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Abstract—With the rapid development of mobile and wearable devices, it is increasingly possible to access users’ affective data in a
more unobtrusive manner. On this basis, researchers have proposed various systems to recognize user’s emotional states. However,
most of these studies rely on traditional machine learning techniques and a limited number of signals, leading to systems that either do
not generalize well or would frequently lack sufficient information for emotion detection in realistic scenarios. In this paper, we propose
a novel attention-based LSTM system that uses a combination of sensors from a smartphone (front camera, microphone, touch panel)
and a wristband (photoplethysmography, electrodermal activity, and infrared thermopile sensor) to accurately determine user’s
emotional states. We evaluated the proposed system by conducting a user study with 45 participants. Using collected behavioral (facial
expression, speech, keystroke) and physiological (blood volume, electrodermal activity, skin temperature) affective responses induced
by visual stimuli, our system was able to achieve an average accuracy of 89.2% for binary positive and negative emotion classification
under leave-one-participant-out cross-validation. Furthermore, we investigated the effectiveness of different combinations of data
signals to cover different scenarios of signal availability.

Index Terms—Emotion recognition, mobile and wearable devices, behavioral signals, physiological signals, attention-based LSTM.
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1 INTRODUCTION

EMOTIONS play a crucial role in our daily lives as they
can aid decision-making, learning, communication, and

situational awareness [1]. Emotions can go awry, however,
and many of the most common and devastating mental
illnesses involve emotional disorder [2]. In the last few
decades, researchers have attempted to empower machines
with human-like intelligence to automatically recognize and
understand users’ affective states, and further provide data-
driven insights for well-being [3], [4]. Emotion recognition
is an active and challenging research topic that directly
contributes towards research efforts to create technologies
that support emotional well-being [5], [6].

Research in psychology has shown that human emotions
encompass complex combinations of subjective feelings,
physiological and behavioral responses triggered by exter-
nal stimuli [7], [8]. Recognizing these response signals can
improve understanding of emotional expressiveness, and be
crucial for clinical diagnostic and therapeutic procedures in
mental health care [9]. Currently, two main approaches are
used to identify human emotions. First, researchers have
analysed a wide range of behavioral signals such as facial
expressions [10], [11], speech [12], and gestures [13], all
of which can be collected directly. Such signals, however,
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often have reliability issues since people can disguise their
emotions by controlling behaviors like facial muscles or
intonation patterns in social communications [14]. Another
challenge is that analysing these signals often requires an
ideal technological setting. For example, analysing visual
data (e.g., facial expression, body gestures and movement),
requires pre-installed cameras with sufficient resolution and
an appropriate viewing angle [15].

The second main approach to identify emotions analyses
physiological data, such as electrocardiogram (ECG), elec-
troencephalogram (EEG), electromyogram (EMG), galvanic
skin response (GSR), and heart rate (HR) to detect emotional
changes in a person. These signals reflect activities of the
human body’s central nervous system (CNS) and autonomic
nervous system (ANS) which have been shown to have
intimate links with inner emotional changes [16], [17]. Com-
pared to behavioral data, physiological data are considered
to be more objective, as they typically reflect involuntary
responses and are more difficult to consciously conceal or
manipulate [18]. A significant amount of research in this
area, however, relies on physiological sensing equipment
of medical grade, which is often invasive, expensive, and
needs technical guidance from professionals; this, therefore,
limits their application in real-world scenarios. EEG, for ex-
ample, requires electrodes to be attached to subjects’ scalps,
while GSR requires sensors to be placed on participants’
hands or soles [19]. In addition, ambient environment noise
and over-sensitive sensing devices pose barriers to physio-
logical data acquisition [20].

In our work, we collect both behavioral and physiolog-
ical signals from sensors embedded in off-the-shelf smart-
phones and commercial wearables in a way that can be
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implemented for ordinary technology users in everyday
life. In particular, we propose a deep, multimodal, mo-
bile emotion-recognition system that leverages these signals
in tandem to detect rapid and fine-grained fluctuation in
emotion. On the one hand, deep learning methods have
been shown to outperform previous state-of-the-art machine
learning techniques in many tasks including noise reduction
and high-level feature extraction [21], [22]. On the other
hand, a multimodal approach has a few advantages over
a unimodal approach: (1) it is able to deal with missing
data problems which commonly arise in a unimodal sig-
nal [18]; (2) it is more capable of detecting emotions hidden
behind social masks [23]. Moreover, with the development
of mobile technology, modern smartphones and wearable
devices are increasingly low-cost and sensor-rich, and allow
us to unobtrusively detect user responses without spatio-
temporal limitations, which contributes to efforts to deploy
affect detection into real-world contexts. Potential applica-
tions of such a system are diverse. For example, traditional
diagnosis of affective instability usually depends on inter-
views or questionnaires, which rely heavily on respondents’
retrospective recall and subjective assessment of affective
variability or reactivity [24]. Mobile-based emotion recog-
nition could allow clinicians to monitor patients’ emotional
changes objectively and remotely, which could provide a
more complete picture of patients’ day-by-day mental states
and help to improve diagnostic accuracy.

Moreover, to overcome the challenge of collecting real
emotional responses [25], [26], [27], [28], [29], we utilize
visual stimuli to elicit participants’ emotions. This is a com-
mon and effective approach used in Neurophysiology and
Psychology research [30], [31]. Then we used a smartphone
to collect subjects’ facial expressions, speech and keystrokes,
and a wristband to collect their blood volume pulse (BVP),
electrodermal activity (EDA) and skin temperature (ST).
Next, we adopt a deep learning framework to identify
human emotions from these raw data inputs. Compared
with traditional statistical analysis methods and machine
learning techniques (e.g., decision tree or support vector
machine (SVM)) [32], deep learning techniques can work
on raw data and automate the feature extraction and se-
lection, which eliminates the need for data pre-processing
and handcrafted feature construction [33]. Specifically, we
develop a novel attention-based Long Short-Term Memory
(LSTM) neural network classifier to train and examine the
collected database. Lastly, by leveraging a modality-level fu-
sion approach, we compare and analyze the relative recog-
nition accuracy of different combinations of data signals,
and provide recommendations to the research community
regarding the recognition capabilities.

Thus, the contribution of our work is three-fold:

1) We proposed a novel attention-based LSTM sensing
system that automatically detects human emotional
states based on the fusion of behavioral and phys-
iological data collected from an off-the-shelf smart-
phone and wearable wristband.

2) We designed a replicable experimental protocol
based on mobile devices aimed at collecting sponta-
neous affective responses for future emotion-related
research.

3) We conducted a study with 45 participants to evalu-
ate our model and achieved a high average accuracy
of 89.2% for binary (positive and negative) emotion
recognition. We also compared the effectiveness of
different combinations of behavioral and physiolog-
ical signals in different scenarios.

