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ABSTRACT
Recognising and monitoring emotional states play a crucial role in
mental health and well-being management. Importantly, with the
widespread adoption of smartmobile andwearable devices, it has be-
come easier to collect long-term and granular emotion-related phys-
iological data passively, continuously, and remotely. This creates
new opportunities to help individuals manage their emotions and
well-being in a less intrusive manner using off-the-shelf low-cost
devices. Pervasive emotion recognition based on physiological sig-
nals is, however, still challenging due to the difficulty to efficiently
extract high-order correlations between physiological signals and
users’ emotional states. In this paper, we propose a novel end-to-end
emotion recognition system based on a convolution-augmented
transformer architecture. Specifically, it can recognise users’ emo-
tions on the dimensions of arousal and valence by learning both
the global and local fine-grained associations and dependencies
within and across multimodal physiological data (including blood
volume pulse, electrodermal activity, heart rate, and skin tempera-
ture). We extensively evaluated the performance of our model using
the K-EmoCon dataset, which is acquired in naturalistic conversa-
tions using off-the-shelf devices and contains spontaneous emotion
data. Our results demonstrate that our approach outperforms the
baselines and achieves state-of-the-art or competitive performance.
We also demonstrate the effectiveness and generalizability of our
system on another affective dataset which used affect inducement
and commercial physiological sensors.
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1 INTRODUCTION
The emotions we feel every day shape our behaviours and guide
our decisions. Emotions can, however, go awry and lead to negative
repercussions to an individual’s well-being. For instance, long peri-
ods under stress and anxiety may not only impair mental health
but also induce related diseases. Recent studies have demonstrated
a high correlation between affective instability and psychosis [18].
Thus, automatic and accurate emotion recognition has increasingly
become an important research topic as it can assist with early di-
agnosis, continuous monitoring, and can inform interventions for
mental health and well-being.

In recent decades, researchers have explored different ways to
empower machines with human-like perception of emotional states.
Current automatic emotion recognition approaches can be cate-
gorized into two main types according to the signals used. One
approach entails using human behavioral signals, such as facial
expressions [4, 29, 43], voice [19], and gestures [28]. While these
signals are typically easier to collect, the reliability of such methods
cannot be guaranteed since these signals are semi-voluntary or vol-
untary responses [8, 26]. This means that people can easily disguise
inner emotions by controlling their behaviors. For example, people
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can conceal their real emotions by showing a “poker face” in social
communications [44]. The other approach entails using physiologi-
cal signals, such as electrocardiogram (ECG), electroencephalogram
(EEG), electromyogram (EMG), galvanic skin response (GSR), and
body temperature. Unlike behavioral signals, physiological signals
originate from the activity of the central nervous system (CNS)
and the autonomic nervous systems (ANS), which are involuntary
responses and quite challenging to be controlled or hidden inten-
tionally [31]. Therefore, approaches based on physiological signals
are more reliable and universally applicable to discern the inner
emotional feelings of human beings [14, 46].

However, emotion recognition based on physiological signals is
still challenging. On the one hand, existing methods mainly rely on
experience-based feature engineering to manually quantify numer-
ical attributes that can characterize affective information contained
in different physiological signals. Typically, the extracted features
concentrate on the time and frequency domains, for example, the
commonly used time-domain statistical features — minimum, maxi-
mum, mean, standard deviation [7], and frequency-domain features
— energy distribution at different frequency bands [40]. Despite
being widely adopted, these handcrafted features are essentially
low-level feature representations, which do not generalize well in
different scenarios and can not efficiently model the complex and
non-linear spatio-temporal relationships among multiple physio-
logical signals. Recent research has found that multiple physiolog-
ical signals can more effectively reflect emotional changes than
a single signal [31]. On the other hand, most affective databases
(e.g., DEAP [14], MAHNOB-HCI [33]) used in physiological signals-
based emotion studies are acquired by using artificial induction
methods, i.e., by using specific music, pictures, or video clips as
stimuli to induce the generation of certain emotional states from
participants. Although such emotional portrayals could be consid-
ered as “spontaneous" emotional expressions, they do not represent
natural emotional responses collected from in-the-wild social in-
teractions and lack adequate contextual information. Moreover,
the data acquisition in these databases typically relies on medical-
level equipment because of its affordances, such as high sensitivity
and high sampling rate. For example, the acquisition equipment
used in the DEAP database supports a 512 Hz sampling rate for
physiological responses, while the acquisition equipment used in
the MAHNOB-HCI database supports a 1024 Hz sampling rate. Al-
though high-quality physiological signals can be collected in this
way, these facilities tend to be expensive and intrusive. For example,
an EEG-based system requires a large number of electrodes to be
attached to an individual’s scalp [10]. These hinder emotion recog-
nition techniques from being integrated into everyday devices and
being deployed into real-world contexts.

