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Abstract—The rapid development and ubiquity of mobile and wearable devices promises to enable researchers to monitor users’
granular emotional data in a less intrusive manner. Researchers have used a wide variety of mobile and wearable devices for this
purpose, and have proposed various approaches to sense users’ emotional states. In this survey, we utilise three established digital
libraries (ACM Digital Library, IEEE Xplore Digital Library, and Springer Nature). We analysed and critically assessed the different
approaches used in the three stages (perception, learning, inference) of a typical mobile emotion sensing framework, following a
structured paper selection process. The contribution of this survey is three-fold; first, we document all the latest relevant literature on
mobile emotion sensing research; second, we describe how mobile and wearable devices use their sensing and computing capabilities
to monitor human emotions; third, we discuss challenges and opportunities of mobile emotion sensing to demonstrate the potential of

this thriving field of research.

Index Terms—Affective computing, mobile emotion sensing, perception, learning, inference

1 INTRODUCTION

MOTIONS are complex reaction patterns, encompassing

experiential, behavioral, and physiological elements [195].
They play a crucial role in guiding people’s responses to
events and situations, and impact decision-making, learning,
communication, and situational awareness [22]. Emotional
disorders can significantly impact mental and physical well-
being [18], [143]. Long-term anxiety and depression can
increase the risk for cardiovascular disease [199] and even
lead to suicidal thinking [146], [173]. It is important to moni-
tor emotion for mental health and well-being purposes; how-
ever this is usually done via self-report, which has limited
reliability and acceptability [209]. Automated emotion sens-
ing, therefore, is an important research agenda with the
potential to improve early diagnosis and continuous moni-
toring in interventions for mental health and well-being.
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In the last few decades, researchers have attempted to
empower computers to automatically sense users” emotional
states. Although remarkable progress has been made in
machine analysis and artificial intelligence, there remain
considerable challenges before current affect detection tech-
nology can be effectively deployed into real-world contexts.
For instance, much of the existing work is limited to con-
trolled scenarios, such as experiments conducted in con-
trolled laboratories or in workplaces with sophisticated
recording systems. Furthermore, the equipment used in
these studies tends to be intrusive and expensive. For exam-
ple, an electroencephalogram-based system requires electro-
des to be attached to an individual’s scalp, while an
electrocardiogram-based system requires sensors to be
placed around an individual’s chest [68], [87]. These require-
ments not only affect their applicability to real world scenar-
ios but also hinder participants from generating truly
naturalistic emotional responses. In addition, the lack of ade-
quate realistic training data is a persistent challenge, which
further constricts the development of emotion sensing tech-
nology that can be used in the real-world [203].

More recently, rapid development of mobile technology
including smartphones, smartwatches and smart glasses
has seen these devices become increasingly sensor-rich and
affordable, providing new opportunities for solving the
aforementioned challenges. Compared to more traditional
data acquisition devices (e.g., multiple camera systems),
mobile devices are more ubiquitous and unobtrusive, and
have the ability to collect objective and continuous user
data [137]. Mobile devices have become an essential and
integral part of daily life for many people with over 67% of
the world’s population now owning at least one mobile
device [1]. Furthermore, people typically carry their mobile
devices at all times, prompting researchers to use them as
scientific tools to observe and study human behaviour [169].
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Fig. 1. Mobile emotion sensing framework.

These characteristics have the potential to make mobile
devices an ideal platform for long-term, granular, and stable
observation of real-world emotion-related data.

While mobile emotion sensing has attracted increasing
attention from researchers and practitioners, it is still an
emerging area of research. This article presents a compre-
hensive survey of emotion sensing research involving
mobile and wearable devices. We analyse current research
trends and identify future opportunities. Compared to exist-
ing surveys on similar topics, this article provides a more
comprehensive account of the literature and discusses the
most recent research advances. For example, Politou et al.
[162] described early work on mobile affective computing
but did not cover recent work using deep learning methods.
Furthermore, they only surveyed research utilizing smart-
phone-derived data, while our work surveyed research uti-
lizing a broader range of mobile and wearable devices
(including smartphones, smartwatches, etc.). Zhao et al.
[241] focused on affective computing technologies for large-
scale heterogeneous multimedia data, but not for mobile
devices. Kotakowska et al. [110] mainly focused on data
acquired via smartphone sensors, such as touchscreen,
accelerometer, gyroscope, magnetometer, light sensor, GPS,
and Bluetooth. Hence, the breadth and depth of their survey
is much narrower than ours. Additionally, their work was
organized by onboard sensors, while we summarised the
input channels coming from different sensors and grouped
them into eight general categories. Rana et al. [170] classi-
fied the existing smartphone affect sensing studies into five
categories, and highlighted the current landscape of oppor-
tunistic and context-aware affect sensing for facial expres-
sion and voice on smartphones, which are significantly
different from our work. Muaremi et al. [139] surveyed the
usage of smartphones and other intelligent devices with the
aim to ubiquitously and automatically measure the

happiness level of a large community. Finally, while Shu
et al. [193] briefly introduce methods and trends in emotion
sensing using mobile and wearable devices, our review
extends this work by surveying a longer time-frame and
providing a more detailed analysis of every stage of the
mobile emotion sensing framework.

The article is organized as follows. Section 2 describes the
methodology used to conduct the bibliographic search,
including corresponding selection criteria and how papers
were aggregated for analysis. Sections 3, 4, and 5 survey the
three stages of the mobile emotion sensing framework.
Finally, we discuss the future research opportunities in
mobile emotion sensing in Section 6, and offer brief con-
cluding remarks in Section 7.

2 MEeTHOD

We conducted a bibliographic search in three established
digital libraries that contain the bulk of all mobile emotion
sensing research: the ACM Digital Library, the IEEE Xplore
Digital Library, and Springer Nature. We used the same search
queries, intended to capture related research on mobile emo-
tion sensing: [(“mobile device” OR “wearable device” OR
“mobile devices” OR “wearable devices” OR “smartphone”
OR “wristband” OR “smartwatch” OR “smartphones” OR
“wristbands” OR “smartwatches”) AND (“emotion
detection” OR “emotion recognition” OR “emotion pre-
diction” OR “affective state detection” OR “affective state
recognition” OR “affective state prediction” OR “emotion
monitoring”)].

We excluded papers that were not full-text research
articles, such as tutorials, abstracts, workshops, posters, etc.
We also applied a time filter in order to consider only publi-
cations between January 1, 2005 and July 31, 2021 (in order
to put the focus on recent mobile devices). After this
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process, a total of 642 papers remained. We then analysed
each of the papers to ensure they were appropriate for this
survey. We found that some papers were not relevant to
our topic, since they were either not directly concerned with
mobile emotion sensing research or did not feature original
sensing technical research but instead utilized commercial
services (e.g., Amazon Rekognition or iMotions) to conduct
their studies (e.g., to enhance the user experience or design
affective user interfaces). After excluding these papers,
137 papers remained which constitute the basis of our litera-
ture review.

A typical mobile emotion sensing framework is divided
into three stages [25], [126], [241]: signal perception, feature
representation learning, and emotion inference, as shown in
Fig. 1. Our survey focuses on these stages, summarising and
discussing the work conducted on each stage.

3 PERCEPTION

Perception is the first stage in a mobile emotion sensing
framework. The purpose of this stage is to collect emotion
information through different types of sensors embedded in
mobile devices. As stated in [86], a complete emotional expe-
rience is made up of three distinct components: a subjective
experience, a physiological response, and a behavioral or
expressive response. Each emotion includes an inner experi-
ence that can also be understood as a response and that is
highly subjective. For example, when losing a loved one,
some people may be full of remorse while others may be
deeply saddened. While subjective experience cannot be
directly sensed, physiological and behavioral responses
(e.g., blushing, sweating, increased heart rate, or facial and
body movements) generate data containing significant clues
to the emotion being experienced. Collecting these signals
and analyzing them to deduce the underlying emotional
state is the basis of the emotion sensing framework.

