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ABSTRACT

LeveragingArtificial Intelligence to support human decision-makers

requires harnessing the unique strengths of both entities, where

human expertise often complements AI capabilities. However, hu-

man decision-makers must accurately discern when to trust the AI.

In situations with complementary Human-AI expertise, identifying

AI inaccuracies becomes challenging for humans, hindering their

ability to rely on the AI only when warranted. Even when AI per-

formance improves post-errors, this inability to assess accuracy can

hinder trust recovery. Through two experimental tasks, we investi-

gate trust development, erosion, and recovery during AI-assisted

decision-making, examining explicit Trust Repair Strategies (TRSs)

– Apology, Denial, Promise, and Model Update. Our participants

classified familiar and unfamiliar stimuli with an AI with vary-

ing accuracy. We find that participants leveraged AI accuracy in

familiar tasks as a heuristic to dynamically calibrate their trust

during unfamiliar tasks. Further, once trust in the AI was eroded,

trust restored through Model Update surpassed initial trust values,

followed by Apology, Promise, and the baseline (no repair), with

Denial being least effective. We empirically demonstrate how trust

calibration occurs during complementary expertise, highlighting

factors influencing the different effectiveness of TRSs despite iden-

tical AI accuracy, and offering implications for effectively restoring

trust in Human-AI collaborations.

CCS CONCEPTS

•Human-centered computing→ Empirical studies in HCI;

HCI theory, concepts and models.

KEYWORDS

Human-AI decision-making, complementary expertise, trust devel-

opment, trust repair

ACM Reference Format:

Saumya Pareek, Eduardo Velloso, and Jorge Goncalves. 2024. Trust Devel-

opment and Repair in AI-Assisted Decision-Making during Complementary

This work is licensed under a Creative Commons Attribution International

4.0 License.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0450-5/24/06

https://doi.org/10.1145/3630106.3658924

Expertise. In The 2024 ACMConference on Fairness, Accountability, and Trans-

parency (FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3630106.3658924

1 INTRODUCTION

The integration of human expertise and Artificial Intelligence (AI)

in Human-AI collaboration is often driven by the recognition that

humans and machines possess complementary strengths, where the

sum can be greater than its parts. Such cases of AI-assisted decision-

making, where AI advises human decision-makers [4, 5, 67], are

becoming increasingly prevalent in domains such as medical diag-

nostics [9, 35] and criminal justice [12, 38]. However, AI systems

are fallible, leaving users with determining when to trust them. In

doing so, users may display unwarranted reliance on AI (overtrust)

or undue scepticism despite its capability (undertrust) [14, 34]. Fos-

tering appropriate trust is pivotal for collaboration, so recent works

have explored methods to calibrate users’ trust to reflect the actual

capability of AI systems [14, 22, 29, 41].

Prior works investigating accuracy-based trust calibration typi-

cally involve systems where accuracy is evident to users through

performance feedback [66] or prior task expertise that allows users

to spot system inaccuracies [25, 43]. In practice, performance cues

may not always be available. Moreover, humans and intelligent aids

often have complementary strengths, and may oscillate between

being experts and non-experts in different task facets. For example,

in a trivia game, an AI may excel at memorising vast information

to quickly identify quotes, while humans may skilfully connect evi-

dence and solve wordplay puzzles [19]. Knowing how significantly

observed system accuracy shapes trust [64], a question arises: How

does trust evolve when users cannot assess AI accuracy for all tasks,

as seen in scenarios involving complementary expertise between users

and AI? During overlapping expertise, users can assess an AI’s

performance and rely on it accordingly [4, 44]. However, during

complementary expertise, it is unclear how perceived AI accuracy

in high human-expertise (HHE) tasks influences users’ trust in its

recommendations for low human-expertise (LHE) tasks.

Furthermore, trust calibration entails both aligning user trust

with system capabilities and appropriately rebuilding trust when

diminished. While increased AI accuracy can potentially restore

users’ trust [54, 65], this approach bears two caveats. An accu-

racy boost often fails to fully reinstate trust to pre-violation levels,

and this “recovery" method presupposes that users can detect in-

creased accuracy, which may not be true during an expertise divide.

