups interact
with the incoming notifications.

The differences between the groups follow a common observation:
the potential information overload caused from too many notifications
tends to decrease both click ratios (significantly) and dismiss ratios (less
significantly). This means the burden caused by notification overload
influences smartphone use by both reducing user experience and reducing
the amount of received information. The threshold for reduced click ratio
seems to be at around 100–120 daily notifications, after which the click
frequency drops significantly. For dismissing notifications, users begin
to feel burdened at around 140–160 daily notifications. There is also
need for a balance for these notifications to arrive at appropriate times,
but overall the burden of too many notifications during a full day seems
to carry on throughout the day. This result could be further investigated
in detail and could highlight some new findings in our level of attention
throughout our daily lives.

During our pilot testing of the Notification Diary application, we
noticed one of the researchers used as test subjects habitually ignoring
all incoming notifications and leaving them present in the notification
diary for extended periods of time. We thought this behaviour was
peculiar, but surprisingly, this behaviour also existed within actual
experimental subjects. A large portion of subjects habitually neglected
to interact with arriving notifications, meaning notifications or notifi-
cation stacks remain in the notification tray until they become updated.
Part of the explanation could be the presence of a communication app
sending constant flow of messages, but the total number of notifications
arriving for these groups (especially Group D) does not indicate that
they received exceedingly many notifications. Note that the Android OS
uses an internal threshold to block certain applications from obsessive
notification spam and does not send cues for all arriving notifications.
This delay can range from a few seconds to a few minutes. Other cul-
prits for lack of interaction can be e.g., group chats with content that is
generally deemed unimportant.

Ignored notifications clearly signify the need for notification man-
agement overall, as they cause unnecessary overhead and depreciation
of the quality of information presented by notifications. After all, the
notification tray has limited space and while the applications can re-
quest priority (and OS can assign priority) to notifications that should
be shown at the top, if the notifications are not handled (i.e., dismissed
by the user, dismissed by the system, or filtered automatically), the
notification tray will quickly become overpopulated by unimportant
content. This signifies the importance of content analysis done on an
individual notification-by-notification basis when filtering out un-
wanted notifications. Two of our application users contacted us during
the experiment via email, and wanted to emphasise the usefulness of
our approach - even if the approach for hiding notifications and noti-
fication cues of our application could be considered somewhat crude: ”I
really liked the idea of the application and it was the reason why the joined
the study. An application that can hide unwanted notifications and can
understand notification contents would be extremely useful.”

7.3. Do not Block, Clean, and going forward

This issue of crowded notification trays and the users’ frequent
neglect to manually filter out unwanted notifications should lead to
new methods for notification management. Especially for users who
habitually ignore and do not filter out and interact with notifications
themselves, it becomes increasingly important to manage their notifi-
cations to reduce information overload - in order to ensure new and
important notifications do not simply get lost in the notification tray

The current ranking system for displaying notifications in order of
importance is limited, as the priority value can be specified by the
application, and not by the notification contents - which is essentially
the thing that matters the most, especially when the importance is
highly contested between similar notifications. A better approach
would be to both a) filter out unnecessary notifications (methodology
most commonly researched), and to also b) ensure that the notification
tray is not overloaded by limiting the number of shown notifications –
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i.e., cleaning when the tray becomes overcrowded. If the user only has
two notifications showing, there is no immediate need to filter anything
out, since the user has access to all presented information. But when the
number of concurrent notifications increases, precedence should be
given to the ones with important content. This approach would also
allow the notification management system to filter out old notifications,
which are no longer considered high priority, but was displayed be-
cause there was no immediate need for cleaning. Lastly, newer notifi-
cations could also be given preference over notifications that have al-
ready existed on the notification tray for longer periods of time with the
information already likely consumed.

Android 8.0 (Oreo) offers developers a new method for designing
notifications, i.e., notification channels, allowing developers to discern
notifications’ importance and group them by content similarity. While
promising customisability, it still lacks an understanding of what the
user ultimately deems as important. In other words, it should not be the
developer imposing the rules, but the user! Admittedly, understanding
the importance of notification contents to individual users without re-
lying on user feedback is challenging, however core to our findings.
Relying solely on binary interactions like the click or dismiss ratios is
not enough: dismissing notifications does not indicate low importance
(and that most notifications are dismissed anyway). Thus, new metrics
for evaluating the perceived importance need to be considered. The
new application-side management methods, presented by the new no-
tification channels, potentially offer solutions to this as users can in-
teract with notifications with more extensive methods and developers
can design notifications with more details.

8. Conclusion

We collected smartphone notification data in combination with
user-labelled information on the importance and timing of notifications.
Our results highlight that previous work, which assumed that user's
perceived importance of a notification correlates with the notification's
interaction, is unfounded in generating knowledge for automatically
filtering out unwanted notifications. Many users frequently and habi-
tually dismiss or ignore the majority of their notifications – regardless
of their perceived importance. This further complicates notification
filtering mechanisms relying solely on user interaction. Understanding
notification content preference via semantic analysis increases the ac-
curacy of prediction models aimed at automatically detecting unwanted
notifications. Our work challenges researchers of notification manage-
ment systems to understand user's personal preferences of notification
contents and interaction choices more accurately. Future work must
focus on developing user-driven notification management systems.
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