With the development of mobile technology, most off-the-
shelf mobile devices are equipped with a rich set of powerful
sensors. Smartphones typically include an accelerometer,
gyroscope, GPS, microphone and camera, while today’s
smart wristbands offer photoplethysmograph (PPG), electro-
dermal activity (EDA) and temperature sensors. Due to the
growing acceptance of these devices by the general public, it
has become increasingly easier and more feasible to collect
granular behaviour and interaction data from individuals, at
larger scales than was previously possible [116], [234]. For
example, the accelerometer allows the phone to sense the
user’s activity states (e.g., walking, standing, or sitting); the
GPS sensor allows the phone to determine the user’s loca-
tion; the camera and microphone allow the phone to record
the user’s facial expressions and vocal utterances; and the
PPG and EDA sensors allow devices to detect the user’s
physiological states. Advances in mobile device design are
often accompanied by the introduction of new sensors:
examples include the proximity sensor, used to detect the
presence of nearby objects without physical contact, and the
iris sensor, used for biometric recognition of users.

3.1 Emotion Sensing Modalities
Mobile devices can receive and log a breadth of information
regarding users’ affective responses via on-board sensors,
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and use this as input for a given emotion sensing framework.
In this section, we provide a brief overview of the different
modality data used in mobile emotion sensing. We classify
this data into eight categories: facial expression, ocular sign,
speech, typing & touch, body movement & activity, physiol-
ogy, device usage, and environment (shown in Fig. 1).

3.1.1  Facial Expression

Previous work has highlighted that facial expression is a pri-
mary cue for understanding human emotions [47]. It is often
possible to infer a person’s emotional states through reading
their facial expression, especially during social interactions.
For example, a smiling face may mean the person is happy,
while a gloomy face may indicate they are experiencing neg-
ative feelings [153]. As a primary non-verbal channel for
expressing emotions, facial cues have a long research history.
Currently, still and video images are two principal data sour-
ces for analyzing facial expressions. These visual data reflect
the movements of facial muscles or muscle groups over a
short duration when an emotion is triggered. By calling dif-
ferent functions of the camera, mobile devices such as smart-
phones or tablets can capture their users’ facial expressions
intermittently or continually. For example, Kosch et al. [111]
used the front-facing smartphone camera as a tool for emo-
tion detection based on facial expressions. In order to save
computing power and reduce battery consumption, their
application only recorded facial expressions when the user’s
face was turned towards the smartphone screen.

3.1.2 Ocular Signs

Different eye-related signals, such as pupil diameter, gaze
distance, and eye blinking can be broadly categorised as
ocular signs. They can be understood as special forms of
facial expressions, but are relatively more difficult to
observe and distinguish. This is because, compared to
whole-face images, eye-region images cover a smaller area
and contain less information on emotion-related facial
changes and muscle movements [220]. Notwithstanding, as
a form of natural interaction, ocular signs carry abundant
information regarding cognitive activities [201], [213], and a
number of studies have demonstrated that it is feasible to
infer users’ emotional states from analyzing pupil sig-
nals [5], [150]. In the mobile emotion sensing domain, ocular
data is typically measured using wearable eye trackers. For
instance, Xing et al. [223] used Tobii glasses to collect users’
pupil diameter variation signals, and applied the proposed
emotion sensing method in MOOC education.

3.1.3 Speech

One of the most natural means of human communication is
speech. Similar to facial expression and ocular sign, speech
can also transmit emotion information. During a conversa-
tion, speakers can easily integrate their emotions into their
prosodic and acoustic characteristics. For example, when
feeling sad, speech is often slow, low-pitched, and with little
high-frequency energy; when feeling angry, produced
speech is often fast, high-pitched, and with strong high-fre-
quency energy [219]. Speech has been widely used in emo-
tion sensing research, with many techniques and systems
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developed [119], [148]. In recent years, researchers began to
consider mobile platforms, using the smartphone’s built-in
microphone to capture human speech in diverse acoustic
environments. Chang et al. [28] proposed AMMON (an
emotion and mental health monitor), which is a speech anal-
ysis library for mobile phones. In another example, Lane
et al. [115] presented DeepEar, a mobile audio framework
built from Deep Neural Networks (DNNs), to support a
variety of audio tasks (e.g., emotion sensing, speaker identi-
fication) in dynamic environments.

3.1.4 Typing & Touch

Multiple studies have shown that users can manifest emo-
tional signals during typing and touching behaviours when
using interactive systems [51], [112], [128], [245]. The ubig-
uity of touchscreen-based mobile devices and increasing
use of chat apps has made it more convenient and feasible
to capture mobile-based interaction pattern data. For exam-
ple, Lv et al. [128] used typing biometrics produced by a
pressure sensor keyboard to recognize six emotions. Simi-
larly, Epp et al. [49] determined users” emotions by analyz-
ing the rhythm of their typing patterns on a standard
keyboard. Regarding touch interaction, Gao et al. [54] con-
ducted a study to detect players” emotional states by using
their touch behaviors during gameplay with an iPod Touch.
Focusing on Android-based smartphones, Ghosh et al. [62]
developed the TapSense application, and recorded typing-
related metadata to classify four emotional states (happy,
sad, stressed, and relaxed). Specifically, they leveraged
information such as the timestamp of when each tap event
occurred, and the type of key input (e.g., alphanumeric
keys, delete).

3.1.5 Body Movement & Activity

Currently, research on sensing emotion through body move-
ment and activity is focused on gesture, posture (body and
head), body motions (e.g., gait patterns), and physical activi-
ties (e.g., walking, running, sitting, standing, and sleeping).
A significant portion of this movement can happen uncon-
sciously and unintentionally and is therefore not easy to dis-
guise. Movement sensing also has the advantage that it
involves only minimal or no disruption to users, since
motion features like acceleration, speed, and orientation can
now be extracted from mobile device sensors without using
sophisticated capture suits. For instance, Purabi et al. [167]
utilized eSense, an in-ear multisensory stereo device equi-
pped with an accelerometer and gyroscope designed to cap-
ture the underlying connection between head movements
and corresponding traits and emotions. Using human gait
signals, Hashmi et al. [81] proposed a method to identify
emotions by means of body-mounted smartphones.

3.1.6  Physiology

Another important source of signals that can reflect emo-
tional states is physiology. These are objective signals
involving electrical and hemodynamic activities of the ner-
vous system [211]. The human nervous system consists of
two main parts: the central nervous system (CNS - brain
and spinal cord) and the peripheral nervous system (PNS -
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connecting the CNS with the limbs and organs). Affective
neuroscience has long worked on exploring the latent links
between emotional changes and activities of the nervous
system, especially the activities of the CNS and autonomic
nervous system (ANS - a division of the PNS conducting
impulses from the CNS to cardiac muscles, smooth muscle,
and glands, and which is thus in control of the fight-or-
flight response) [194].

Commonly used signals include electrocardiography
(ECG), electroencephalography (EEG), photoplethysmo-
gram (PPG), electrodermal activity (EDA), and skin temper-
ature (SKT) [124]. These can be objectively measured via
biosensors and are more difficult than other types of signal
to consciously conceal or manipulate as they are largely
involuntarily activated [208]. In the mobile sensing field,
Zhao et al. [238] presented an emotion sensing system based
on a wearable wristband by leveraging Blood Volume Pulse
(BVP), EDA, and SKT information. In another example,
Jiang et al. [94] designed Memento, an emotion-driven life-
logging system on smart glasses, which senses the emo-
tional changes of users through analysing EEG signals.