To address these issues, we design a deep multimodal architec-
ture with a convolution-augmented transformer (conformer [11])
mechanism to classify emotions on different categories of arousal
and valence. Specifically, it first aligns physiological signals by
using the nearest-neighbor interpolation method to synchronize
different sensor inputs. Then, it extracts high-level informative
features from different signals through individual convolutional
neural networks (CNNs). Lastly, by leveraging a conformer encoder,
it can learn the latent local and global associations among different
physiological signals. Moreover, with the development of mobile

technology, modern mobile and wearable devices are increasingly
low-cost, sensor-rich, and lightweight. This makes themwell-suited
to detect multimodal physiological signals and emotional responses
in an unobtrusivemanner, overcoming the aforementioned inherent
limitations frommedical-grade acquisition equipment in traditional
physiological emotion recognition research. Therefore, in this study,
we evaluated our system using the K-EmoCon dataset [21], a pub-
licly available multimodal sensor dataset acquired with off-the-shelf
wearable devices in naturalistic conversations. We used four kinds
of physiological signals collected from an Empatica E4 Wristband
as inputs, blood volume pulse (BVP), electrodermal activity (EDA),
heart rate (HR), and skin temperature (SKT), and conducted five
classification tasks, two-category and five-category classification
on arousal and valence respectively, and a four-category classifica-
tion on combined arousal-valence emotion space. We also tested
the generalizability of our system by conducting two additional
experiments on the ASCERTAIN dataset [35].

Thus, the contribution of our work is two-fold:

(1) We propose a novel conformer-based deep learning structure
that detects human emotional states based on multimodal
physiological signals from off-the-shelf devices. To the best
of our knowledge, we are the first to apply a conformer
mechanism in the field of affective computing.

(2) We conduct extensive experiments to evaluate and test our
proposed system. The results demonstrate that our model
outperforms previous techniques, achieving state-of-the-art
or comparable performance.

2 RELATEDWORK
Despite a large number of studies on emotion recognition, most of
them have focused on audio-visual signals [22] (e.g., facial expres-
sions and speech), since they are seen as themost direct channels for
human emotional expressions. However, these outward emotional
signals can easily bemodified or suppressed in social settings, reduc-
ing their reliability as signs of inner emotional feelings [31, 46]. In
addition, recent work has argued that emotional facial expressions
vary across races and cultures, and facial configurations can not act
as a reliable signal for particular emotional states [1]. Furthermore,
as faces and voices are directly linked to identity, these can raise
significant privacy concerns, especially if they have to be uploaded
to the cloud for processing [30].

For these reasons, the link between emotions and a range of
physiological signals has recently received increased attention in
the field of affective computing. For example, previous work has
leveraged BVP, EDA, and SKT to recognise emotions [44]. They
adopted several different types of film clips as stimuli to evoke
participants’ emotions, and utilized an Empatica E4 wristband to
collect the induced physiological responses. In another example,
researchers proposed a method to recognise emotions relying on
frontal EEG signals [41]. Specifically, they first selected four kinds
of VR affective scenes containing happiness, fear, peace, and disgust.
Then by using textile dry electrodes, they synchronously recorded
three-channel frontal EEG signals when participants watched each
VR stimulus. Unlike facial or acoustic data containing biometric
information, physiological data as biosensed information may be



Figure 1: Overall structure of our proposed emotion recognition system.

used to describe our health status, behaviors, or emotions, but are
not enough to identify us uniquely [30].

Researchers also proposed different approaches to analyze phys-
iological data in order to detect an individual’s emotions. For exam-
ple, Zhao et al. [44] first used adaptive band-pass filter and low-pass
filter to eliminate the noise contained in the collected signals. Then,
they extracted the distinct emotion-related features from the time
domain, frequency domain, and nonlinear analysis. By adopting
the sequential forward floating selection method to select the best
feature set, they classified different emotions based on support vec-
tor machine (SVM). Similarly, Xu et al. [41] extracted three kinds
of handcrafted features including the time domain, frequency do-
main, and space domain from collected frontal EEG signals. Then by
using the model stacking method, they combined three models, Gra-
dient Boosting Decision Tree, Random Forest, and SVM, to achieve
EEG-based emotion recognition.