2 RELATED WORK

2.1 Emotion Models
Emotions are often characterized by “short, intensive
episodes”, and triggered by “a particular event or per-
son” [34]. These can manifest in relatively clearly recogniz-
able states such as fear, disgust, sadness, joy, anger, and sur-
prise, but also more complex states such as embarrassment,
shame, guilt, contempt, compassion, and admiration [35],
[36]. However, because of the subjective and personal na-
ture of emotions, in most cases they are difficult to define
accurately and describe quantitatively. Currently, a defini-
tive description of emotions is still being debated within
physiology and psychology research [37]. Throughout years
of research, scholars have attempted to characterize and
model human emotions from different aspects, and have de-
rived two fundamental viewpoints: (1) the discrete emotion
model and (2) the continuous multi-dimensional emotion
model [38].

The discrete emotion model can be traced back to the
mid-late 19th century with Charles Darwin’s pioneering
book, The Expression of the Emotions in Man and Animals [39].
In this seminal work, Darwin argued that human emotional
expressions have evolved and (at least at some point in
the past) were adaptive for survival [40], and that there
exists a degree of universality in emotion expression [41].
Inspired by this, Ekman and his colleagues proposed that
certain emotions appear to be universally recognized re-
gardless of cultural background, and further identified six
basic emotions: anger, disgust, fear, happiness, sadness, and
surprise [42]. Later, Plutchik proposed the “wheel of emo-
tions” that groups eight primary emotions into positive and
negative opposites, e.g., joy versus sadness [43]. This helps
to illustrate that primary emotions can be expressed with
varying intensity and mixed to form complex emotions.

The continuous multi-dimensional emotion models at-
tempt to describe emotions through multiple dimensions
rather than discrete labels [44]. The theory behind this
model assumes that there are common, overlapping neu-
rophysiological systems that all emotional states arise from,
which challenges the discrete emotion theory that different
emotions correspond to distinct expressions of the nervous
system [45]. Among multi-dimensional emotion models, the
valence-arousal model [45] is the most commonly used,
in which the valence dimension describes the unpleasant-
pleasant continuum and the arousal dimension represents
the deactivated-activated continuum. Each emotion can be
understood as an orthogonal combination of these two
dimensions. For example, stressed can be conceptualized as
an emotional state that is the product of unpleasant valence
together with activated arousal.

In this paper, we aim to classify positive and negative
emotions, which is of great importance for clinicians (e.g,
the need to identify how often negative emotions take place
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during some period of time) and researchers interested in
well-being. In our study we use happy and sad scenes from
validated visual stimuli databases to induce positive and
negative emotions in our participants.

2.2 Emotion Recognition Technologies

To date, researchers have investigated a variety of differ-
ent data sources to predict human affective states. Tradi-
tional emotion recognition technologies usually focus on
visual or audio signals, i.e., facial expression and speech.
Among a number of facial expression systems, the Facial
Action Coding System (FACS) developed by Ekman and
Friesen [46] was widely adopted by emotion researchers.
FACS describes facial behaviours in terms of a set of specific
Action Units (AUs), each of which is associated with an in-
dividual face muscle or muscle group. Based on this system,
human coders can manually deconstruct any possible facial
activity, mapping it to a combination of AUs. Subsequently,
researchers developed software tools for automated facial
coding [47], and employed machine learning techniques
(e.g, nearest neighbor and bayesian networks) to map the
extracted and selected features to different emotional cat-
egories [48], [49]. Speech is another data source that has
been widely used for emotion recognition purposes, as it
is one of the main channels used by human beings to trans-
mit affective information. Early studies leveraged low-level
acoustic descriptors and derivations (LLDs) with functional
statistics as acoustic features for emotion analysis, especially
some vocal parameters such as pitch, intensity, and speaking
rate [50], [51]. Further studies found that pitch and energy-
related features play a key role in the recognition of emo-
tion, and proposed different methods, e.g., mel-frequency
cepstral coefficients (MFCC), mel-frequency spectral coef-
ficients (MFSC), log frequency power coefficients (LFPC)
and linear prediction cepstral coefficients (LPCC), to derive
these features from audio clips for emotional expression
analysis [52], [53].

With the development of modern neuroscience, re-
searchers have also begun to leverage physiological reac-
tions in addition to behavioral responses, such as cardio-
vascular rhythms, the release of certain neuropeptides, or a
change in gastrointestinal fluid [54], [55]. Inspired by these
advances, affective computing studies began to investigate
the link between emotions and numerous physiological
signals from brain, heart, muscles and skin. Hsu et al. [56]
adopted music emotion induction techniques to induce
spontaneous emotions and recorded relevant ECG signals
from 61 healthy participants. They designed a selection
algorithm to extract the time-domain and frequency-domain
ECG features and adopted generalized discriminant anal-
ysis (GDA) to reduce the dimensions of selected features.
Using an LS-SVM classifier, they achieved an automatic
ECG-based emotion recognition system. Zheng et al. [57]
collected EEG signals and eye-tracking data from 5 subjects.
They used film clips as stimuli to evoke emotions in subjects
and built emotion recognition models based on two fusion
strategies. By employing an SVM training method, their
classifier was able to recognize three categories of emo-
tional states: positive, neutral, and negative. Lee et al. [58]
derived physiological signals from PPG, EMG, and inertial

measurement unit (IMU) sensors placed respectively on the
earlobe, the upper trapezius muscle, and the back of the
head. By training the SVM model, their proposed wearable
system achieved a high accuracy rate of monitoring negative
emotional states and demonstrated a high potential for
implementation as a driver emotional-response monitoring
system. Similarly, Perusquı́a-Hernández et al. [59] explored
micro-expression detection by leveraging a wearable de-
vice that detects signals from distal facial EMG sensors.
In another example, Zhao et al. [60] proposed EQ-Radio,
a wireless system that can recognize emotions by using RF
reflections off a person’s body.

Later, the development and popularization of smart-
phones and many wearable devices such as smartwatches
and wristbands has opened a new path toward emotion-
aware computing. Compared with other techniques, mobile
devices’ increasingly lower cost, greater computational ca-
pacity, wider accessibility, and more unobtrusive sensing
capability, can further facilitate affective sensing and com-
puting research. For instance, Zhao et al. [14] developed an
automatic emotion recognition system based on a wearable
wristband. Specifically, using the embedded rich biosensors
on the wristband, they collected three kinds of physiological
signals, blood volume pulse (BVP), electrodermal activity
(EDA), and skin temperature (ST) from 15 participants
with emotion changes triggered by video stimuli. Then,
they extracted a set of fine-grained features to represent
physiological signals by adopting the sequence forward
floating selection (SFFS) method, and classified different
emotions through SVM method. In another example, Zhang
et al. [61] proposed MoodExplorer, an automatic system for
compound emotion detection based on smartphone sensing
data. They first extracted different types of features from
the environments, social contacts, APP usage and activities
of individuals, then used a feature selection algorithm to
choose the most significant features. By training a factor
graph based machine learning model, they finally achieved
76.0% average recognition accuracy with 30 university stu-
dents.