3.1.7 Device Usage

Generally, device usage data can be divided into three clas-
ses: contact data, content data, and application data. Contact
data reflects a user’s social connections, for which phone
calls, text messages (SMS), and emails are the main data
source. From these data, researchers can count the frequency
of interactions that users have with their social contacts, such
as the duration of each call or the number of SMS received
and sent. Content data includes the text and emojis within
messages such as SMS or email, as well as browser-related
data like search history and bookmarks. Regarding applica-
tion data, it is impossible to give a detailed account of each
application since there are so many. Instead, common prac-
tice is to group applications into categories (e.g., Entertain-
ment, Finance, Productivity, Social, Travel, Weather), and
then analyse how users interact with these categories (e.g.,
time spent, launch frequency).

In an example that leveraged all three classes of device
usage data, Sun et al. [200] proposed iSelf, a system that can
automatically infer emotions from smartphone data primar-
ily on SMS, calls, browser, and application usage data. Simi-
larly, LiKamWa et al. [125] presented a smartphone system
called MoodScope which recognizes users’ affective states
based on usage data (SMS, calls, emails, web visits, applica-
tion usage). Support for this approach comes from recent
research which found a bidirectional relationship between
user emotions and application use [136], [185]. Not only does
the use of certain applications drive user emotions, but emo-
tions tend to drive the use of particular applications [185].

3.1.8 Environment

Environmental factors are known to influence the subjective
feeling of users. However, unlike other modalities, environ-
ment-based sensor data is rarely used independently to
infer users’ emotional states. In most cases, this type of data
acts as an auxiliary signal to help in improving the perfor-
mance of other emotion classifiers. In the mobile emotion
sensing field, the environment modality is mainly related to
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contextual information including monitoring sensor data
from WiFi, GPS, Bluetooth, microphones and light sensors.
WiFi data carries information on indoor position; GPS data
carries information on outdoor position; the Bluetooth mon-
itor can be used to detect other Bluetooth devices that are
proximal; microphone audio reflects environmental noise
levels (which plays a different role to speech), and the light
sensor represents ambient illumination and can be used to
infer how long an individual stays indoors or outdoors.

In an example of this approach, Lee et al. [120] classified
users’ emotions on mobile devices through their typing &
touch characteristics and passive environment data (light
sensor, temperature, weather, time, location). Similarly,
Zhang et al. [236] leveraged environmental sensor data
(microphone audio, light sensor, GPS, WiFi), smartphone
usage patterns and user’s activities to develop the Moo-
dExplorer system for automatic emotion sensing.

3.1.9 Multimodality

Multimodal emotion sensing means detecting affective
expressions through the fusion of multi-sensor informa-
tion [42], [233]. Compared to a unimodal approach, multimo-
dality has several distinct advantages, such as providing
higher fidelity models of human emotion and more continu-
ous detection capability. This approach also benefits from
people’s tendency to express their emotions multimo-
dally [164]. Multimodal systems do not ordinarily suffer
from missing data problems, as if some signals are temporar-
ily unavailable, the system can still rely on others.
Traditional multimodal emotion sensing tends to focus on
collecting and processing audio, visual, and audio-visual
data [75], [233]. In the mobile emotion sensing field, given
the diversity of mobile and wearable devices, there is greater
flexibility to combine different modalities such as physiol-
ogy-body movement/activity, visual-physiology, visual-
text, etc. Furthermore, some modalities (e.g., contextual
information) that were rarely leveraged in traditional sys-
tems can be used more frequently. In an example study, Li
and Sano [123] investigated the possibility of passive sensing
and forecast of well-being based on the fusion of physiologi-
cal and behavioral (human movement and sleep patterns)
information collected by wrist-worn sensors. In another
study, Chong et al. [31] proposed EmoChat, an online chat-
ting application for mobile devices which combines facial
expressions and text messages for emotion sensing.

3.2 Summary
Table Al (see Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TAFFC.2022.3220484)
summarises research on the perception phase of mobile
emotion sensing, described by the modality inputs, mea-
surement device types, and sensor used. We only include
papers that provide a clear description of the above items.
Overall, we find that more research has been conducted
using a unimodal approach within the mobile emotion sens-
ing field. This is because signals using the same modality
usually have a similar data format and distribution, while
also having lower complexity and computation power
requirements, making one modality easier to work with.
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This is particularly true for earlier mobile devices, due to
their limited processors and storage, as they were not well-
suited to handle complex models. However, more recently
researchers have recognised that this approach suffers from
some notable problems. As D'mello and Kory [42] men-
tioned, the challenges of unimodal approaches are two-fold:
missing data and reliability problems (e.g., human facial
expression can be controlled consciously and disguised vol-
untarily as it belongs to the semi-voluntary response [177]).
Additionally, signal noise seriously affects the performance
of unimodal systems, particularly for speech-based sensing
which involves inevitable noise from the ambient environ-
ment. In order to overcome these challenges, multimodal
approaches have drawn increased attention from the mobile
emotion sensing research community. Importantly, today’s
mobile devices are more easily programmable and have
much higher processing capabilities, which has accelerated
the move towards multimodal approaches.

It is also worth pointing out that: (1) among the unimodal
approaches, Physiology, Facial Expression, and Typing & Touch
are the most commonly used modality inputs, while Ocular
Sign and Environment are the most rarely used; while (2) among
multimodal approaches, Body MovementA-ctivity + Physiology,
Facial Expression + Physiology, Facial Ezxpression +Speech,
and Body Movement Actiwity + Device Usage + Environment
are the most commonly used modality combinations. We note
that Ocular Signs have not been used often as the equipment
needed is relatively more expensive and professional (and may
even need to be made by the researcher) when compared to
other modalities. Furthermore, unlike other modalities offering
intuitive information, the data given by Environment are mostly
latent and involve contextual information, and therefore, are
more suitable for combining with other modalities rather than
independent use. Overall, for both unimodal or multimodal
approaches, Physiology, Facial Expression, and Body Movement &
Activity have been widely adopted. This is likely due to their
wide availability, and ability to work well both individually
and in tandem with other modalities.

4 LEARNING

After information is retrieved from sensors it is forwarded
to the second, learning stage. In this stage, large-scale and
ruleless raw data are preprocessed, and emotional features
of different modalities are learned and represented. As
shown in Fig. 1, there are currently two categories of feature
extractors, handcrafted feature-based extractors, and deep
feature-based extractors. Handcrafted feature extraction is a
two-phase analysis process that relies on traditional statisti-
cal analysis (e.g., mean value, standard deviation, Fast-
Fourier Transform) to explore emotion-specific characteris-
tics, and optimization analysis to reduce the dimension of
calculated features and select the most effective features. By
comparison, deep feature extraction uses deep neural net-
work architectures (e.g., AlexNet [113], VGG16/19 [196]) as
extractors to learn the inherent distribution of the raw data
and further output the corresponding feature representa-
tions automatically [194]. Please note that here we classify
feature extractors by the description in the original texts.
Overall, this phase aims to constitute a knowledge-based
abstraction layer to retrieve the emotional cues or features
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in the superficial or latent space of collected sensor data.
These features should convey significant information that
characterizes a person’s emotional states.

4.1 Handcrafted Feature Extractors

In early studies, researchers mainly worked on handcrafted
features in this learning phase [241]. A comprehensive
handcrafted learning process can be divided into three
steps: signal preprocessing, feature extraction, and feature
reduction & selection.

4.1.1  Signal Preprocessing

Preprocessing prepares the collected raw data before forward-
ing it to the formal feature extraction, and it includes opera-
tions like data filtering (e.g., incomplete and redundant
data), artifact removal, and noise filtering [19], [20], [235]. As
the first step, it focuses on segmenting, formatting, and
restructuring raw data from different predefined or precon-
figured sensors [3], [43], [189]. The objective is to provide
high-quality reliable data, while also saving computation
resources. There are different preprocessing approaches for
different types of modality data. For instance, for video data
(e.g., facial expression), frame sampler, target localization
and alignment are the key contents of the preprocessing
flow, which segments continuous video sequences into a
series of representative frames [32], [100]; for acoustic data
(e.g., speech), audio segmentation and silent region removal
are often carried out to break audio data into frames, and
there are different primary methods based on different sce-
narios (e.g., speaker segmentation, utterance-based segmen-
tation, word-based segmentation) [157], [224]; while for
sensor data (e.g., physiology), noise and artifact removal are
usually used to enhance the reliability of the measurements,
using different types of filters such as low-pass or band-pass,
and different normalization methods such as Z-score or min-
max normalization [78], [107].