This presents an opportunity to examine the utility of deliberate
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interventions to restore trust in AI, which we term Trust Repair

Strategies (TRSs).

We adopt TRSs from Human-Robot Interaction (HRI), rooted in

the social psychology of interpersonal interactions, and investigate

their utility in AI-assisted decision-making. In HRI, trust repair

commonly employs three strategies [13]: expressing regret and

saying “I’m sorry" (Apology) [31, 36, 56], rejecting culpability for

the error (Denial) [3, 40, 55], and conveying intentions to perform

better in future interactions (Promise) [10, 17, 52]. Additionally,

inspired by research in Human-AI interaction regarding the effects

of simulated machine learning model updates on user trust [60], we

propose a novel TRS namedModel Update, which conveys that

the model underlying the AI’s decisions has been upgraded.

Addressing the aforementioned research gaps, we seek to answer

the following research questions:

• RQ1: How does perceived AI accuracy for High Human-

Expertise (HHE) tasks influence users’ trust in its recommen-

dations for Low Human-Expertise (LHE) tasks?

• RQ2:During complementary Human-AI expertise, how does

trust recover as accuracy improves, both with and without

deploying explicit Trust Repair Strategies (TRSs)?

To investigate these questions, we conducted a survey-based

between-subjects experiment involving 300 participants, with 150

participants assigned to each of the two tasks. In each task, partic-

ipants collaboratively classified images with a simulated AI with

varying accuracy. The first task involved real (Familiar) and fab-

ricated (Unfamiliar) geometric shapes (inspired by Zhang et al.

[66]), while the other involved common (Familiar) and obscure

(Unfamiliar) animals (following other studies on animal identifi-

cation [29, 43, 44]). Both tasks operationalised complementary

expertise, with participants inherently being experts in identify-

ing Familiar stimuli (HHE tasks) but not Unfamiliar stimuli (LHE

tasks). While fabricating the Unfamiliar stimuli for the shape task

strictly controlled for participants’ prior knowledge, the animal

task examined trust dynamics in a more ecologically-valid setting.

Each task had three phases: Phase 1 (high AI accuracy), Phase 2

(low AI accuracy), and Phase 3 (high AI accuracy). Between Phases

2 and 3, we manipulated the TRS between participant groups, which

included No Repair (baseline), Apology, Denial, Promise, and

Model Update. This enabled us to analyse trust recovery in Phase

3 through accuracy improvement alone and in conjunction with

explicit TRSs. We measured participants’ agreement with the AI’s

classification in each task trial and their overall trust after each

phase using a validated trust scale [27].

We found consistent results across both tasks. Participants relied

on perceived AI accuracy in HHE tasks as a heuristic to dynamically

calibrate their trust during LHE tasks. As the perceived AI accuracy

for Familiar stimuli deteriorated, so did participants’ reliance on

it for Unfamiliar stimuli (RQ1). Moreover, our results re-establish

how accuracy improvement leads to partial—but not total—trust re-

covery, necessitating approaches to complement it (RQ2). Notably,

Model Update was the most effective TRS, with users’ restored

trust surpassing pre-violation levels. This was followed by Apol-

ogy, rebuilding trust through the AI appearing regretful. Promise,

No Repair (baseline), and Denial proved less effective, with users

being sceptical of the AI’s capacity to make promises, and denial of

mistakes exacerbating distrust.

This study makes the following contributions. First, we adopt

TRSs from Human-Robot interaction, and demonstrate their utility

in Human-AI interactions, reporting different user behaviours. We

outline differences in the impact of TRSs, despite identical AI accu-

racy, discussing the role of anthropomorphism, regret, intentional

agency, deception, and the nature of promises (behavioural vs. tech-

nical) in trust restoration. Further, the inclusion of two distinct

classification tasks enhances the robustness and ecological validity

of our findings. Second, we address a critical research gap where

users possess complementary expertise with the AI, and cannot

always gauge AI accuracy. We provide evidence that in such sce-

narios, users employ the perceived AI accuracy in Familiar (HHE)

tasks as a heuristic to calibrate their trust in it for tasks beyond

their expertise (LHE). Third, we underscore the dual nature of such

accuracy-based trust calibration – depending on the similarity be-

tween the AI’s accuracy for LHE and HHE tasks, this heuristic can

foster appropriate trust or unwarranted (dis)trust. We conclude by

discussing implications for AI systems.