Besides using off-the-shelf wearable devices, researchers
have developed several research prototypes equipped with
different biosensors to explore mobile or wearable emotion
sensing more flexibly. For example, Wu et al. [62] built a cus-
tom eye-tracking platform consisting of an infrared camera
and a System-on-Chip (SoC) board to capture the single-
eye-area images and further achieve accurate identification
of a user’s emotions. After conducting comprehensive ex-
perimental evaluations on 20 participants, their proposed
system was shown to recognize seven-type emotions at
12.8 frames per second with a mean accuracy of 72.2%. In
another example, Masai et al. [63] used 17 photo-reflective
sensors embedded in the front frame of the eyewear to
capture skin deformations caused by the movement of
facial muscles. They then applied the SVM algorithm to
the acquired data and achieved facial emotion recognition
with around 75% accuracy for different usage scenarios.
Although research wearable devices can potentially achieve
higher emotion detection accuracy, we chose to explore
commercially available devices in this study because of the
following reasons: (i) they can be immediately used for
further studies regarding the viability of emotion detection
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in a mobile platform; (ii) our ultimate aim is to achieve
mobile emotion sensing in real-world scenarios rather than
only pursuing higher emotion recognition accuracy; from
this perspective, commercial wearables are more appropri-
ate since they are cheaper, easier to access, and have a more
stable performance. Moreover, the off-the-shelf commercial
wearable device we selected (i.e., the Empatica E4 wrist-
band) has been widely used in other studies [64], [65], [66],
[67], [68]. Lastly, we did not use commercial supporting
software tools to process collected raw data, therefore, as
for physiological signals we focused on (i.e., BVP, EDA, ST),
it does not make a significant difference whether they are
collected by commercial or research wearables.

More recently, deep learning has been widely used in
emotion detection [69], [70], [71], [72], [73], due to its better
performance than traditional machine learning methods.
Compared with standard handcrafted features, deep neural
networks can automate feature extraction and selection pro-
cess, and learn high-level and non-linear robust features. For
example, Shukla et al. [74] explored convolutional neural
network (CNN) features from both audiovisual and EEG
signals to recognize advertisement emotions. Rayatdoost et
al. [75] presented a novel multimodal gated fusion method
to learn the joint deep representation between EEG signals
and facial behaviors. However, throughout the associated
mobile affective computing literature, we note that while
some attempts at detecting human emotion via mobile
devices have begun to use deep learning [33], [76], [77], it is
still a new and growing area of research that requires further
work. This is partly due to the usage complexity of mobile
devices as well as the rich variation in individual affective
expression. Thus, in this study, we further explore deep
learning frame-based mobile emotion recognition methods,
and propose a novel attention-based LSTM structure that
utilizes both a smartphone and a wristband to collect and
fuse behavioral as well as physiological signals (i.e., facial
expression, speech, keystroke, BVP, EDA, ST) to identify
the users’ emotional states. Because the focus of this paper
is short-term mobile emotion recognition, we did not use
the approach common in other mobile emotion recognition
work of using indirect behavioral information from long-
term sensor data (e.g., acceleration, gyroscope, Bluetooth,
WiFi, GPS, etc.) as model inputs [61], [78], [79].

3 METHOD

3.1 Visual Stimuli

In recent years, there has been an increase in the availability
of large-scale affect datasets. These datasets contain data
originating from a single [80] or multiple sources [81], [82],
and are validated using spontaneous [83], [84] or non-
spontaneous [85], [86] emotion data. However, to the best of
our knowledge, there is no publicly available labelled affect
database that entirely relies on everyday mobile devices.
This is of particular importance as users’ spontaneous mo-
bile behaviours are typically more complex and uncontrol-
lable, which in most databases is not present or is treated as
noise. Based on these considerations, we decided to collect
a multimodal spontaneous emotion database exclusively
using mobile devices.

Experimentally inducing emotions is the most rigorous
means of analyzing the effects of emotions and has a rich
history in psychology, neuroscience, and psychiatry [31],
[87]. In our experiment, we chose static pictorial stimuli to
evoke positive and negative emotions respectively. There are
two main reasons why we chose this type of stimuli over
other available methods: 1) visual stimuli (including static
pictures and videos) are more efficient than other emotion
induction techniques, such as music or autobiographical
memory recall in most situations [31], and 2) unlike video
stimuli, pictorial stimuli have several standard databases
that have been repeatedly verified in both cross-user and
cross-cultural conditions [88], [89]. Specifically, 10 affective
pictures (5 for positive1, 5 for negative2) were selected from
two well-known affective picture databases, the Interna-
tional Affective Picture System (IAPS [90], [91]) and the
Nencki Affective Picture System (NAPS [92], [93]). It is
worth mentioning that there are some mobile or wearable
emotion sensing works [94], [95], [96], [97] that also at-
tempted to recognize emotions elicited by IAPS. But unlike
their works, we focus on multimodality signals from both
behavioral and physiological categories, given that their
contained clues are complementary and attempting to mine
comprehensive affective information, rather than biasing
toward certain modalities.

3.2 Participants
We recruited 45 healthy participants via social media and
posters placed around our university campus. We excluded
data from 5 participants due to problems during the data
collection process. All remaining participants were students
or staff in our university. 52.5% (21) were males and 47.5%
(19) were females. Their ages ranged from 18 to 36 years old
(mean ± standard deviation, 23.9 ± 4.7 years). We ensured
that none of the participants had a history of cardiovascular
or neurological illness, and that all participants had normal
or corrected-to-normal vision.

3.3 Procedure
Before each experiment started, we simultaneously con-
nected the smartphone and wristband to a computer to
synchronize their internal clocks with the computer’s clock
and assure that they had synchronized timestamps.

Upon arriving at our lab, participants were briefed on
details of the experiment including the principal experimen-
tal tasks, the self-report questionnaires, and experimental
devices. Participants were then asked to sign a consent form
if they agreed with the experimental setup. Afterwards, each
participant was asked to wear an Empatica E4 wristband3

on their non-dominant hand (to minimize motion [77]) with
the assistance of a researcher to ensure the electrodes lined
up on the bottom of the wrist and to avoid relocation
during hand movements. Participants were also asked to
hold a smartphone in their dominant hand. The experimen-
tal design was approved by the ethics committee of our
university. Each participant was compensated with a $20
gift voucher for their participation.