4.1.2 Feature Extraction

Feature extraction is the core step of handcrafted extractors.
The aim is to find numerical attributes derived from the ini-
tial set of data that can describe its affective information.
Handcrafted feature extraction requires manual feature
engineering, which in many cases requires a good under-
standing of the background or domain of the given problem
to create effective features. Over decades of research, engi-
neers and scientists have developed various feature extrac-
tion methods for different data modalities.

Regarding facial expression, the most common features are
based on Action Units (AUs) which define facial actions
caused by the contraction of specific muscles, such that each
emotion can be interpreted as a combination of AUs. For
example, in the system proposed by Ekman and Friesen
(Facial Action Coding System) [152], anger can be recognized
as a combination of 4 AUs (Brow Lowerer, Upper Lid Raiser,
Lid Tightener, and Lip Tightener). Masai et al. [133] lever-
aged skin deformations caused by the muscle movement of
AUs to capture facial expressions, using sensors embedded
in eyewear devices to capture skin deformations around the
eyes. They could detect most muscle movements related to
the target facial expressions including movements of the
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eyelids, eyebrows, nose, cheeks and mouth. An alternative to
AUgs, facial landmarks (.e., the location of salient facial
regions including mouth, eyebrows, eyes, nose, etc.) are also
commonly used features which can be tracked over time.
Kosch et al. [111] and Pham and Wang [159] used Open-
Face [14] and Affdex [134] respectively on Android smart-
phones to leverage the frontal camera to detect facial
landmarks as indicators for emotions. Based on facial land-
marks, Alshamsi et al. [7] also calculated the center of gravity
(COG) of all the landmarks and extracted a characteristic
vector to depict the spatial interrelationships between the
COG and each landmark point. Furthermore, Suk and Prab-
hakaran [198] and Seanglidet et al. [188] applied Active
Shape Models to obtain better positions of landmarks
through iterative fitting. Besides these directly related expre-
ssion features, some indirect elements related to the video or
pictures themselves can also be used as facial features, such
as color-related or saturation-related computations like
Color Histograms [105] and color energy [145]. Kwon et al.
[114] relied on a camera built into a glass-typed wearable
device to capture facial expression, and used intensities in
each pixel of facial image as features. In another example,
Hossain and Muhammad [88] first converted facial frames
into gray scale images, and then calculated Local Binary Pat-
terns histograms to compose the feature vector.

In one of the few examples of using ocular sign for mobile
emotion sensing, Xing et al. [223] first applied Discrete
Wavelet Transform to obtain wavelet features from the
denoised pupil diameter (PD) variation, then used statistical
methods to further calculate statistical values (Max, Min,
Mean, Range, Std, Median, etc.) as a supplement to create
PD feature representation. Similarly, Fedotov et al. [52] con-
firmed the dependencies between eye gaze features and
tourist satisfaction levels.

For speech, early psychological studies have found that
some vocal parameters, especially pitch (F0), intensity,
speaking rate and voice quality, play an important role in
the recognition of emotion and sentiment [65], [95], [141]. In
the mobile emotion sensing domain, Yu [232] used a
straightforward approach of calculating the pitch and vol-
ume change on a telephone conversation as acoustic fea-
tures. Wu et al. [221] took this approach a step further by
utilizing combined mel frequency cepstral coefficients
(MFCCs) with its first and second order of derivatives as
stable acoustic features. In a more robust approach, Lu et al.
[127] not only used pitch related statistic value (e.g., stan-
dard deviation, difference of max and min pitch) and
MFCCs, but also adopted speaking rate, spectral centroid,
high frequency ratio, and TEO-CB-AutoEnv [80] as acoustic
features. More recently, researchers have noted that the
algorithms for extracting some of these features are too com-
putationally-intensive for mobile devices. To solve this
problem, Deshpande et al. [40] designed a novel algorithm
to extract the multi-dimensional Time Domain Difference
(TDD) feature, and achieved a reduction of 10% computa-
tional cost of extraction compared with MFCCs. Similarly,
Provost and Narayanan [166] presented an emotion distilla-
tion framework to create emotion-specific features from
original high-dimensional feature space in order to reduce
computational complexity. Finally, as ambient noise is a

major challenge in speech-based emotion sensin%, Yang
y.
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et al. [230] proposed a novel hybrid noise resilient algorithm
to obtain the pitch (F0) feature in noisy environments and
implemented it for Android devices.

Regarding typing & touch, feature extraction is mainly
focused on users’ touch or stroke behavior. There is a wide
range of features that have been used to parametrically rep-
resent this physical behavior, such as touch frequency,
touch pressure, finger contact area, typing speed, backspace
or special characters press frequency. Lee et al. [120]
extracted typing speed, touch count, backspace key press
frequency, special symbol press frequency, maximum text
length, and erased text length as features to represent inter-
active communication between a user and a client. Dai et al.
[39] focused on the length (distance of finger movement
between the start position and end position), time, speed,
and pressure of each stroke, and calculated their average,
median, maximum, minimum, and variance value as an
extracted typing & touch feature vector. Similarly, Ruensuk
et al. [179] focused on touch area, pressure, touch count,
hold-time, distance, speed, etc., and selected their descrip-
tive statistics (mean, maximum, minimum, and standard
deviation) as feature representation. Furthermore, Ghosh
et al. [61], [62] noticed that overlapping typing events may
occur in two different typing sessions (e.g., when switching
one application to another), which are tagged with different
emotional states, and thus, designed two different represen-
tations of typing speed.

For body movement & activity, accelerometer recordings dur-
ing different kinematic motions have distinct statistical char-
acteristics, enabling the extraction of representative features.
For example, Rubin [178] computed the root sum squared

over the three axial accelerations <\/ Ace,? + Accy2 + Acczz) ,

and assumed different activity types (no/low/moderate/
high activity) by defining different thresholds. Sun et al. [200]
further extended it by taking into account external force,
and calculated the acceleration magnitudes as follows:

\/ Ace,? 4 Ace,? + Ace.” — G(Gravity). Through two defined

thresholds, they approximated the daily activity state of peo-
ple. Except for specific daily activities, Adibuzzaman et al. [2]
correlated accelerometer data with energy expenditure of a
person, and achieved feature extraction by summing time
integrals of accelerometer output over the three spatial axes.
Di Lascio et al. [41] extracted 11 time-domain statistical fea-
tures (including minimum, maximum, mean, standard devia-
tion, dynamic change, slope, absolute value of the slope, mean
and standard deviation of the first and second derivative)
from the normalized accelerometer signal as a body-move-
ment feature vector. In a more robust approach, Lu et al. [149]
considered both the time-domain and the frequency-domain,
and extracted features such as mean and standard deviation
of acceleration, standard deviation of mean peak acceleration
and power spectral density. Besides accelerometer output,
data from other sensors such as the gyroscope also contain
body movement & activity information. For example, Lee
et al. [118] calculated time (average, standard deviation, aver-
age squared power), frequency (entropy level), and phase
(percentage of the angle outside the defined control eclipse,
weighting function of the angle outside the defined control
eclipse) domain values from an accelerometer and a
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gyroscope as a head motion feature vector. In another exam-
ple, Hashmi et al. [81] proposed a total of 29 unique time, fre-
quency, and wavelet features as representations of gait
patterns for each walking stride by means of accelerometer
and gyroscope data.