Researchers have, however, recently noted the limitations of
handcrafted feature representations, and explored ways of design-
ing deep learning-based architectures to extract fine-grained and
higher-level features by taking full advantage of neural networks’
powerful feature abstraction ability. For instance, Wang et al. [39]
presented a deep learning method to learn high-level feature repre-
sentations from the raw EEG signals. They built a three-dimensional
CNN and classified emotions on valence and arousal scales. Zitouni
et al. [47] proposed a bidirectional long short-term memory (LSTM)
neural network to extract informative features from four kinds of
physiological signals, and predicted emotions into binary levels
and quadrants of the arousal-valence space.

More recently, transformers were used to model long-range
global context. For example, Wang et al. [38] designed a heartbeat-
aware attention mechanism, and added it into transformer structure
to enhance the alignment between encoded and decoded sequences.
On this basis, they made arrhythmia classification from ECG sig-
nals. Similarly, Behinaein et al. [2] placed a convolutional front-end

before the transformer encoder to extract more informative repre-
sentations, and achieved stress detection from ECG signals. Despite
models with these structures being able to capture either local spa-
tial dependencies, or temporal dependencies, or global information,
they lack the capability to learn both local and global interactions
simultaneously.

Our architecture is inspired by the conformer mechanism used
in recent automatic speech recognition research [11] that com-
bines the advantages of convolutions and self-attention mecha-
nisms. In this paper we extend it to multimodal environments for
emotion recognition, and design the conformer encoder to learn
both position-wise local features and content-based global associa-
tions within and across different modalities.

3 METHOD
The overall structure of our proposed emotion recognition system
is illustrated in Figure 1. There are four major parts of the system:
signal preprocessing, convolutional front-end, multi-signal fusion,
and feature extraction.

3.1 Signal Preprocessing
Our system accepts raw data retrieved from different sensors as
sequence inputs. Through the data preprocessing module, the het-
erogeneous inputs will be formatted into specific representations,
which can be effectively used in the following modules.

Specifically, in this study, we focused on four different kinds
of commonly used physiological signals: (1) BVP (blood volume
pulse), is related to the changes in blood volume in arteries and
capillaries, and can be measured by a non-invasive optical sensor
that detects changes in light absorption density of the localized
tissue (e.g., skin) when illuminated [15]; (2) EDA (electrodermal ac-
tivity), measures the variations in electric characteristics of the skin
resulting from changes in sweat production and fluid concentration



in the sweat ducts, and can be monitored by the voltage changes
between electrodes [15]; (3) HR (heart rate), is a measure of the
functional activity of the heart, and can be estimated using the ECG
or BVP signals; (4) SKT (skin temperature), can be measured by a
thermopile infrared sensor.

Following the preprocessing operations stated in [47], we first
normalized the raw signals of each subject separately to overcome
individual differences which may vary due to age, gender, and
personality. The normalization is performed based on the signals
collected in the final 1.5 minutes of the relaxation period prior
to each trial. Then, we leveraged the nearest-neighbor method
and interpolated the lower frequency signals based on the highest
sampling frequency to synchronize different physiological signals.
Subsequently, each bio-signal can be represented as an array with
the same length 𝐿, where 𝐿 = 𝑡×𝑓 , 𝑡 is the time interval of emotional
annotation, and 𝑓 is the highest sampling frequency of four sensor
inputs.

3.2 Convolutional Front-end
To extract more expressive features from physiological inputs, we
applied the CNNs structure for each signal, which is able to cap-
ture fine-grained feature patterns by local-perceiving convolutional
kernels and weight-sharing translation equivariance [3].

Inspired by [2, 38], the convolutional front-end module consists
of two parts (shown in Figure 2). Each part starts with a 1D convo-
lutional layer (1x3 padded convolution), then followed by a batch
normalization and a rectified linear unit (ReLU).

Figure 2: Convolutional front-end structure.

We set the out-channels produced by the convolution to 8 and
16 respectively. After feeding the bio-signal outputted from the
preprocessing phase, it will be converted into a feature matrix with
𝐿 × 16 dimensions.

3.3 Multi-signal Fusion
We considered the four physiological inputs (BVP, EDA, HR, and
SKT) as a whole. It is crucial to leverage several physiological in-
puts as emotions are subjective feelings generated by a complex
coordination of multiple neurophysiological systems [23], in other
words, the emotional clues should be simultaneously reflected in
multiple physiological signs.