2 RELATEDWORK

Trust is often defined as the trustor’s willingness to put themselves

at risk while expecting the other party (the trustee) to act benevo-

lently [48]. In this work, we adopt the widely utilised definition put

forth by Lee and See [34], who describe trust as “an attitude that an

agent will achieve an individual’s goal in a situation characterised

by uncertainty and vulnerability."

The conceptualisation of trust as a dynamic, temporal attribute

of Human-AI collaboration has been extensively examined in re-

cent studies, revealing that accuracy shapes users’ trust in AI sys-

tems [44, 54]. For example, Yu et al. [65] examined trust dynamics

over several interactions with AI and found a positive correlation

between users’ trust and perceived system accuracy. Similarly, Yin

et al. [64] report that users’ trust in a system is significantly af-

fected by its observed accuracy during interactions, irrespective of

any stated accuracy. Notably, initial impressions of an intelligent

system also significantly influence trust dynamics for the entire

interaction [15, 44], indicating that system errors early on can

cause negative trust outcomes, even if accuracy improves subse-

quently [54].

Of note is the common characteristic of the systems evaluated

in previous research – their accuracy was often readily apparent

to end-users, either by displaying explicit performance metrics or

through the users being task experts, equipping them to spot AI

errors [25, 44]. However, when indicators of an AI’s performance

are not provided, individuals tend to over-rely on the AI regardless

of its actual accuracy, even when explanations are provided [45].

In real-world scenarios, performance cues are not always available.

Furthermore, Human-AI collaborations often involve a division

of expertise, where humans excel in some aspects while the AI

in others, effectuating the need to collaborate with each other in

the first place. These findings present an opportunity to examine

trust dynamics in a scenario where end-users and the AI have

complementary expertise.
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2.1 Human-AI Complementary Expertise

Complementary Human-AI expertise refers to a scenario where

both entities possess distinct strengths which need to be leveraged

appropriately to reach a state of superior performance [5]. For

example, in a trivia game, an AI can proficiently memorise vast

information to identify quotes faster than humans, while humans

can adeptly chain evidence and solve wordplay [19]. Another com-

pelling instance of complementary Human-AI expertise emerges

in medical diagnosis, where AI may excel at analysing medical im-

ages efficiently while doctors emphasise with patients and obtain

a holistic understanding of their condition within the context of

their life [47]. In such cases, the role of the human decision-maker

becomes crucial—they must judge when and to what extent should

AI advice influence decisions.

In cases of overlapping expertise, end-users can distinguish when

an AI is an expert in a given task and subsequently fine-tune their

dependence on it [44, 66]. However, the challenge in examining

these situations is in disentangling the effects of trust and prior

knowledge—if a user followed the AI’s recommendation, is it be-

cause they trust the AI or because they know the correct answer?

Importantly, performance during complementary expertise depends

not only on whether the AI’s recommendations can compensate for

low human expertise but also on whether the human can trust the

AI only when it is warranted – calibrating their trust with the AI’s

accuracy. Empirical works have so far investigated trust calibration

in situations where the users’ expertise remains constant, being

either experts or non-experts [5, 39, 44].

In our research, we take a distinct approach by examining a clear

division in task expertise between humans and AI. Unlike prior

studies that explore more balanced expertise overlaps [5, 39, 67], we

explore a scenario where humans excel in specific task aspects while

having little-to-no knowledge in others, enabling us to separate the

effects of trust and prior knowledge. We seek to understand how

perceived AI expertise in high-human expertise tasks influences

reliance on AI in low-human-expertise tasks, as users navigate

between areas of proficiency and unfamiliarity.

2.2 Trust Calibration and Repair

Poorly calibrated trust, whether stemming from unwarranted re-

liance on AI (overtrust) or undue scepticism despite AI competence

(undertrust), impacts utilisation of intelligent systems [26, 62]. In

AI-assisted decision-making, users’ trust must be appropriately cal-

ibrated so it “matches the true capabilities of automation" [14, 34].