BVP, EDA, ECG, and EEG are the commonly used physi-
ological signals in the mobile emotion sensing litera-
ture [193]. The BVP signal is measured using a PPG sensor
and indicates dynamic changes in blood volume in the
peripheral blood flow by transmitting infrared light and
measuring its absorption [154]. Feature extraction from BVP
often concentrates on the time and frequency domains. For
example, Di Lascio et al. [41] considered time-domain statis-
tical features (slope, number of peaks, etc.) of BVP signals
along with the mean and standard deviation of BVP pulses’
amplitude and length. Meanwhile, as a kind of quasi-peri-
odic signal, Wang et al. [218] and Zhao et al. [238] first uti-
lized fast Fourier transform (FFT) to obtain the BVP signal
in the frequency domain, and then partitioned the coeffi-
cients to obtain the low-, middle-, and high-frequency band
of the spectrum. Finally, they calculated the mean energy,
the maximum energy, and the spectral entropy of each sub-
band as features. Moreover, BVP signals can also be used to
monitor heart rate (HR) and heart rate variability (HRV),
thereby providing heart-related features. Specifically, they
can be derived from the raw BVP signal by measuring the
interbeat interval (IBI) (the time intervals between the peaks
of the waveform). For example, Huynh et al. [92] focused on
capturing the HRV features in both the time and the fre-
quency domain. First, they obtained the IBI measurements
by detecting the systolic peak of the heartbeat waveform
from the raw BVP data. On this basis, they calculated the
mean and standard deviation of the intervals (SDNN),
mean and standard deviation of the first and second deriva-
tive of the interval series, root mean square of successive
interval differences (RMSSD), standard deviation of succes-
sive interval differences (SDSD), and the number of succes-
sive interval pairs that differ by more than 50 ms and 20 ms
(NN50 and NN20) as time-domain features. They also com-
puted the powers of the low-frequency band and the high-
frequency band in an HRV pattern’s spectral as frequency-
domain features.

The EDA signal “is a measure of neurally mediated
effects on sweat gland permeability, observed as changes in
the resistance of the skin to a small electrical current, or as
differences in the electrical potential between different parts
of the skin” [37]. The EDA signal reflects neurological con-
trol of the rate of sweat production in the glands of the
extremities. EDA increases with excitement or nervousness,
exemplified by the sweaty palms one may experience before
giving a speech or being interviewed for a job. Overall, it
consists of slow varying tonic sympathetic activity (named
skin conductance level, SCL) and fast varying phasic sym-
pathetic activity (named skin conductance response, SCR),
in which SCR is considered to be more commonly used for
short-term emotion sensing since it represents a transient
response to external stimuli. For instance, Di Lascio et al.
[41] first decomposed the EDA signal applying the cvxEDA
algorithm [71], then extracted time-domain features from
the isolated SCR signal, such as the mean and standard
deviation of the first derivative, number of peaks, and
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peaks’ amplitude. Girardi et al. [64] took into consideration
both SCL and SCR components. After using the cvxEDA
algorithm, they extracted time-domain features from tonic
and phasic parts, including mean tonic, phasic mean, and
phasic AUC.

The ECG signal is the standard measurement used to cap-
ture electrical and functional activity of the heart. Rather
than relying on distal pulse waves (e.g., from PPG) to indi-
rectly trace heart activity, the electrodes of the ECG sensor
are usually placed directly on the thorax to monitor cardiac
activity. For the raw ECG signals, the QRS complex is the
most visually obvious factor when tracing the cardiac cycle.
It generally consists of three components (Q wave, R wave,
and S wave), and represents the electrical impulse spread-
ing through the ventricles. For ECG-based feature engineer-
ing, the analysis of the local morphology of the QRS
waveform, and its time-varying and frequency-varying
properties has been a standard method. Importantly, HRV
time series can also be acquired from RR intervals (intervals
between adjacent R waves) [106]. In one example, Hsu et al.
[91] first determined the RR intervals by using the QRS
detection algorithm, then calculated a total of 34 features
from the time domain (e.g.,, SDNN, RMSSD, median value
of RR intervals, mean absolute deviation of RR intervals)
and the frequency domain (e.g., very-low-frequency range,
low-frequency range, high-frequency range) as well as from
nonlinear parameters (e.g., Poincaré plot analysis).

The EEG signal is directly related to the central organ of
the human nervous system (i.e., the brain). EEG monitors
the brain’s electrical activity by measuring voltage fluctua-
tions resulting from ionic current within the neurons of the
brain, and is recorded from multiple electrodes placed on
the scalp. In one example, Barral et al. [15] explored fre-
quency-based feature metrics by decomposing EEG data
into several frequency-band components including theta (4-
8Hz), alpha (8-12Hz), beta (12-30Hz), gammal (30-45Hz),
and gamma?2 (55-80Hz) bands. In another example, Jiang
et al. [94] made use of Katz’s fractal dimension calcula-
tion [99], and applied it to the waveform to extract time-
domain EEG feature metrics. Additionally, they noted that
in mobile and dynamic scenarios, the EEG electrodes are
normally attached loosely to users, which may cause elec-
trodes to drift and lead to artificial changes to EEG signals.
To solve this issue, they proposed a cross-correlation
method to quantify electrode drift occurrence.

Device usage and Environment feature representations typ-
ically include social interaction records, along with applica-
tion usage for the former, and noise, illumination, location,
and weather information for the latter. For example,
LiKamWa et al. [125] utilized a background logger to cap-
ture users’ social interactions via phone calls, SMS, and
emails. Measures included a record of the number of
exchanges the users had with their ten most frequently
interacted contacts, the duration of phone calls, and the
number of words used in text messages and emails to form
the social interaction features. They also counted the launch
instances and time spent on the different types of applica-
tions (e.g., categorized as {Built-in, Communication, Enter-
tainment, Finance, Game, Office, Social, Travel, Utilities,
Weather, Other, or “cannot categorize”}) as application
usage features. For location information, they clustered the
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time series of location estimates using the DBSCAN algo-
rithm [50]. In another example, Zhang et al. [236] used the
longitude, altitude, and latitude of GPS data as the outdoor
location features, and chose the frequency of the top 20
occurred SSIDs in the WiFi log as the indoor location fea-
tures. Furthermore, they took the mean and variance of the
volume of sounds logged by the microphone to indicate the
volumes and displacements as well as defining a noise vol-
ume threshold range to calculate the noise ratio, silence
ratio, and noise-silence ratio to represent the noise in the
environment. For illumination features, the researchers
used the mean and variance of the light sensor data values
as well as calculating the dark ratio, bright ratio, and dark-
bright ratio. Moreover, Lee et al. [120] considered 14 kinds
of weather conditions defined by Google weather (e.g., fog,
cloudy, drizzle, sunny) to describe the current environmen-
tal conditions around the user.

4.1.3 Feature Selection

Generally, after feature engineering, the dimensionality of
the obtained feature metric will be relatively high (from a
few tens to hundreds). Despite efforts to obtain closely
related features in the extraction process, not all features
play an equal role in emotion detection. Inevitably, there
will be some features that contribute less or carry overlap-
ping information, which will increase the computational
complexity and slow the classification evaluation process.
Considering the limited battery, computation power, and
storage of mobile devices, feature selection plays a pivotal
role in the emotion sensing process. Additionally, using
high dimensional feature vectors is prone to causing the
overfitting problem if there is a limited amount of training
data. Applying feature selection does not only reduce the
number of features and the time cost of computing, but also
leads to more relevant feature subsets and enhanced
generalization.

Collectively, feature selection strategies can be divided
into three main categories:

e Filter Methods: Rely on scores calculated from vari-
ous statistical tests to indicate the correlation between
features and the outcome variable. The selection
process is independent of any machine learning
algorithms.

e  Wrapper Methods: Aim to find the best feature com-
bination by following a search approach (e.g., greedy
search) to look through the space of possible feature
subsets and evaluating their performance on a given
machine learning model (usually choosing the model
with better general effect, such as Random Forest
(RF), Support Vector Machine (SVM), and k-Nearest
Neighbors (kNN)).

e Embedded Methods: Combine the characteristics of
filter and wrapper methods. It is implemented by
embedding feature selection in the subsequent
model training process, in other words, the feature
selection is automatically carried out while training
the model.