Thus, in this module, we combined the four physiological signals
together and treated them as an entire physiological embedding to
represent the hidden affective information. Specifically,

𝑃 = [𝑃𝑏𝑣𝑝 , 𝑃𝑒𝑑𝑎, 𝑃ℎ𝑟 , 𝑃𝑠𝑘𝑡 ] (1)
where 𝑃𝑏𝑣𝑝 , 𝑃𝑒𝑑𝑎 , 𝑃ℎ𝑟 , and 𝑃𝑠𝑘𝑡 are feature representations of

BVP, EDA, HR, and SKT retrieved from the convolutional front-end.
We concatenated them over the time steps, and got the output with
𝐿 × 𝑑𝑚𝑜𝑑𝑒𝑙 dimensions (𝑑𝑚𝑜𝑑𝑒𝑙 is 64=16*4 in this case). Similar to
natural language processing, here 𝐿 can be regarded as the number

of words in one sentence, and 𝑑𝑚𝑜𝑑𝑒𝑙 can be viewed as the size of
the embedded word vector by word2vec.

3.4 Feature Extraction
We applied the conformer structure as feature extraction encoder to
extract local and global associations within and across physiological
signals.

Figure 3: Conformer block structure [11].

The conformer mechanism presented by Gulati et al. [11] is a
variant of the transformers. As shown in Figure 3, a conformer block
consists of four modules, two feed forward modules, one multi-
head self-attention module, and one convolution module. Firstly,
the multi-head self-attention module uses a scaled dot-product
attention mechanism to capture the dynamic global dependencies
in the feature sequence [37]. It creates three vectors from each of the
input feature vectors (the 64-dimensional embedding of each time
step in this case): a query vector, a key vector, and a value vector. By
computing the dot products of one query with all keys and applying
a softmax function, it obtains the attention weights on all values,
which determines how much focus to place on other parts of the
input vectors as encoding one feature vector at a certain position.
As defined by [38], given an input sequence 𝑆 = (𝑆1, 𝑆2, ..., 𝑆𝐿), the
output sequence 𝑆ℎ = (𝑆ℎ1, 𝑆ℎ2, ..., 𝑆ℎ𝐿) of the self-attention for a
single head ℎ can be computed by:

𝑒𝑖 𝑗 =
(𝑆𝑖𝑊𝑞) (𝑆 𝑗𝑊𝑘 )𝑇√︃

𝑑ℎ
𝑘

, 𝑗 ∈ [1, 𝐿] (2)

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑𝐿

𝑘=1 exp(𝑒𝑖𝑘 )
(3)

𝑆ℎ𝑖 =

𝐿∑︁
𝑗=1

𝛼𝑖 𝑗 (𝑆 𝑗𝑊𝑣) (4)



where𝑊𝑞,𝑊𝑘 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑ℎ𝑘 and𝑊𝑣 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑ℎ𝑣 are learnable
linear transformation matrices that generate the query, key, and
value vectors, and 𝑆𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 . The output of all heads are then
concatenated together and condensed by another linear transfor-
mation:

𝑆 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑆1, ..., 𝑆𝑛)𝑊 𝑜 (5)

where𝑊 𝑜 ∈ R𝑛𝑑ℎ𝑣 ×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑛 is the number of heads.
Secondly, the convolution module is responsible for enforcing

locality, which contains a pointwise convolution with an expansion
factor of 2, a gated linear unit (GLU) activation layer, a 1D depthwise
convolution, a batch normalization, a swish activation layer, and
another pointwise convolution projecting the number of channels
back. By leveraging the channel-wise and spatial-wise learning
capabilities, the convolution module is able to capture fine-grained
local features, which largely complements the weakness of the
self-attention mechanism. In this study, we concatenated features
from four different physiological signals to form an entity. With
the help of the convolution module, the system can better capture
associations across signal-specific features.

For our feature encoder, we used 4 conformer blocks, and applied
𝑛 = 4 parallel attention heads. For each head, we set 𝑑ℎ

𝑘
= 𝑑ℎ𝑣 =

𝑑𝑚𝑜𝑑𝑒𝑙/𝑛 = 16. Results from feature extraction were flattened and
passed into two dense layers to get the final representation for
further decision making.