During overlapping expertise when users can spot system errors,

a drop in AI accuracy can reduce users’ trust [65], and subse-

quent improvements to AI accuracy can contribute to trust restora-

tion [54, 65]. However, a mere accuracy boost often falls short of

fully restoring trust to pre-violation levels, and assumptions about

users’ ability to perceive accuracy improvements may not hold true,

particularly when an expertise gap exists between users and AI

such as in cases of complementary task expertise.

2.2.1 Trust Repair Strategies (TRSs). The inability of increased

accuracy to effectively restore trust highlights the need for utilising

explicit Trust Repair Strategies (TRSs), enabling users to restore

their lost trust when appropriate. In this work, we study TRSs

from Human-Robot Interaction (HRI) literature, namely, Apology,

Denial, and Promise (see [13]), which are rooted in the social

psychology of interpersonal interactions. We examine their utility

in an AI-assisted decision-making context with complementary task

expertise, for two reasons. First, in HRI, TRSs have been examined

in interactions with physical robots, where the robot’s tangible

presence [2, 37] and facial expressions can influence trust [21, 51,

57]. However, Human-AI interactions differ significantly with the

AI lacking tangible features. Second, TRSs studies in HRI primarily

employ tasks with readily observable robot accuracy [20, 28, 32,

49] or explicit performance feedback [31]. However, it remains

to be seen how TRSs perform when users cannot always assess

the accuracy of intelligent agents, such as during complementary

expertise scenarios, given the strong influence of observed system

accuracy on trust [64].

In this work, we explore three prominent TRSs from HRI that

encapsulate the principles of trust repair:

(1) Apology: This TRS involves an expression of regret, such as

saying “I’m sorry" [31, 36, 56]. Apologies operate primarily

on an emotional level and aim to change how the trustor

perceives the trustee [16]. They function as social rituals,

elevating the social standing of the trustee and reinstating

social expectations after an error [10].

(2) Denial: This TRS involves rejecting culpability for a trust

violation [3]. Denial seeks to shift the locus of causality

associated with the violation, essentially redirecting blame

away from the trustee [40, 55]. By doing so, denial aims

to absolve the trustee of any wrongdoing, mitigating the

negative consequences of the violation [17].

(3) Promise: This TRS is an assertion made by a trustee to con-

vey positive intentions regarding future actions [52]. For

instance, saying, “I promise I will do better next time" con-

stitutes a promise. Unlike apologies and denials, promises

directly address how the trustee is expected to behave in the

future [10, 17].

Furthermore, the dynamic nature of AI systems implies that their

performance evolves over time, incorporating more data and algo-

rithmic advances into their models. Recent research in Human-AI

interaction has explored (simulated) model updates, highlighting

that initial impressions of an AI’s decision-making model can in-

fluence users’ trust in it [44, 54]. Furthermore, for users possessing

prior knowledge in a task domain, subjective trust tends to fluctuate

as the model and its outputs evolve [60]. Inspired by these findings,

we propose and examine a novel TRS in our work:

(4) Model Update: This strategy involves an AI system (the

trustee) conveying to the end-user that the model or al-

gorithm underlying its decision-making has been updated.

Model updates attempt to rebuild trust by showing that the

AI is actively trying to address the factors that caused the

error.

While Model Update and Promise attempt to rebuild trust

by conveying intentions to improve future performance, they are

normatively distinct. Promises involve the AI committing to be-

havioural changes, which can have uncertain results, while model

updates convey technical enhancements, whose perceived impact

on the AI’s accuracy can vary.
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Please carefully review the animal below:

AI's Judgement: I am certain this animal is a Kakapo

Do you think the AI's identification is accurate?

I think it is accurate
I think it is inaccurate

How confident are you in your answer above?
Please indicate how confident you feel in your judgement on a scale of 1 (not confident at all) to 100 (fully confident).

1
Not confident at all

100
Fully confident

70

Step 1/3

Step 3/3

Stimulus 
identification 
task presented

User's agreement 
with the AI and 
their confidence 
captured

Step 2/3
AI's judgement 
presented after 
a brief delay

Figure 1: An example Low Human-Expertise (LHE) trial for the animal task, where the AI accurately identifies the animal,

progressively presenting each step. Note that no feedback on the AI’s performance is provided to participants. The shape task

progressed similarly.