Each of these strategies has advantages and disadvan-

tages. Filter methods have less time complexity and are less
rone to overfitting, but have relatively strong subjectivity
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which may influence the final rate of classification/regres-
sion accuracy. Wrapper methods can find the optimal feature
subset for the preset machine learning model, but usually
require costly computation and come with a high chance of
overfitting. Embedded methods have a time complexity
between the above two methods and typically have penaliza-
tion functions (e.g., L1 or L2 regularization) and built in loss
function to reduce overfitting. In summary, all of these meth-
ods have been applied in mobile emotion sensing. For exam-
ple, Lee et al. [120] ranked all features by measuring
information gain with respect to each emotional state, and
selected 10 features with the strongest correlation. Similarly,
Barral et al. [15] first computed the Pearson correlation coeffi-
cient to reduce the possible redundant features, and then
used the Wilcoxon rank-sum test to remove non-informative
features. For feature selection using wrapper methods, Olsen
and Torresen [149] exploited Recursive Feature Elimination
to recursively remove the feature having the lowest absolute
weight until reaching the desired number of features. In
another example, LiKamWa et al. [125] used Sequential For-
ward Selection to choose the more relevant features. This
starts with an empty feature set and continually adds the fea-
ture that can maximize the performance of the model, in each
iteration. Regarding feature extraction using embedded
methods, Zhao et al. [240] adopted 1-norm SVM to optimize
the selection of relevant feature subsets while training an
SVM classifier. Huynh et al. [92] utilized a Tree-based model
(i.e., RF) with a mean decrease accuracy method to assess fea-
ture importance and determine a minimal set of features that
can achieve the highest accuracy.

Apart from feature selection, another approach to reduce
the dimension of the feature vector is dimensionality reduc-
tion. Unlike feature selection that selects and removes the
features without changing them (i.e., the feature set after
feature selection is actually a subset of the original set),
dimensionality reduction aims to transform the original
feature set into another lower-dimensional space, while
retaining the meaningful properties and information. For
instance, Tong et al. [207] used Principal component analy-
sis (PCA) to map the extracted EEG features into another set
of the coordinate system with lower-dimensional space to
achieve a reduction of feature dimensions. Xing et al. [223]
also adopted the PCA method to reduce the original 199 fea-
tures of the pupil diameter variation to 31 main features in
order to reduce computing time and improve the final
model performance.

4.2 Deep Feature Extractors

Although manual feature engineering has yielded good
results, it is an empirical-based intervention, and the
extracted handcrafted features are typically domain-spe-
cific, meaning that they do not generalize well to different
application scenarios [74], [96]. Furthermore, as mentioned
above, handcrafted-based approaches often rely on statisti-
cal variables as discriminating features, which neglects the
function of the non-linear factors and lacks the abstraction
ability of high-level feature associations. Moreover, while
feature selection and dimensionality reduction are capable
of filtering the less correlated features and avoiding the
“curse of dimensionality”, studies have found that it leads
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to the discarding of large amounts of informational
cues [84]. Specifically, given the complexity of human emo-
tions, some filtered “noisy” features may still contain
important information like compound emotional cues.

In order to avoid these restrictions and build more flexi-
ble models, researchers have recently attempted to develop
various high-level feature extractors based on deep learning
approaches. Generally, there are three main categories of
deep feature extractors. One is based on convolutional neu-
ral network architectures (CNN). This method typically
uses classical CNN networks (e.g.,, AlexNet [113] or
VGG16/19 [196]) as the base model, and aims to capture
fine-grained feature patterns by local-perceiving convolu-
tional kernels and weight-sharing translation equivar-
iance [17]. Specifically, CNN is a hierarchical model that
consists of multiple convolutional layers and pooling layers.
A convolutional layer is composed of a stack of convolution
operations, where multiple small arrays of numbers, called
kernels, are applied to form an arbitrary number of feature
maps, which represent different characteristics of the input.
A pooling layer provides a downsampling operation that
reduces the in-plane dimensionality of the feature maps in
order to introduce a translation invariance to small shifts
and distortions [227]. Sharma et al. [190] used a pre-trained
VGGI19 on facial data to extract the features, which pro-
vided a total number of 1000 features as output. Zhou et al.
[243] adopted three convolution layers and three average
pooling layers to extract features of ECG signals. Wu et al.
[220] selected ResNet18 [83] as the base model, and tailored
it according to the application scenario. Specifically, they
first considered the computation overhead and shrank the
input size of the model from 224 x 224 pixels to 64 * 64 pix-
els. Second, in order to ensure the model can still learn fine-
grained feature maps, they applied a 3 %3 kernel and
removed the pooling layer at the beginning of the network.
Then, they extended the network to 26 layers to maintain
the model’s extracting ability. Finally, their modified feature
extractor could achieve 4 times faster speeds and only drop
5.3% accuracy compared to the original ResNet18, which
makes it more suitable for mobile computing. Chong et al.
[31] chose two light-weighted CNN networks, named mini-
Xception [8] and TextCNN [108], as the basic models. They
first used the fer2013 dataset [69] and NLP & CC 2013 data-
set to respectively pre-train the mini-Xception model and
the TextCNN model, and then finetuned them using their
own collected mobile chatting data. On this basis, they
extracted the output probabilities (P(emotional states|
facial expression) and P(emotional states|text message)) as
the representations for facial expressions and text messages.

Another category of deep feature extractors is based on
recurrent neural networks (RNNs). This type of extractors is
usually used to extract features from time series-sensing
data, with numerous variations (e.g., long short-term mem-
ory (LSTM) [85], or gated recurrent unit (GRU) [30]). They
are distinguished by their “memory” as they can take infor-
mation from prior inputs and remember or hold the impor-
tant parts, thus influencing the current input and output.
Unlike traditional deep neural networks that assume the
inputs and outputs are independent, the output of recurrent
neural networks depends on the prior elements within the
sequence, which enables them to form a much deeper
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understanding of a sequence and its context. Tizzano et al.
[206] adopted an LSTM-based feature extraction module,
which consists of two 35-unit LSTM layers. By feeding time-
series 7-dimension (3 for accelerometer, 3 for gyroscope, 1 for
heart rate) vectors, the module could output the learned fea-
ture representation. Similarly, Zhang et al. [237] constructed
a two-stack LSTM network for feature extraction. Specifically,
their developed network is composed of an input layer, two
LSTM layers, and an output layer. The input of the input
layer is a time-series vector T'S = {T'S1, TS5, ..., TSg}. Differ-
ent from the conventional operation that directly takes the
last output of the last LSTM layer as the feature vector (i.e.,
many-to-one LSTM), they first set both LSTM layers to output
the full sequence (i.e., many-to-many LSTM) and obtained
another set of time-series prediction vector with the same
length in the output layer TS = {755, , TS, , ..., TS }, where
TS is regarded as the predicted value of T'S. Then by utilizing
L-BFGS optimizer with the mean squared error (MSE) loss

function ((]?fo: L (TS — T:S)Z), they trained the two-stack

feature extraction network preliminarily to capture the tem-
poral dependency of the input time-series data. After the
model converges, they finally took the hidden vector of the
last LSTM cell in the second LSTM layer as the feature vector
of the input time-series data.