1. IAPS IDs: 1920; NAPS IDs: Animals 183 h, Faces 001 h,
Faces 079 h, Faces 127 h.

2. IAPS IDs: 2205, 8010, 9421; NAPS IDs: Faces 155 h, People 143 h.
3. https://www.empatica.com/research/e4/
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Fig. 1. The four stages of each experimental session, including emotion induction, self-report, typing task, and speaking task. In the emotion
induction stage, one affective picture was presented for 10 seconds; in the self-report stage, participants completed a self-assessment reflecting
on their current emotion after looking at the picture; in the typing task, participants had to type the text presented on the screen; and in the speaking
task, participants had to read aloud the text presented on the screen.

Our experiment had a total of ten sessions. Each session
consisted of four stages, including emotion induction, self-
report, typing task, and speaking task. Fig. 1 shows the different
stages of each experiment session. Firstly, one affective
picture from our selected visual stimuli was presented in
the center of the smartphone screen for 10 seconds (shown
in Fig. 1a), in order to evoke one target emotion. This
presentation duration has been shown to be more than
sufficient for picture emotion elicitation [98], [99], [100],
[101], [102]. Next, a questionnaire was triggered, asking
participants to self-report their emotional state elicited by
the displayed image (shown in Fig. 1b). Following rec-
ommendations from previous work [103], we used 7-point
Likert scales to indicate the intensity of different emotions,
with 1 indicating a weak feeling and 7 indicating a strong
feeling. At this stage, we presented our participants with
both positive and negative emotion choices and asked them
to rate all emotions simultaneously in order to ensure that
choices were independent (e.g., “5” for positive, and “1” for
negative). We chose the emotion with the highest value as
the final “ground truth”. After completing the questionnaire
and pressing the “CONTINUE” button, the participants
were required to type out in the dedicated text entry area
some text that was displayed in the upper half of the
smartphone screen (shown in Fig. 1c). Finally in stage 4,
participants were asked to press and hold the “HOLD TO
TALK” button, while reading out loud a set of sentences
displayed on the top of the screen (shown in Fig. 1d). In
short, we first induced an emotion in participants, then
collected their self-reported emotion, and finally presented

them with typing and speaking tasks.
The ten affective pictures were presented to each par-

ticipant in pseudo-random order where any two pictorial
stimuli in the same category (happy or sad scene) would
not appear in succession, so that all emotional scenes were
spread evenly over the experiment. Furthermore, in order
to avoid any possible sequence effects of typing task and
speaking task, we also counter-balanced these two tasks, so
that half of the participants encountered the typing task
first, while the other half encountered the speaking task first.
After each session, participants had a 10-second break to
mitigate potential carryover effects of the previous emo-
tional experience as suggested in the literature [19], [104].
In addition, after every two sessions, we added one extra
session with a neutral picture to further strengthen this
moderating impact. We also set a training session with a
neutral picture to keep participants relax before the formal
experiment. Thus, a complete experiment actually consisted
of sixteen (10+5+1) sessions.

Moreover, to avoid the potential affective interference
from the linguistic or semantic information of the sentences
displayed in typing task and speaking task, we selected the
“emotion-free” sentences from two phrases sets that are
frequently used in text entry and speech synthesis stud-
ies: the MacKenzie and Soukoreff phrase set [105], and
the CMU ARCTIC database [106]. Then we used the IBM
Watson natural language understanding API4 to ensure the
selected sentences are indeed neutral expression. Further-

4. https://www.ibm.com/au-en/cloud/
watson-natural-language-understanding/resources
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Fig. 2. Overall system structure. We collected facial expression and three types of physiological signals (BVP, EDA, ST) during the emotion induction
stage, speech data during the speaking task, and keystroke data during the typing task. These data were passed to the preprocessing and attention-
based LSTM feature extractor respectively, which outputted four modality-specific feature vectors. The concatenate and the dense layers fused these
four vectors and learned the mutual association among modalities for final emotion recognition. The result was then compared with the ground truth
collected in the self-report stage.

more, in order to avoid memorization, we did not use the
same sentences for the typing task and speaking task. Instead,
we used different sentences with similar Flesch-Kincaid
scores that quantify the difficulty of the sentences used in
mobile text entry [107], [108].

3.4 Data Collection

We developed a custom Android application as a data
collection tool, which leverages the embedded front fac-
ing camera, microphone, and default software keyboard
(Gboard5, with suggestion and correction features disabled,
using the default Android widget named EditText) to moni-
tor participants’ behavioral data. Specifically, the application
recorded the following data signals: (1) facial features when
participants looked at the affective pictures; (2) participant’s
self-report questionnaire answers; (3) keystrokes (including
each character typed and deleted, and the detailed time
when each key-down event happened) according to the par-
ticipant’s typing behavior; and (4) raw audio data collected
during the speaking task. We chose these specific behavioral
modalities as they have been widely investigated in the
emotion recognition field [109], [110], [111], [112] and have
many high-fidelity feature models, rendering them more
suitable for short-term emotion recognition research.

Regarding participants’ physiological data, as suggested
by [14], [65], we used the Empatica E4 wristband to capture
blood volume pulse (from the photoplethysmograph (PPG)

5. https://play.google.com/store/apps/details?id=com.google.
android.inputmethod.latin&hl=en

sensor), electrodermal activity (from the electrodermal ac-
tivity sensor), and skin temperature (from the temperature
sensor) data with sample rate at 64 Hz, 4 Hz, and 4 Hz
respectively6.

4 IMPLEMENTATION AND ANALYSIS

The overall structure of our proposed recognition system is
illustrated in Fig. 2. The structure consists of three major
parts: data preprocessing, feature extraction, and emotion
recognition. We cover each part in more detail in the follow-
ing sections.

4.1 Data Preprocessing
The system accepts raw data from facial expression, speech,
keystroke, BVP signal, EDA signal, and ST signal as inputs.
Through the data preprocessing module, the heterogeneous
inputs can be formatted into specific representations, which
can be effectively used in the following feature extraction
network module.

Specifically, for the facial expression input, we first ex-
tracted the related frames with the speed of 30 fps by
FFmpeg7, which converted the raw input video into a series
of continuous image frames. Based on this, we built our
facial feature extractor with EmotionNet2 [113] for each
frame. EmotionNet2 is the extension of EmotionNet [114],
which is a novel computer vision algorithm for emotion

6. https://support.empatica.com/hc/en-us/articles/
201608896-Data-export-and-formatting-from-E4-connect-

7. https://ffmpeg.org/
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recognition of human faces in photographs. It builds up on
the ultra-deep ResNet architecture [115] and performs well
especially in reducing the variance caused by background
noise [116]. We used it as a trained feature-extractor for
facial expression, and selected the output before the last
layer as the feature representation of each frame. During
training, we found that there were some instances where the
extracted frames did not contain a face or the face propor-
tion was too small. We removed these noisy frames by using
the face detection algorithm embedded in EmotionNet2, and
padded the frame stream at the end by duplicating the last
frame from the video. Finally, each input is represented as a
Nf × 512 matrix, where Nf is the number of frames.