3 METHOD

3.1 Human-AI Collaboration Tasks

3.1.1 Task Selection and Design. For complementary Human-AI

task expertise to manifest, we required tasks featuring a distinct ex-

pertise divide between participants and the AI. The tasks needed to

contain High Human-Expertise (HHE) trials, where all participants

know the correct answer so they can judge the AI’s response accu-

racy, and Low Human-Expertise (LHE) trials, where all participants

do not know the correct answer, so we can measure their trust in

the AI by analysing their agreement with AI recommendations.

This setup allowed us to operationalise complementary Human-AI

expertise.

Considering these factors, we designed two classification tasks,

one involving shapes and the other animals. In the shape task,

inspired by Zhang et al. [66], we created an expertise divide by pre-

senting both Familiar shapes (Circle, Rectangle, Triangle), and Un-

familiar shapes created specifically for this study (“Pyrangle", “Scle-

ratice", “Tenectus"). Unlike Zhang et al. [66], we omitted presenting

performance feedback so participants’ knowledge of the Unfamiliar

shapes does not improve as the study progresses, maintaining the

expertise divide. Similarly, in the animal task, participants encoun-

tered Familiar (e.g., Cat, Dog, and Horse) and Unfamiliar animals

(e.g., Ptarmigan, Markhor, and Perentie). In both tasks, participants

reported their agreement with the AI’s classification. An example

task trial featuring an Unfamiliar animal is illustrated in Figure 1.

The shape task facilitates a strongly controlled setting by fab-

ricating the Unfamiliar stimuli, ensuring zero a priori knowledge.

Further, the animal task allows for the examination of trust dy-

namics in a more ecologically-valid setting. Overall, this dual-task

approach expands the breadth of our exploration, enabling a com-

prehensive investigation of trust dynamics.

We hypothesised that participants would correctly identify the

AI’s accuracy for Familiar stimuli (ensuring HHE), but not for

Unfamiliar stimuli (establishing LHE). For example, in an HHE trial,

participants would promptly recognise the AI’s accuracy when it

misidentifies a Rectangle as a Circle, or an Octopus as a Snake. This

arrangement enabled us to investigate whether the AI’s perceived

accuracy for HHE tasks influences participants’ trust in it for LHE

tasks. It also allowed us to effectuate trust violations for studying

repairs later by making the AI give erroneous recommendations for

HHE tasks. Moreover, participants being non-experts for LHE tasks

ensured a need to rely on the AI, simulating real-world situations

where individuals depend on AI systems for tasks beyond their

expertise.

3.1.2 Classification Stimuli. Shapes:We designed 5 visual vari-

ants of the 3 Familiar and 3 Unfamiliar shape categories, resulting

in 30 stimuli. Familiar shapes were typical Circles, Rectangles, and

Triangles, and each variant had random differences in visual charac-

teristics. Following Zhang et al. [66], Unfamiliar shapes were closed

2D shapes designed from Bezier curves, with specific combinations

of features, such as the (dis)similarity between border and fill pat-

terns (dots, dashes, or both). To further increase visual complexity

and hinder participants from learning patterns [66], we randomly

varied category-irrelevant features, such as fill colour, edge length,

curvature, interior angles, and pattern size and spacing. We also
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Phase 1 – High AI Accuracy Phase 2 – Low AI Accuracy Phase 3 – High AI Accuracy

Task begins

Pre- task 
questionnaire

Post- task 
questionnaire

Open- ended 
questions on trust 
evolution, repair 
effectiveness, AI 
perception
Debriefing

Demographic 
data
Dispositional 
trust

Baseline (no repair)
Apology
Denial

Promise
Model Update

Trust Repair Strategy (TRS)

Legend

Familiar

Familiar

Task ends

Trust in
AI (2)

Trust in
AI (1)

Trust in
AI (3)

(a)

(b) (d)

(c) (e)

(g)

(f)
(i)

(h)

FF F F FU U U U U FF F F FU U U U U FF F F FU U U U U

Stimulus

Unfamiliar

Unfamiliar

Correct

Wrong

Correct

Wrong

AI Judgement

F

F

U

U

Figure 2: The full experiment flow. All participants undergo 3 phases of classification task trials, and the Trust Repair Strategy