4 EVALUATION
4.1 Dataset
We first evaluated the performance of our proposed system on the
K-EmoCon dataset [21]. We chose this particular dataset based on
two criteria: (1) the dataset contains spontaneous emotional expres-
sions in naturalistic environments or social interactions; (2) the data
collection apparatus are off-the-shelf, low-cost, mobile and wearable
devices. To the best of our knowledge, the K-EmoCon is the only
publicly available multimodal affective dataset that is suitable for
this experiment. Other widely used emotion datasets either consist
of posed or induced emotions, or rely on expensive and intrusive
data acquisition equipment that is not suitable for daily use. For
example, the MAHNOB-HCI [33] and the DEAP [14] were consid-
ered to contain induced emotions and apply a number of intrusive
electrodes [35]. Instead, the K-EmoCon dataset was collected via
natural communication between individuals without professional
training in acting. Specifically, the K-EmoCon contains two kinds
of visual data (i.e., face and gesture), five kinds of physiological data
(i.e., EEG, ECG, BVP, EDA, and SKT), speech audio, and accelerome-
ter data recorded from 32 participants (20 males and 12 females). In
our experiments, we only used four kinds of physiological signals
captured by the Empatica E4 wristband, BVP, EDA, HR (which was
derived from BVP), and SKT, since compared with chest-worn (used
to detect ECG) and head-mounted (used to detect EEG) devices, a
wristband is more ubiquitous and unobtrusive in everyday life and
is without spatio-temporal limitations.

Moreover, the annotations for emotions in the K-EmoCon were
measured on arousal and valence affective dimensions from the
circumplex model of affect by James Russell [27]. Each affective

dimension was rated on five-point Likert scales. Accordingly, an-
notated emotion labels can be categorized into either five levels
directly, or two levels based on the median value (i.e., 2.5) in which
annotations with values ranging from 1 to 2 can be converted into
low (L), and annotations with values ranging from 3 to 5 can be
converted into high (H) [47]. To conduct a comprehensive assess-
ment, we formalized the emotion recognition as five classification
tasks: two-category arousal, two-category valence, five-category
arousal, five-category valence, and four-category arousal-valence
space (i.e., high arousal-high valence (HAHV), high arousal-low
valence (HALV), low arousal-high valence (LAHV), and low arousal-
low valence (LALV)).

Table 1: Sample distribution

Two-class Five-class Four-class

Arousal L: 1023
H: 2157

1: 104
2: 919
3: 1159
4: 679
5: 319

-

Valence L: 554
H: 2626

1: 69
2: 485
3: 1815
4: 728
5: 83

-

Arousal-
Valence - -

LALV: 172
LAHV: 851
HALV: 382
HAHV: 1775

Specifically, we used the self-reported emotion labels as the
ground truth. Since annotations in the K-EmoCon were labeled at
every 5 seconds, the raw input size of BVP sequence, EDA sequence,
HR sequence, and SKT sequence was respectively 1 × 320, 1 × 20,
1× 5, and 1× 20 (BVP sampled at 64Hz, EDA at 4Hz, HR at 1Hz, and
SKT at 4Hz), and 𝐿 = 320 in this case. Additionally, the E4 data of 6
participants (Person IDs: 2, 3, 6, 7, 17, and 20) is missing due to the
device malfunction or human error during data collection. Thus, the
final evaluation dataset consists of 3180 data samples. Table 1 shows
the sample distribution. We note that while there are imbalanced
distributions of emotion labels in all five tasks, as stated in [21], this
imbalance is expected as emotion data is commonly imbalanced by
its nature in the wild (i.e., people are more often neutral than angry
or sad).

4.2 Baselines
To compare with the state-of-the-art physiological signals-based
emotion recognition approaches, we chose the following methods
as baselines: (1) Naive Bayes (NB) [47], (2) Support Vector Machine
with linear kernel (SVM-LR) [35], (3) Support Vector Machine with
radial basis function kernel (SVM-RBF) [35], (4) eXtreme Gradient
Boosting (XGBoost) [47], (5) bidirectional LSTM (BiLSTM) [47];
and (6) transformer [2]. For the first four methods, we extracted



both the time-domain and frequency-domain features based on the
proposed features in the literature [14].

4.3 Implementation Details
We implemented our proposed system using the PyTorch frame-
work. We initialized the learning rate as 0.0001 and decayed the
learning rate by 𝛾 = 0.985 every epoch. We used Adam optimizer,
and applied batch normalization and dropout function to overcome
overfitting and internal covariate shift [12].