For the speech input, we used the OpenSmile toolkit [117]
to directly extract mel-frequency cepstral coefficients
(MFCC) from raw audio signals as acoustic representations.
It computes MFCC features from 26 Mel-frequency bands
computed from the fast fourier transform (FFT) power spec-
trum. In addition, delta (∆) and acceleration (∆∆) coeffi-
cients are also appended to the MFCC. The extracted feature
set thus contains 39 dimensions (12-MFCC, 12-∆MFCC, 12-
∆∆MFCC, P, ∆P and ∆∆P, where P stands for raw energy
of the input speech signal [118]). After normalization, the
final acoustic representation is a 2-D array with Ns × 39
dimensions, whereNs is number of extracted MFCC frames.

For the keystroke input, there are several different fea-
tures that can be monitored when the user presses keys
on a keyboard, such as pressure, finger movement, and
typing speed [119]. We focused specifically on the duration
features, i.e., the interval time between two consecutive key-
down events on the smartphone virtual keyboard. Consid-
ering that most participants completed the typing task in a
relatively short time slot, we regarded each raw input as a
long window to observe the entire trends. After the normal-
ization, we got a representation matrix with (Nk − 1) × 1
dimensions, where Nk is the number of key-down events.

Fig. 3. Data segmentation. 10-seconds of physiological data was seg-
mented into seven 2.5-second windows.

Regarding the physiological inputs, there are three types
of data: (1) BVP measures the pulse-wave of the heart and
the volume of the blood flowing through a vessel. It is
obtained by the use of a PPG sensor embedded in the
E4 wristband. This component illuminates the skin using
a light-emitting diode and records the pulse waveform
using a photo-diode. (2) EDA refers to the variation in
the electrical characteristics of the skin. It is monitored by
measuring the voltage between two electrodes by applying
low-level current to the skin. It shows an electrodermal
response of the human body to external stimuli. (3) ST

means the temperature of the human skin. It is measured
by using the thermopile infrared sensor. It can describe the
response of the vessels when stimulated by external factors.
For example, the skin temperature will be warmer when
the vessels dilate, while it will be colder when the vessels
constrict. For each physiological input, we first standardized
it through the z-score normalization. Then, as suggested
in [15], we leveraged a 2.5-second sliding window with 50%
overlap to achieve data segmentation. Considering that we
only focused on the participant’s physiological responses
in emotion induction phase (10 seconds), a stream of input
data was thus split into seven windows (shown in Fig. 3).
Finally, the representation for each physiological input is a
2-D array withNp×Sp dimensions, whereNP is the number
of time windows, Sp is the size of data in one time window.
Specifically, the value of Sp is 160, 10, and 10 for BVP, EDA,
and ST respectively, based on their sample rates (64Hz, 4Hz,
and 4Hz).

4.2 Attention-based LSTM Feature Extraction

In this step, we applied the LSTM structure with an atten-
tion mechanism as a high-level feature extractor. LSTM [120]
is a variant of recurrent neural network (RNN) architecture,
which has the ability to learn the long-term dependencies
from time-series data. The key concepts of LSTM structure
are the cell state and the gate structures, in which the
cell state is similar to the “memory”, i.e., the information
transferred in LSTM while the gate structures decide what
information should be forgotten and updated. Specifically,
there are three kinds of gate structures in LSTM, forget gate,
input gate, and output gate. When passing through the for-
get gate, the unimportant information in the cell state from
the prior steps will be forgotten; when passing through the
input gate, the new information from current input will be
used to update the cell state; and when passing through the
output gate, the output information will be decided based
on the new cell state. By using the LSTM structure, we can
further extract the temporal associations from each input
modality and form a more fine-grained representation. In
addition, considering that not all subsamples in one input
modality contribute equally to the final recognition (e.g., not
all frames have the same importance in one input video), we
also adopted an attention strategy [121] to denote the rela-
tive importance among subsamples and fuse them to a final
informative feature vector. By adopting an attention mech-
anism, we can more effectively capture the temporal-spatial
dependencies by assigning different importance weights to
different subsamples. Furthermore, the fused informative
vector usually has smaller dimensions, which can effectively
reduce the training time [122]. The details are presented in
Fig. 4.

Specifically, we first fed the representation obtained from
data preprocessing phase into the LSTM in sequence:

hi = LSTM(Xi), i ∈ [1, N ] (1)

where Xi is the data of the ith time step of the input
time-series representation, N refers to Nf , Ns, Nk − 1, and
Np for different inputs, LSTM means the LSTM cell, and
hi is the output of the hidden state, which can be viewed
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Fig. 4. Attention based LSTM feature extractor. Xi stands for the data of the ith time step of the input time-series representation; LSTM stands for
LSTM cell; hi is the hidden representation of Xi; uh is the learnable context vector; αi is the assigned importance weight for hi; V is the extracted
informative feature vector.

as the latent information of Xi based on the previous time-
stepping inputs X1, ..., Xi−1.

Then, similar to [123], we computed the attentive energy
ei of each hi through a one-layer MLP, and the normalized
importance weight αi through a softmax function:

ei = tanh(Whhi + bh) (2)

αi =
exp(eTi uh)∑
i exp(eTi uh)

(3)

where Wh and bh are trainable parameters, and uh is a
trainable context vector with random initialization.

Finally, based on a weight sum of hi and αi, we calcu-
lated the high-level feature vector V by applying a dense
layer. Concretely:

V = fRelu(
∑
i

αihi) (4)

We considered the three physiological inputs (BVP, EDA,
and ST) as a whole. On the one hand, all these three inputs
are wristband-based signals, which can be obtained simulta-
neously. On the other hand, the emotional clues are hidden
in multiple aspects of the individual’s physiological signs,
and it is difficult to identify the emotions based only on
the incomplete clues extracted from one single physiological
sign. Thus, we concatenated the feature vectors of BVP,
EDA, and ST to form an entire physiological representation:

VP = [Vbvp, Veda, Vst] (5)

4.3 Emotion Recognition

For the proposed recognition module, there are two major
parts: modality fusion and decision making. We first used a
concatenate layer to fuse the four modality-specific feature
vectors (i.e., visual vector, acoustic vector, typing vector, and
physiological vector). Then we passed the combined feature
vector to a dense layer to further learn the associations
across modalities by:

r = tanh(Wr[VV , VA, VT , VP ] + br) (6)

where r is the final representation for all modalities,
Wr and br are trainable parameters, VV is a 128-dimension
visual vector, VA is a 128-dimension acoustic vector, VT is a
64-dimension typing vector, and VP is a 96-dimension (Vbvp:
64, Veda: 16, Vst: 16) physiological vector. Finally, we made
the classification by using r as input passed into a sigmoid
layer which can output a final emotion classification result
(positive or negative).