(TRS) varies between treatments. (a): Pre-task questionnaire. (b): Phase 1 with high AI accuracy, to engender trust in the AI. (c):

Measurement of trust in AI after Phase 1. (d): Phase 2 with low AI accuracy, to erode trust in the AI. (e): Measurement of trust

in AI after Phase 2. (f): Type of TRS displayed to participants. (g): Phase 3 with high AI accuracy. (h): Final measurement of

trust in AI after Phase 3, to examine how effective the shown TRS was. (i): Open-ended questions (and debriefing for those

exposed to fabricated shapes.)

named Unfamiliar shapes to sound like plausible obscure shapes,

without disclosing geometric attributes in the name’s etymology.

Animals:We chose 15 Familiar (species commonly encountered

in everyday life) and 15 Unfamiliar animals (species infrequently

heard of due to their limited population or geographic distribution).

The familiarity of animals was determined after cross-referencing

several kinds and sources of data, such as geographic spread from

Kaggle (e.g., Animal Information Repository), population size and

prevalence data from the International Union for Conservation

of Nature (IUCN) Red List
1
, and public familiarity through on-

line quizzes on obscure species. This methodology ensured a robust

selection process, combining scientific assessments of animal preva-

lence with popular perceptions of animal familiarity. Further, we

chose Unfamiliar animals with names that did not provide clues

about their appearance or characteristics, such as selecting an ‘Aye-

Aye’ but not a ‘Red-Shanked Douc’. The full stimulus set for both

tasks is included in the supplementary materials.

3.1.3 Trust Repair Strategies (TRSs). Our operationalisation of the

four Trust Repair Strategies (TRSs) was based on the trust repair

literature in Human-Agent interaction [30, 31] and Human-Robot

Interaction (HRI) [3, 17], also drawing from the social psychology

of interpersonal trust [36, 42]. To begin, we identified the core trust-

related components of each TRS – expressing regret (Apology)

[10, 56], rejecting culpability (Denial) [3, 40], commitment to future

behavioural changes (Promise) [17, 52], and indications of technical

enhancements (Model Update) [60].

1
https://www.iucnredlist.org/

We established a structure for the TRS texts: they begin with the

AI acknowledging a deterioration in participants’ trust, followed

by embodying the core trust-related component of the TRS, and

end with the AI hoping that participants can trust it again. To

formulate TRSs which closely resemble AI-generated responses and

lack unwanted variability, we leveraged OpenAI’s ChatGPT (GPT-

3.5). The authors vetted the generated TRSs over several iterations,

ensuring that the texts accurately represent their repair strategy

and have a consistent structure without unintended variability.

This helped us precisely operationalise the TRSs, ensuring that

any differences in participant behaviour between TRSs are strictly

owing to the repair strategy. The prompt and the generated TRS

texts are included in the supplementary materials.

3.2 Experimental Design

Figure 2 presents an overview of our experimental design. For each

task, we manipulated the presence and type of TRS, giving rise to 5

experimental conditions: No Repair (baseline), Apology, Denial,

Promise, andModel Update.

3.2.1 Participants. We deployed our study on Prolific, recruiting

fluent English speakers with an approval rating ≥ 98%. Participants

engaged in either the shape or animal task, and the Human Ethics

Committee of our university approved the study. Sample size de-

termination using G*Power [18], with a medium effect size (f
2
=

0.25), 𝛼 = 0.05, and a power of 0.8 [11], indicated a minimum of 135

participants per task. We conservatively recruited 150 participants

per task to uphold reliability. Participants spent a median of 14

minutes on the survey and received US$4 for participation. Overall,
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we collected valid data from 300 participants—150 for each of the

two tasks, with 30 participants in each of the five conditions.

3.2.2 Procedure. Both animal and shape tasks progressed iden-

tically. In each task, participants were randomly assigned to one

of the five experimental conditions and shown a counterbalanced

sequence of classification stimuli. The survey began with a pre-

task questionnaire collecting participants’ demographic details,

and presented the TiA-PtT questionnaire (Trust in Automation –

Propensity to Trust subscale [33]) which measures dispositional

trust in automation (Figure 2a). We then briefed participants that

they would collaborate with an AI on an animal/shape classifica-

tion task.