To avoid data leakage, we did not use data re-sampling ap-
proaches [24] to solve the imbalanced data problem as they will
change the original dataset itself. Instead, we chose focal loss [16]
as the loss function of our model, which can automatically down-
weight the contribution of easily classified samples and focus on
hard misclassified samples by applying a modulating term to the
cross-entropy loss. We used a 80–20 training and testing split, and
further split 20 percent of the data from the training set as valida-
tion. We trained the model with 500 epochs and used early stopping
with patience equal to 10. We also used 256 as the batch size and
evaluated the model with 5-fold cross-validation. To make a fair
comparison between the proposed system and baselines, we re-
trained all models on the same training-testing set split.

4.4 Evaluation Metric
Considering that the classes of arousal and valence are heavily
imbalanced, we did not use recognition accuracy as the evaluation
metric like most studies. Instead, following [17, 24], we chose the
average F1 score (Macro-F1) and unweighted average recall (UAR)
as our validation metrics. These metrics give the same importance
to each class, and are defined as the mean of class-wise F1 scores
and recall scores respectively. Unlike accuracy or weighted F1 or
weighted recall, their values will not be overwhelmed by the vast
number of easily classified samples, which makes them suitable as
the validation metrics of our experiment. Consider the prediction
of two-class valence as an example. Its ground truth consists of
554 low and 2626 high samples. If there is a classifier that predicts
high for all samples, it will have an accuracy of more than 82%, a
weighted F1 score around 0.75, and a weighted recall score around
0.83. Despite having high values, we cannot say it is not a good
classifier since it does not learn any informative features from the
samples. Macro-F1 score and UAR can avoid this situation (only
0.45 and 0.50 in this example) because their values will be low if the
model only performs well on the large number of common classes
while performing poorly on the rare classes.

4.5 Results
The results of the emotion recognition from physiological signals
on the K-EmoCon dataset are shown in Table 2. Our proposed
system achieved better performance compared with all baseline
approaches. For example, for five-class classification tasks, our
model outperformed NB, SVM-LR, SVM-RBF, XGBoost, BiLSTM,
and Transformer methods respectively by (1) 32.50%, 34.76%, 28.35%,
13.59%, 12.27%, 7.76%Macro-F1 increase, and 35.25%, 41.38%, 36.32%,
25.94%, 12.59%, 5.35% UAR increase on arousal; and (2) 26.17%,
30.57%, 27.42%, 7.76%, 6.52%, 3.78% Macro-F1 increase, and 43.91%,

Table 2: Comparison of emotion recognition performance us-
ing different approaches. A: arousal, V: valence, A-V: arousal-
valence emotion space.

Approach Task Macro-F1(%) UAR(%)

NB

Two-class A 36.16 53.78
Two-class V 47.76 50.91
Five-class A 23.43 30.28
Five-class V 20.01 21.56
Four-class A-V 23.54 31.96

SVM-LR

Two-class A 40.42 50.00
Two-class V 46.48 50.56
Five-class A 21.17 24.15
Five-class V 15.61 20.53
Four-class A-V 19.38 25.51

SVM-RBF

Two-class A 54.18 56.60
Two-class V 45.94 50.30
Five-class A 27.58 29.21
Five-class V 18.76 22.01
Four-class A-V 26.18 29.19

XGBoost

Two-class A 59.58 59.80
Two-class V 54.88 54.79
Five-class A 42.34 39.59
Five-class V 38.42 35.74
Four-class A-V 36.65 35.95

BiLSTM

Two-class A 74.50 76.53
Two-class V 67.31 77.14
Five-class A 43.66 52.94
Five-class V 39.66 55.25
Four-class A-V 47.33 56.34

Transformer

Two-class A 72.39 75.37
Two-class V 60.36 73.11
Five-class A 48.17 60.18
Five-class V 42.40 62.54
Four-class A-V 51.84 62.78

Our model

Two-class A 77.3777.3777.37 79.4279.4279.42
Two-class V 69.1169.1169.11 80.6080.6080.60
Five-class A 55.9355.9355.93 65.5365.5365.53
Five-class V 46.1846.1846.18 65.4765.4765.47
Four-class A-V 56.3556.3556.35 65.4565.4565.45

44.94%, 43.46%, 29.73%, 10.22%, 2.93% UAR increase on valence. Ad-
ditionally, the recognition results were tested for statistical signifi-
cance using a Wilcoxon signed-rank test, by comparing the Macro-
F1 and UAR scores from different approaches over cross-validation
folds. The test results show statistically significant improvements of
our model over the baselines on all five tasks (𝑝 < 0.05) except two-
class valence comparison on Macro-F1 with BiLSTM and five-class
valence comparison on UAR with Transformer.