We implemented our proposed recognition system using
the Keras framework with Tensorflow as the backend. We
first pre-trained the feature extraction network for each
modality respectively, and then tuned the entire network.
We set LSTM in visual and acoustic modalities with 256
hidden states, in typing and BVP modalities with 128 hidden
states, and in EDA and ST modalities with 64 hidden states.
We set the learning rate to 0.01 and used the SGD optimizer.
We used 16 as the batch size and trained the model for 100
epochs. Except for the attention layers, we used the ReLU
activation function. To overcome the overfitting issue, we
adopted dropout and batch normalization.
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5 RESULTS

We collected a total of 2400 samples from all modalities,
and 400 self-reports (40 participants × 10 affective sessions)
on the spontaneous emotional state of participants. We
removed 5 self-reports (1.25%) where the rating values were
the same for both positive and negative emotions. Fig. 5
describes the distributions of the induced emotions (positive
and negative), as collected for each affective picture and
with pictures divided by their own category (happy and
sad scenes). We first grouped the participants’ self-reports
based on the category of the used pictorial stimuli, then
split the full range of them into seven bins according to
different emotion feeling intensity (1-7 on the rating scales).
Finally, the rating distribution for every induced emotion
was plotted for each scenario category separately in each of
the panels of Fig. 5.

(a)

(b)

Fig. 5. Distributions of the self-report ratings of positive and negative
emotions categories, together with the means of the respective distribu-
tions (dotted lines), for happy (a), and sad (b) scenes in selected stimuli
database.

From the sub-figure (a) and (b), we can see that the
distributions of both positive and negative emotional in-
tensity ratings in all panels are clearly opposite. In the
happy scene group, the mean value for positive emotion

is 5.60, while for negative emotion is only 1.35. Besides,
90.7% positive rating values were above the middle value
of the scales(=4), and 99.5% negative rating values were
below the middle value. Similarly, in the sad scene group,
the mean values for negative and positive emotions were
5.40 and 1.35 respectively, with 88.2% negative rating values
were above and 98.9% positive rating values were below the
middle value. Although in the sad scene group, the negative
distribution toward the largest value of the scale(=7) did
not show a similar strong bias as the positive distribution
toward the smallest value(=1) (the same situation also in
the happy scene group), it still makes sense considering:
(1) we did not select high-intensity pictures for ethical and
experimental reasons; (2) high-intensity emotional changes
happen rarely for most people during daily life. Moreover, it
did not affect the results of our experiment, since we did not
assume the class of affective stimuli as the “ground truth”,
instead we focused on self-report and chose the emotion
with the highest rating value in each self-report as the
“ground truth”. It is worth mentioning that this practice
is appropriate given that emotional responses vary from
person to person.

(a)

(b)

Fig. 6. Classification results of target emotions. (a) confusion matrix; (b)
ROC curves.

We also calculated the time spent by participants on each
experimental session. On average, each participant needed
approximately 16 seconds to complete the emotion assess-
ment and a total of 40 seconds (including induction stage)
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Fig. 7. Recognition accuracy for each participant.

to complete one entire session. Compared with other short-
term emotion research with speech or typing tasks [19],
[124], our experiment was less time consuming for each
experimental session ensuring a more robust emotion in-
duction for all stages.

5.1 Overall Performance
To investigate the robustness of our proposed system, we
used leave-one-participant-out cross-validation to evaluate
the classification performance. Fig. 7 describes the recogni-
tion results for each participant. We can see that our pro-
posed system can recognize the emotional states of almost
all participants (37/40, except participant ID 3, 23, and 37)
with high accuracy greater than or equal to 80% (blue dotted
line). The highest accuracy is 100% for seven participants
(ID 5, 11, 12, 15, 16, 36, 39), while the lowest accuracy is 69%
for participant ID 23 (two red dotted lines). Moreover, we
also evaluated the system’s performance on target emotions,
and plotted their receiver operating characteristic (ROC)
curves with the corresponding area under the curve (AUC)
values (shown in Fig. 6). The results show that our model
achieved a predictive performance of 89.24% for positive
emotion and 89.25% for negative emotion (with 0.86 AUC).
Considering that our model is a user-independent model,
i.e., we trained the model from a set of participants and
tested its performance from other unknown participants.

5.2 Impact of Different Scenarios
Our proposed system used four input modalities (visual,
acoustic, typing, and physiological modality) collected from
both a smartphone and a wearable wristband to analyze a
person’s emotional state. However, in real-world scenarios,
it is likely that only a subset of modalities are accessible. For
example, some people are not willing to wear a wristband
in daily life. Or when using communication apps (e.g.,
Messenger, WhatsApp, Telegram), some users may prefer
to chat with voice input, and some may tend to chat with
keyboard typing. In such conditions, the user’s habits and

(a)

(b)

Fig. 8. Classification accuracy for different modality combinations in
different scenarios. P: physiological, V: visual, A: acoustic, T: typing.

preferences determine the type of modality data that can be
obtained. Thus, we need to explore whether our system can
identify emotions using merely a subset of the data streams
we investigated.
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Fig. 9. Classification accuracy for all possible modality combinations. Unimodality (left), Two modalities (middle-left), Three modalities (middle-right),
Four modalities (right). P: physiological, V: visual, A: acoustic, T: typing.

In this section, we first explore the performance of
each kind of input combination in different real-world
scenarios including smartphone-only scenario and wrist-
band+smartphone scenario, as depicted in Fig. 8. We did
not consider the wristband-only scenario here, since we
regarded all three physiological inputs (BVP, EDA, and ST)
as a whole (as explained in Section 4.2), thus, there was only
one kind of input in this scenario.

From Fig. 8(a), we can see that in the smartphone-only
scenario, three-modality combination (V+A+T) had the best
performance, two-modality combinations (V+A, V+T, A+T)
had a similar second-best performance, followed by one-
modality inputs (V, A, T). Similarly, we see in Fig. 8(b) (i.e.,
wristband+smartphone scenario) that four-modality com-
bination (P+V+A+T) had the best performance, followed
by three-modality combinations (P+V+A, P+V+T, P+A+T)
and two-modality combinations (P+V, P+A, P+T). These
findings, on the one hand, corroborate the finding from
previous work that multimodal accuracies were consistently
better than unimodal accuracies [125], and on the other
hand, extend its applicable scope to the mobile affective
computing field.

Moreover, we put all possible inputs together for com-
parison, as depicted in Fig. 9. From the figure, we further
found that the improvements of multimodal approaches
were cross-scenarios. For example, three-modality combi-
nation in smartphone-only scenario (V+A+T) not only per-
formed better than two-modality combinations (V+A, V+T,
A+T) in the same scenario but also better than two-modality
combinations (P+V, P+A, P+T) in wristband+smartphone
scenario, i.e., three-modality combinations always had a
better performance than two-modality combinations.