Autoencoders (AE) are also popular neural networks for
feature extraction. Unsupervised representation learning is
the main advantage of this method. Generally, it consists of
two parts, an encoder and a decoder. The encoder takes the
original data sequence as input and compresses it to a
lower-dimensional latent-space representation containing
the essence of the input data, while the decoder tries to
reconstruct the output from this reduced representation
and make it as close as possible to its original input. Once
the autoencoder has been well trained, the latent-space
representation can be used to represent the feature of the
input data. Ghosh et al. [63] used an LSTM-based encoder-
decoder architecture for representation learning of raw
keyboard interaction patterns. After minimizing the loss
between the input sequence and the output sequence, they
removed the decoder and used the output of the encoder as
a representation vector. Beyond the basic encoder-decoder
architecture, Wampfler et al. [212] and Li and Sano [123]
respectively used three variations, variational autoencoder
(VAE), denoising autoencoder (DAE) and recurrent autoen-
coder (RAE), to improve the robustness and richness of the
condensed information. Baghdadi et al. [11] leveraged the
sparse autoencoder (SAE) that introduces the sparsity con-
straint on the hidden layers to find the most relative feature
patterns matched with the input. After having the latent
vector, they used it as the EEG feature representation.

In addition, there are other types of deep feature extractors.
For example, Zhao et al. [239] combined CNN and RNN as a
type of compact feature extractor for speech data. Specifically,
they first used a binary convolution neural network to extract
higher-level feature representations from log-mel spectro-
grams, and then fed them into a binary recurrent neural net-
work to further learn contextual associations. Jiang et al. [93]
proposed a hierarchical attention-based network as a feature
extractor. Specifically, they first used bidirectional GRUs with
an hourly-level attention mechanism to extract and aggregate
important hidden states as daily representations. They then
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used the same bidirectional GRUs but with a daily-level atten-
tion mechanism to derive the overall representation of sensor
data as the final feature vectors.

4.3 Summary
An overview of mobile emotion sensing methods used
in the learning phase, described by the modality used, extra-
ctor category, and feature representations, is presented in
Table A2 (see Appendix A, available in the online supple-
mental material).

Overall, we find that handcrafted extractors are still the
mainstream of feature engineering. In the reviewed research,
more than 80% of papers used handcrafted features as repre-
sentations. In addition, although some researchers have
begun to explore deep feature extractors in the mobile emo-
tion sensing domain, the current approaches are still focused
on elementary deep learning models compared with studies
in a broader affective computing domain. This is likely due
to the fact that modern deep models contain a large number
of training parameters and involve complicated computa-
tions that require significant computational and memory
resources. As a result, they need additional network com-
pression and acceleration techniques to enable efficient
deployment on mobile and embedded devices [29].

Furthermore, we note that: (1) for Facial Expression,
handcrafted extractors are mainly focused on the tracking
of feature points on facial landmarks, POls, or expression
contours; (2) for Speech, its handcrafted features can be
grouped into four categories, continuous features, qualita-
tive features, spectral features, and TEO-based features (we
used these categories based on [48]); (3) for Body Movement
& Activity, its related handcrafted extractors focus primarily
on time-domain features, while the combinations of time-
domain and frequency-domain features are more leveraged
for Physiology; (4) for Environment, location information is
the most commonly used as handcrafted feature representa-
tions; (5) for deep feature extractors, CNN- and RNN-based
networks are used more frequently.

5 INFERENCE

Inference is the last stage in a mobile emotion sensing
framework. In this stage, feature representations are finally
mapped to emotional states; in other words, a connection is
established between feature vectors and human emotions.
Two major categories of inference methods are typically
used [241]. One is machine learning methods, in which
Naive Bayes (NB), Logistic Regression (LoR), Decision Tree
(DT), kNN, and SVM are typical representatives. The other
is deep learning methods, in which multilayer perceptron
(MLP) is the frequently-used standard network. Coupled
with different loss functions (e.g., cross entropy or mean
squared error loss function), it can accomplish either classi-
fication or regression tasks. Here, we classify the fully con-
nected or dense layers that usually connect below the deep
feature extractors as the MLP inference network.

5.1 Traditional Machine Learning Methods

Machine learning algorithms are the most commonly uti-
lized method in deriving probable emotional states. Their
usual learning paradigm is to build correlations between
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features and manually annotated emotion labels; also
known as supervised learning. Some typical methods
include SVM, kNN, LoR in emotion classification, and Sup-
port Vector Regression (SVR), Linear Regression (LiR) in
emotion regression. For example, Shi et al. [191] built six
classifiers including SVM, kNN, DT, AdaBoost, RF, and
Gradient Tree Boosting (GTB) based on 116-dimensional
handcrafted features. They carried out contrast experiments
on both hybrid data and personal data of twelve partici-
pants to recognize emotional states based respectively on
the discrete and dimensional emotion models. Their experi-
mental results showed a recognition accuracy rate of 65.91%
with hybrid data and 70.00% with personal data on five dis-
crete emotions (happiness, sadness, fear, anger, and neu-
tral), and 72.73% with hybrid data and 79.78% with
personal data on a five-level valence scale (high displeasure,
displeasure, neutral, pleasure, high pleasure), when using
the RF classifier. In another example, LiKamWa et al. [125]
considered emotional state as an underlying and slow-
changing affect, and averaged all self-report ratings in each
calendar day as the labels of the inference engine. They
applied a least-squares multiple LiR on the feature table to
perform the inference modeling, and evaluated the robust-
ness of their system using leave-one-out cross-validation on
two dimensions of emotion respectively. They achieved
93.1% estimation accuracy of daily pleasure averages and
92.7% estimation accuracy of daily activeness averages with
a squared error under 0.25 using a personalized model.
However, the estimation accuracy was significantly lower
(66%, 67%) when using a general model. They further pro-
posed a hybrid approach by incorporating personal data
with prior knowledge from the instantiated general model,
which performed with 72% accuracy with only 10 days of
personalized training data.

In addition to these supervised methods, there is another
group of machine learning methods that aim to discover the
inherent distributions or hidden patterns in data without
human intervention; this is known as unsupervised learn-
ing. Clustering is a major example, and groups data based
on their similarities or differences. For example, Tizzano
et al. [206] used the Gaussian Mixture Model (GMM) to
model the input data by estimating the parameters of a
series of multidimensional Gaussian probability distribu-
tions to maximize the observing probability of those data.
Specifically, they first built one GMM for each of the emo-
tion classes to fit the input training data points, and then
evaluated the classification of a new testing data point by
checking the log-likelihood obtained from these trained
models. Similarly, Lu et al. [127] also applied GMM as an
inference framework. The framework created one GMM for
each class (i.e., stress and neutral), and made decisions
based on the likelihood function p(X]|\) of each class with
equal prior, where X is the acoustic feature vector and
AMw, 1,2) is the weight, mean, and covariance matrix
parameters of the GMM model. They then investigated an
adaptation model based on a non-iterative Maximum A
Posteriori (IMAP) scheme, and achieved 81% and 76% accu-
racy for indoor and outdoor environments respectively.
Their results demonstrated that the universal stress model
can be customized well to different users and scenarios by
using few new observation data.
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5.2 Deep Learning Methods

Regarding deep learning-based inference networks, multi-
layer perceptrons (MLP, which loosely refers to any feed-
forward Artificial Neural Network (ANN)) is a popular
choice that can be implemented in a straightforward and
simple way. It relies on multiple layers of perceptrons (or
hidden layers) to learn the mapping function between input
and output, f(-) : R"”" — R*"" In each perceptron, there
are a set of nonlinearly-activating neurons, which transform
the values from the previous layer with a weighted linear
summation, followed by a non-linear activation function to
output the activated value: p(w” z + b). For example, Grue-
bler and Suzuki [72] used manually extracted EMG features
as affective vectors, and trained a two-layer feed-forward
MLP to differentiate between smiling, frowning, and the
absence of both. They set four neurons in the hidden layer,
and used sigmoid as the activation function. By using back-
propagation tuning, they achieve a high facial expression
recognition rate on the side of the face.