From the results, we can also observe that (1) BiLSTM performed
slightly better than Transformer on 2-class tasks, while performing
slightly worse than Transformer on multi-class tasks; (2) the major
difference between our system and Transformer architecture is the
conformer encoder, which further shows the importance of con-
volution modules that can effectively extract the local interactions



Figure 4: t-SNE visualisations of trained models for two-class tasks. Left is for the baseline BiLSTM approach; Middle is for
baseline Transformer approach; Right is for our proposed model.

across different signal-specific features through the convolution
mechanism. This also demonstrates the combination of convolu-
tions with self-attention can improve the system’s performance.

We also presented a visualization of the extracted feature repre-
sentation from the BiLSTM, the Transformer, and our model. For
this, we used the t-distributed stochastic neighbor embedding (t-
SNE) technique [36] which allows visualizing high-dimensional
data in a two or three-dimensional map. Figure 4 shows the 2D
t-SNE plots for two-class tasks.

As illustrated in the figure, the extracted representations of our
proposed method are visibly more distinguishable by classes on
both arousal and valence dimensions compared to the extracted
representations from baseline methods. Moreover, this trend can
also be found for other tasks, which further indicates the stronger
ability of our model on learning the high-level and latent features
and dependencies.

4.6 Generalizability Tests
To further test the generalizability of our proposed model, we per-
formed additional experiments on another multimodal affective
dataset, the ASCERTAIN dataset [35]. Despite emotional induce-
ment being applied during the data collection (instead of relying
on spontaneous affective responses like the K-EmoCon dataset),
this dataset used wearable and commercial sensors for examining
users’ physiological behavior, partially fulfilling the requirements
of a more naturalistic and pervasive affective dataset. We designed
two binary emotion recognition experiments to test our model’s
generalizability.

As both the K-EmoCon and the ASCERTAIN datasets contain
EDA sensor data, we first conducted a cross-datasets generaliz-
ability test. Specifically, we trained on the K-EmoCon dataset and
then tested on the ASCERTAIN dataset. Considering that there

is only one input modality, we removed the BVP, HR, and SKT
branches of our original structure and converted our model into a
single modality emotion recognition system. Moreover, due to the
different sampling frequencies (4Hz in the K-EmoCon versus 100
Hz in the ASCERTAIN), we used a downsampling method with an
anti-aliasing filter to replace the interpolation in the preprocess-
ing phase when testing the performance. On this basis, our model
achieved 64.37% accuracy on arousal dimension and 61.88% accu-
racy on valence dimension, which is comparable to the unimodal
performance of previous work that conducted both training and
testing on the same ASCERTAIN dataset [45]. This result demon-
strates that our proposed model is able to learn generalized and
transferable physiological features rather than overfitting the data
distribution of one particular dataset.

Table 3: Performance comparison on the ASCERTAIN dataset
(accuracy in percentage)

Approach Arousal Valence

VM2HL-P [45] 72.5472.5472.54 68.53

Our model 71.79 69.1169.1169.11

We then followed-up with a second experiment to test the gen-
eralizability of our proposed model on other kinds of physiologi-
cal signals. Considering the diversity of commercial physiological
sensors and their recorded signals, our system should have good
expansibility for different input modalities. Therefore, we further
replaced the original input modalities of our model with the ECG,
GSR, and EEG modalities from the ASCERTAIN dataset, and re-
trained our model from scratch. Following the work by Zhao et al.
[45], we re-trained our model under the same implementation de-
tails and applied the same evaluation metric. As can be seen in



Table 3, our model achieved 71.79% recognition accuracy on arousal
and 69.11% accuracy on valence, which is equivalent to a 0.75%
accuracy decrease and a 0.58% improvement respectively compared
to the system proposed by Zhao et al. [45]. Despite leading to a
0.58% accuracy decrease on arousal dimension, it is important to
note that we only used three modalities (we excluded facial land-
marks because our work focused on physiological signals), while
the system from the literature used all four modalities [45]. In other
words, our system can achieve competitive performance with less
data input, which is significant in real-world scenarios due to the
common data missing problem [32].