We also explored the impact of different combination
strategies on classification accuracy of target emotions. As

TABLE 1
Classification accuracy of target emotions for all possible modality

combinations. P: physiological, V: visual, A:acoustic, T: typing

Positive (%) Negative (%)
P 61.88 58.60
V 60.99 62.90
A 68.16 55.38
T 57.85 56.99
P+V 73.99 73.66
P+A 77.58 72.58
P+T 74.89 66.67
V+A 76.68 65.59
V+T 73.54 72.58
A+T 77.58 66.67
P+V+A 86.55 79.57
P+V+T 88.79 80.65
P+A+T 88.34 76.88
V+A+T 86.10 82.80
P+V+A+T 89.24 89.25

shown in Table 1, we found that for positive emotions,
(1) A had the highest accuracy among unimodal inputs;
(2) P+A, V+A, and A+T had a similar performance which
was modestly better than P+V, P+T, and V+T among two-
modality inputs; (3) P+V+T and P+A+T performed similarly
with P+V+A+T, and were the best combinations among all
inputs. Meanwhile, for negative emotions, (1) V was the best
among unimodal inputs; (2) P+V, P+A, and V+T performed
better than P+T, V+A, and A+T among two-modality inputs;
(3) V+A+T had the best performance among three-modality
inputs, followed by P+V+T and P+V+A; (4) P+V+A+T was
the best among all inputs. Overall, each kind of input
showed its strengths and limitations, and the performance
for all combinations was equally able to recognize positive
and negative emotions.
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5.3 Comparison of Different Fusion Techniques

We also applied the decision-level fusion method to provide
a more comprehensive analysis. Decision-level fusion is a
kind of late fusion method, where different modalities are
trained independently, and finally all their outputs are fused
by using specific algebraic rules or learning algorithms.
Here, we used three principles to achieve decision-level
fusion: sum strategy, max strategy, and logistic regression
algorithm. Sum strategy aims to sum the probabilities of the
same emotions obtained from different classifiers and mark
the emotion with the highest probability as the predicted
label. Max strategy aims to select the higher probabilis-
tic outputs of different classifiers as final results. Logistic
regression processes the weighted combination of outputs
from different classifiers by the logistic function.

TABLE 2
Classification accuracy for different fusion techniques. ML:
modality-level, DL: decision-level, LR: logistic regression

.

Accuracy (%) Weighted F1-score
ML 89.2 0.89
DL-sum 65.5 0.65
DL-max 64.3 0.64
DL-LR 76.8 0.75

Table 2 shows the results of modality-level fusion,
decision-level fusion based on sum strategy, decision-level
fusion based on max strategy, and decision-level fusion
based on logistic regression. We can see that, compared
to modality-level fusion, the performance of decision-level
fusion based on sum strategy dropped by 23.7% accuracy
and 0.24 weighted F1-score, the performance of decision-
level fusion based on max strategy dropped by 24.9% ac-
curacy and 0.25 weighted F1-score, and the performance of
decision-level fusion based on logistic regression dropped
by 12.4% accuracy and 0.14 weighted F1-score. This is be-
cause decision-level fusion assumes all modalities are inde-
pendent, and therefore cannot learn the mutual association
among different modalities. By contrast, in our proposed
system, we merged the hidden states of the feature ex-
traction networks trained using every single modality, and
allowed the system to learn the mutual correlation through
several dense layers.

6 DISCUSSION AND FUTURE WORK

In this paper, we present a novel unobtrusive mobile
emotion recognition system, which has the potential to
contribute towards research efforts focused on emotional
well-being. A large body of research has demonstrated
the feasibility of leveraging digital technology to maintain
and support a person’s emotional well-being [126], [127],
[128]. Due to the complexity and dynamic characteristics of
human emotion, however, recognizing emotions accurately
and in a timely manner is still an open challenge. In prac-
tice, achieving accurate and unobtrusive emotion detection
would enable emotional health monitoring as well as trig-
gering opportune emotional well-being interventions [129].
Our work tackles these challenges in a number of ways. The
multimodal structure we use ensures the continuity of the
data collection process and efficiently prevents a scenario

where there would be a lack of adequate realistic training
data. The amalgamation of different modalities allows for
a better integration of affective information from different
channels, which leads to a more comprehensive understand-
ing and judgment of users’ emotional states.

Previous mobile emotion recognition work has mostly
adopted traditional machine learning and feature engineer-
ing algorithms. Although these handcrafted approaches
have yielded promising results, the low-level handcrafted
features do not generalize well to different application
scenarios. Besides, compared with current fast-growing
deep learning networks, handcrafted-based approaches of-
ten need manual intervention to select the most discrimi-
nating features and the related thresholds from sensor data,
which can be time-consuming, especially when the feature
set is complex and non-linear. In addition, with the increase
in size of the extracted feature set, traditional methods
will need the support of dimensional reduction techniques
to preprocess the features, which will lead to the loss of
information of raw data [33]. To overcome these limitations,
in this work, we adopted a deep learning approach, and
designed a novel attention-based LSTM structure for our
proposed mobile emotion-sensing system. Moreover, we did
not impose strict restrictions on participants during the
experiment, like holding the smartphone with a specific
posture or typing with two hands to purposely get higher
accuracy. Instead, we asked participants to imagine they
were at home and behave normally. As expected, this led
to some non-ideal data collection situations, e.g., the user’s
face being only partially visible or not visible at all. Nev-
ertheless, our system can still detect the target emotions
with high accuracy, which indicates strong robustness and
disturbance rejection properties.

We further designed a replicable emotion elicitation
protocol that leverages off-the-shelf mobile devices. This
protocol uses pictorial stimuli to spontaneously evoke the
different emotional states, as opposed to commonly used
strategies in the emotion recognition databases where either
participants are asked to imitate certain emotional facial
expressions or speech, or professional actors are recruited
to express certain emotions [85], [130], [131]. The latter
approaches effectively enhance the distinctness and identi-
fiability of different emotional responses and make it easier
for sensors to pick up on them, but these posed expressions
are not genuine emotional expressions. Thus, while such
recognition systems may exhibit high accuracy, recent work
has shown a dramatic drop in performance when actor-
trained recognition systems process spontaneous facial ex-
pressions [132], [133].