Similarly, Schmidt et al. [187] built the four-layer MLP
inference network for the CNN feature extractor. They used
four fully-connected layers with the first three Relu and
one last softmax as non-linear activation functions, and
achieved an average 45.5% mean F1 score over four differ-
ent tasks (arousal, valence, stress, and state-trait anxiety
inventory). In addition, they attempted to extend the single-
task architecture to the multi-task architecture through shar-
ing two fully-connected layers followed by multiple output
branches, with the aim to predict labels of all tasks simulta-
neously. After training, their multi-task system also reached
a comparable performance when compared to the single-
task system. Golgouneh and Tarvirdizadeh [66] applied
MLP and radial basis function (RBF) ANNs for continuous
measurement of the stress index. By choosing 40 neurons
for the hidden layer, their trained models could estimate
the stress index with the correlation coefficient values of
0.86 and 0.74 and the average relative error of 0.35 and 0.42
on a subset of the combined features of PPG and GSR
signals.

Moreover, there are other types of deep learning-based
inference networks. Li and Sano [123] built a 2-layer stacked
LSTM followed by a single dense layer as the generalized
prediction model to forecast users’ well-being states (scaled
between 0 to 100). By feeding on daily-level temporal fea-
tures auto-learned through a hierarchical recurrent autoen-
coder, the prediction mean absolute error (MAE) values of
their general model reached 18.1 & 0.3 for emotion (sadness
and happiness), 19.3 + 0.8 for health (sickness and health),
and 19.9 & 0.5 for stress (stress and calm). In another exam-
ple, Ravindran et al. [171] leveraged a CNN architecture as
the classification framework. They set three convolution-
pooling blocks with Tanh non-linearity as an activation
function followed by a global average pooling layer, to clas-
sify handcrafted HRV features on three emotional dimen-
sions. After 5-fold cross-validation, they obtained a binary
mean accuracy of over 60% on valence, arousal, and domi-
nance. In addition, Baghdadi et al. [11] added a softmax
layer on relevant EEG features to perform the classification
task for anxious states detection. For self-assessment-based
labels, they achieved 83.50% and 74.60% accuracy respec-
tively for 2 and 4 anxiety levels detection.
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5.3 Multimodal Fusion

With the shift toward increasingly multimodal emotion
sensing systems, various fusion methods for data collected
from multiple sources have been proposed by researchers.
Current multimodal fusion strategies for mobile emotion
sensing can be summarized into two categories: feature-
level fusion, and decision-level fusion.

Feature-level fusion is the most common method, in
which features extracted from different modalities are
directly concatenated to form the joint feature representa-
tion. Then, the combined feature representations are used as
inputs to the final emotion inference network. Because the
fusion process comes before the inference stage, this fusion
method is also called early fusion. For example, Pham and
Wang [159] learned a joint representation across PPG signals
and facial expressions to recognize people’s emotional
responses to mobile videos. Each modality was separately
encoded with manual feature engineering and then merged
to a joint representation by using a feature-level fusion
approach. After that, a user-independent general model was
evaluated on nine emotional response metrics by building
an SVM binary classifier and utilizing the leave-one-subject-
out method. Although feature-level fusion is easy and
straightforward to implement, this method is often criticized
for ignoring the synchronization among different modalities,
especially when considering their differences in time formats
and metric levels. Recently, Zhang et al. [237] considered
synchronization among modalities, and made an improve-
ment on feature-level fusion. They aligned data at the time-
session level and adopted a hierarchical attention mecha-
nism to incorporate feature sets from different sensors. Tak-
ing the extracted features from an individual sensor as input,
they first leveraged an attention layer on the session-level to
fuse them into a specific sensor feature representation. They
then leveraged another attention layer on the sensor-level to
further fuse the feature representation of each sensor to out-
put a multi-sensor representation. After this step, they uti-
lized MLP and a sigmoid function to obtain a prediction for
emotion instability whose score was quantified by self-
reported six basic emotion states (Ekman’s emotion model).

Decision-level fusion aims to combine the independent
results from different single modality inference networks and
make a final decision via some algebraic rules. Because this
fusion process comes after the inference stage, this method is
also called late fusion. For example, Alam and Riccardi [6]
applied a majority voting strategy for decision-level fusion in
their study. They trained five SVM classifiers on five feature
sets respectively, and then combined the decisions from these
classifiers by majority voting. Their experiments demonstrate
that the decision combination provided significantly better
results compared to the results of any single feature set in per-
sonality traits prediction. In addition to these simple algebraic
rules, some studies have also leveraged specific learning algo-
rithms to fuse the decision results. Adibuzzaman et al. [2]
used the Naive Bayes algorithm to fuse the modalities of facial
expression and energy expenditure of body movement at the
decision level. Specifically, they used the conditional error
distributions of each classifier to approximate the uncertainty
of each classifier’s decision. The final combined decision of
emotional state was the weighted sum of all individual out-
puts. Sharma et al. [190] used Ensemble Learning (EL) to
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combine decisions from the modalities of facial expressions
and physiological signals to improve the overall performance
of their approach. They designed seven different algorithms
(linear, radial, and polynomial kernels of SVM and Gaussian
processes, and a M5 model tree) for each modality, and
obtained the fused results for cognitive assessment by using a
weighted average from all the inference algorithms. Never-
theless, as different modalities are trained independently,
decision-level fusion lacks the ability to learn the mutual cor-
relations among modalities and the fusion process is rela-
tively time-consuming.

5.4 Summary

An overview of mobile emotion sensing research conducted
on the inference phase, described by the task category (clas-
sification or regression), fusion approach, used inference
method, measured emotions and experimental performance, is
presented in Table A3 (see Appendix A, available in the
online supplemental material).

Overall, we find that ML methods are the most exten-
sively used inference structures. This is largely due to the
fact that many of these ML methods are easier to imple-
ment, need less training data, and many software libraries
such as scikit-learn, Weka, and OpenCV provide ready-to-
use base ML structures. Furthermore, faster convergence
speed and lower hardware requirements are also important
benefits. Even for neural network-based feature extractors,
ML methods can also be used as trade-off inference net-
works or baselines [31], [57], [190], [206]. Regarding multi-
modal fusion strategies, feature-level fusion has seen much
wider use than decision-level fusion. In large part, this is
because feature-level fusion enables the implementation of
end-to-end architectures that have no need for extra pre-
processing and feature extracting steps. This has practical
significance for real-world deployment. On the contrary,
decision-level fusion needs repetitive training for different
classifiers, which is time-consuming and unfavourable for
real-time predictions.

In most cases, emotion sensing is considered a classifica-
tion problem, and the target of the proposed system is based
on the discrete emotional theory. However, recently the
dimensional emotional theory has increasingly drawn more
attention due to its advantages [165], and researchers have
attempted to explore the mobile emotion sensing problem
from both a classification and a regression point of view. For
example, by directly using continuous arousal/valence val-
ues or an average value over time as inference labels, taking a
look at emotion sensing problems from a regression point of
view [123], [125]; or by using thresholds to segment the con-
tinuous arousal or valence scales into different independent
parts, realizing simple classification on the dimensional emo-
tion model [212], [238]. Finally, regarding experimental per-
formance, the accuracy of most studies has reached over 70
percent, while considering a plethora of different inputs and
outputs. Nevertheless, it is important to note that these results
are mostly based on existing public or self-collected labora-
tory data, which lacks thorough validation in realistic every-
day scenarios. Therefore, there is still considerable ground to
be covered before current emotion sensing technology can be
integrated into everyday mobile and embedded devices.
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6 DISCUSSION

Due to page limitations, the content of the discussion is
available in Appendix B, available in the online supplemen-
tal material.

7 CONCLUSION

This article presents an overview of emotion sensing techni-
ques for mobile and wearable devices. We first describe the
methodology used for our bibliographic search. Then, we
provide a comprehensive analysis of research conducted on
the three stages (perception, learning, inference) that com-
prise typical mobile emotion sensing frameworks. Finally,
we discuss open challenges and future directions for mobile
emotion sensing research. We argue that with the rapid
development of mobile and wearable devices and increased
interest in technology-supported interventions for mental
health and well-being, there is increasingly a need for accu-
rate, robust, and ubiquitous emotion detectors that can be
deployed and integrated into everyday interfaces and devi-
ces in the near future.
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