5 DISCUSSION
With the rapid development of smart mobile and wearable devices,
there has been a growing interest in ecological validity [13] and
real-world application of emotion recognition techniques [25]. In
this paper, we presented a novel emotion recognition system based
on physiological signals from low-cost, off-the-shelf mobile and
wearable devices, and evaluated its performance with spontaneous
and natural emotion data collected in natural interactions.

It is worth noting that our proposed system has good generaliz-
ability in terms of different physiological signals. The system can
efficiently extract high-level and generalized affective features from
physiological signals, and perform well on spontaneous emotion
recognition. Considering that smart mobile and wearable devices
are increasingly sensor-rich, less intrusive, and becoming an essen-
tial and integral part of daily life, we can expect to see an increase
in the need for robust mobile emotion recognition systems.

5.1 Towards Robust Multimodal Mobile
Emotion Recognition

It is undisputed that human emotions are expressed through a mul-
titude of signals. Thus, as Delplanque and Sander [5] argue, it is
risky to rely on a single component to infer true emotional states.
For example, while fear might be correlated to heart rate changes,
and smiling can be an expression of happiness, neither signal can be
used as a marker for one emotion, as the relation between emotions
and such signals is ”many-to-one” [5]. A smile can also be used to
communicate non-emotional messages [1]. Consequently, as each
of these signals can be influenced by numerous non-emotional phe-
nomena, it is important that automated emotion detection systems
rely on multiple signals directly related to expressions of emotion.
However, it is a complicated task for computers to disentangle the
multitude of signals that define emotion. Our proposed detection
model was validated using a labeled dataset that contains multiple
streams of physiological data recorded in naturalistic settings and
outperformed different models.

While automated emotion detection and recognition promise to
contribute to support human well-being and mental health, there
are discussions about the potential risks and ethical concerns of this
type of data, e.g., in medicine [34], where automated emotion de-
tection has been used for mental health assessments. The criticism
focuses mainly on the validity, the training, and ethical scaffolding
necessary for a qualified assessment of the produced outputs [34].
Furthermore, automated pervasive sensing can raise serious pri-
vacy concerns, including the potential misuse of data, e.g., in the

workplace, where the detection of boredom by the employer could
potentially lead to increased workload and stress for employees.

In comparison to vocal and facial features - while not impossible
- it is more difficult to use physiological signals, such as the ones
used in this study, to identify individuals, especially in naturalistic
settings [9, 42]. Nevertheless, it is crucial to develop systems that
process data in-situ without requiring the data to be sent through
networks and cloud-services, as leaks of any kind of physiological
or biometric data can put users’ security and privacy at risk. Our
system has the potential to run entirely on smartphones, whose
processing power and memory are continuously increasing. Fur-
thermore, a phone-based system can more easily give the user
control over which specific data are being collected at any moment
in time.

5.2 Limitations
Our work has several limitations. First, the amount of data sam-
ples in the final evaluation dataset is relatively small, which, to a
certain extent, limited the learning ability of our proposed model.
Compared with some well-known larger-scale datasets (e.g., Ima-
geNet [6], LibriSpeech [20]) used in computer vision and speech
recognition, our evaluation dataset only consists of 3180 samples.
There is a need in emotion recognition research for larger natural
and spontaneous emotion datasets based on commercial mobile
and wearable devices. Second, we only considered the dimensional
model (i.e., arousal and valence) to describe human emotions avail-
able in the used datasets. Further work is needed to test our ap-
proach using the discrete emotion model (i.e., anger, disgust, fear,
happiness, sadness, and surprise). Third, we did not implement our
system in a real-time field deployment as we first aimed to test its
robustness and usefulness using publicly datasets. In the future, we
aim to develop a mobile application version and install our system
on users’ personal devices to conduct a long-term user study.

6 CONCLUSION
In this paper, we propose a novel emotion recognition system based
on multimodal physiological signals from off-the-shelf, low-cost
mobile and wearable devices, which offers greater data privacy and
the potential to be deployed into real-world contexts. Our system
uses a convolutional front-end to embed each physiological signal,
and employs the conformer structure to extract the local and global
dependencies within and across different signals. We evaluated our
system on a natural and spontaneous emotion dataset acquired
with off-the-shelf devices. Our results show that our system out-
performed the baselines, and achieved state-of-art or competitive
performance. In addition, our generalizability experiment further
established that our system has the ability to scale and handle dif-
ferent sensor signals. We discuss the potential of our system to
be deployed into real-world scenarios for daily emotion monitor-
ing and management. We also reflect on the potential risks and
concerns related to pervasive emotion recognition approaches.
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