Considering the spontaneous nature of our collected
data, our approach still achieved high performance (89.2%
average accuracy for 40 participants), well-above the histor-
ical classification accuracies using sophisticated models or
multimodal data with performance ranged from 55 to 80
percent [76], [79], [127], [134]. This once again demonstrates
that our model is robust. We did not further directly com-
pare the performance of our model with previous work due
to differences in the experimental aim (short-term emotion
research) and experimental data (not collecting other smart-
phone usage data such as call/SMS logs or internet browser
history).
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We also explored the impact of different modality
combinations. Overall, the best performance was achieved
by the four-modality combination, followed by three-
modality combinations, two-modality combinations, and
finally unimodality. Whether in smartphone-only or wrist-
band+smartphone scenarios, the more modality data col-
lected, the higher accuracy the system achieved. Our results
also showed that for a scenario with three modalities, the
best-performance combination choice for positive emotion
was P+V+T or P+A+T, and for negative emotion, V+A+T.
For a scenario with two modalities, the best performance
combination for positive emotion was P+A, V+A, or A+T,
and for negative emotion, P+V, P+A, or V+T. For uni-
modality, the best performance for positive emotion was
A, and for negative emotion was V. These findings suggest
recommendations on how to achieve more reliable mobile
emotion recognition. Generally, we recommend selecting
different combinations depending on the available modality
data.

6.1 Limitations

Our work has several limitations. First, the amount of data
we collected was relatively small and the demographics of
the participants was skewed towards young adults. Thus, in
the future, we aim to recruit a larger sample of participants
with a wider range of demographics to build a more robust
validation database. Second, in this study, we focused on
a narrow set of emotions (i.e., positive and negative emo-
tions). Future work should consider a wider set of emotions
to further investigate the robustness of our approach. Third,
our experiment was conducted in a laboratory-based set-
ting. In the future, we will focus on long-term user studies
conducted in-the-wild, and further improve the proposed
system by incorporating other types of smartphone usage
data (including Call/SMS logs, location, application usage
patterns, etc.).

7 CONCLUSION

In this study, we propose a novel mobile emotion recog-
nition system that uses off-the-shelf mobile devices and
attention-based deep multimodal architecture. Our system
can predict a user’s emotional states through comprehen-
sively analyzing behavioral data (facial expression, speech,
keystroke) recorded by a smartphone, with physiological
signals recorded by a sensor-rich wristband. In order to eval-
uate the proposed system, we designed a replicable emo-
tion experiment on mobile devices, including the induction
of spontaneous emotion and the collection of multimodal
affective responses. Through a leave-one-participant-out
cross-validation, our model achieved an average accuracy
of 89.2%. Finally, we explored emotion recognition in dif-
ferent scenarios where different data sources are available,
and provided recommendations on how to achieve reliable
mobile emotion recognition. Our work has the potential to
inform the design of future in-the-wild applications that can
help monitor real-time emotional well-being and provide
emotion regulation recommendations.
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[71] M. Wöllmer, F. Weninger, T. Knaup, B. Schuller, C. Sun, K. Sagae,
and L. Morency, “Youtube movie reviews: Sentiment analysis in
an audio-visual context,” IEEE Intelligent Systems, vol. 28, no. 3,
pp. 46–53, 2013.

[72] X. Zhou, J. Guo, and R. Bie, “Deep learning based affective
model for speech emotion recognition,” in 2016 Intl IEEE Con-
ferences on Ubiquitous Intelligence Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016, pp. 841–846.

[73] Y. Gu, K. Yang, S. Fu, S. Chen, X. Li, and I. Marsic,
“Multimodal affective analysis using hierarchical attention
strategy with word-level alignment,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational

Linguistics, Jul. 2018, pp. 2225–2235. [Online]. Available:
https://aclanthology.org/P18-1207

[74] A. Shukla, S. S. Gullapuram, H. Katti, M. Kankanhalli, S. Winkler,
and R. Subramanian, “Recognition of advertisement emotions
with application to computational advertising,” IEEE Transactions
on Affective Computing, pp. 1–1, 2020.

[75] S. Rayatdoost, D. Rudrauf, and M. Soleymani, “Multimodal
gated information fusion for emotion recognition from eeg
signals and facial behaviors,” in Proceedings of the 2020
International Conference on Multimodal Interaction, ser. ICMI
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 655–659. [Online]. Available: https:
//doi.org/10.1145/3382507.3418867

[76] S. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard, “Per-
sonalized multitask learning for predicting tomorrow’s mood,
stress, and health,” IEEE Transactions on Affective Computing,
vol. 11, no. 2, pp. 200–213, 2020.

[77] R. Wampfler, S. Klingler, B. Solenthaler, V. R. Schinazi, and
M. Gross, “Affective state prediction based on semi-supervised
learning from smartphone touch data,” in Proceedings of
the 2020 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3313831.3376504

[78] A. Exler, A. Schankin, C. Klebsattel, and M. Beigl, “A wearable
system for mood assessment considering smartphone features
and data from mobile ecgs,” in Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct, ser. UbiComp ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1153–1161.
[Online]. Available: https://doi.org/10.1145/2968219.2968302

[79] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope:
Building a mood sensor from smartphone usage patterns,”
in Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys
’13. New York, NY, USA: Association for Computing
Machinery, 2013, p. 389–402. [Online]. Available: https:
//doi.org/10.1145/2462456.2464449

[80] S. Wang, Z. Liu, S. Lv, Y. Lv, G. Wu, P. Peng, F. Chen, and
X. Wang, “A natural visible and infrared facial expression
database for expression recognition and emotion inference,” IEEE
Transactions on Multimedia, vol. 12, no. 7, pp. 682–691, 2010.

[81] C. Busso, M. Bulut, C. C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. S. Narayanan, “IEMOCAP: Interactive
emotional dyadic motion capture database,” Language Resources
and Evaluation, vol. 42, no. 4, p. 335, 2008.

[82] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, “Mosi: multi-
modal corpus of sentiment intensity and subjectivity analysis in
online opinion videos,” arXiv preprint arXiv:1606.06259, 2016.

[83] X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikäinen, “A
spontaneous micro-expression database: Inducement, collection
and baseline,” in 2013 10th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), 2013,
pp. 1–6.

[84] Z. Zhang, J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci,
S. Canavan, M. Reale, A. Horowitz, H. Yang, J. F. Cohn, Q. Ji,
and L. Yin, “Multimodal spontaneous emotion corpus for human
behavior analysis,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 3438–3446.

[85] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-
pie,” in 2008 8th IEEE International Conference on Automatic Face
Gesture Recognition, 2008, pp. 1–8.

[86] M. Pantic, M. Valstar, R. Rademaker, and L. Maat, “Web-based
database for facial expression analysis,” in 2005 IEEE International
Conference on Multimedia and Expo, 2005, pp. 5 pp.–.

[87] J. A. Coan and J. J. Allen, Handbook of emotion elicitation and
assessment. Oxford university press, 2007.

[88] B. Verschuere, G. Crombez, and E. Koster, “Cross cultural vali-
dation of the IAPS,” Ghent Belgium Ghent University, pp. 14–17,
2007.

[89] M. Riegel, A. Moslehi, J. M. Michałowski, Ł. Żurawski,
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