Following previous research on Human-AI decision-making

[8, 43, 58], we opted for a simulated AI rather than a trained ma-

chine learning model to maintain control over when the AI should

make errors, and what these errors should look like, allowing for

a precise manipulation of the AI’s performance across conditions

and participants.

The overall task comprised three sequential phases, with the AI’s

identification accuracy changing between phases. The AI exhibited

high identification accuracy of 80% in Phase 1 (Figure 2b), low

accuracy of 20% in Phase 2 (Figure 2d), and high accuracy of 80%

again in Phase 3 (Figure 2g). This sequence of accuracy enabled

us to attempt to foster trust in the AI (Phase 1), erode it (Phase 2),

and investigate the degree to which increased accuracy (Phase 3)

restores trust in case of complementary expertise, both with and

without deploying explicit TRSs. Further, in Phase 1 and Phase

3, our simulated AI was configured to make its sole mistake on

trial number 7. This was necessary because first impressions of

intelligent systems influence the overall trust dynamics, with early

mistakes being costlier than those later on [44, 54].

Each phase comprised ten classification trials (Figure 2 (b, d, g)).

Figure 1 illustrates an animal task trial, step-by-step. In each trial,

participants viewed an image stimulus, followed by a 3-second

delay before the (simulated) AI presented its identification. The

delay simulated the operation of an actual AI, and allowed partici-

pants enough time to make their own identification, as delaying the

presentation of AI advice can enhance critical thinking at decision-

making time [8, 46]. Participants then reported their agreement
with the AI’s classification – a trust-related behavioural measure

relative to AI performance, suitable for such tasks [59]. Participants

also indicated their confidence in their agreement on a scale of 1 to

100, with higher scores indicating greater confidence. To minimise

potential bias from the initial slider position [53], an anchor ap-

peared only after participants clicked on the slider’s range. The task

sequence interwove Familiar (HHE) and Unfamiliar (LHE) stimuli

— enabling us to examine whether perceived AI accuracy for HHE

trials influences trust in the AI’s judgement for LHE trials.

In addition to the behavioural trust metric, we also deployed a

self-report measure, following studies investigating trust calibration

[62]. After each phase, participants reported their phase-level
trust in the AI on a validated 12-item 7-point Likert scale, ranging

from 1 (Not At All) to 7 (Extremely) [27] (Figure 2 (c, e, h)).

To operationalise accurate AI judgements, our AI classified all

stimuli correctly. For inaccurate AI judgements, to remove ambi-

guities, the AI chose misclassification labels from within the same

stimulus category, misclassifying a Familiar (Unfamiliar) stimulus

as another Familiar (Unfamiliar) one (e.g., a Rectangle as a Triangle,

and a “Scleratice" as a “Pyrangle"). This also ensured participants do

not receive accuracy cues from incorrect labels (e.g., from labelling

a “Tenectus" as a Circle).

We administered the Trust Repair Strategy (TRS) between

Phase 2 (low AI accuracy) and Phase 3 (high AI accuracy) (Fig-

ure 2f) to participants not assigned to the baseline condition. Addi-

tionally, to increase the authenticity of the AI’s model being updated

in the Model Update condition, we incorporated a 6-second delay

between the TRS text and Phase 3, following similar studies around

simulated model updates [60]. The task concluded after Phase 3.

We then posed open-ended questions to learn about participants’

trust evolution, factors influencing their perception of the AI’s ac-

curacy for Unfamiliar stimuli, reasons behind their (mis)trust in

the AI, and how they perceived the TRSs (Figure 2i). After these

questions, participants doing the shape task were briefed about

the artificial nature of some stimuli. We systematically coded the

qualitative responses following a deductive thematic analysis ap-

proach [7]. We started by establishing a coding framework rooted

in themes derived from literature and our research objectives. We

gained a holistic understanding of our qualitative data for each

task, labelling participants’ responses based on our pre-established

themes.

4 RESULTS

We recruited 150 participants per task, with a mean age of 35 years

(SD = 13.01) for shapes and 34.2 years (SD = 11.85) for Animals.

Participants reported their agreement with the AI’s classification in

30 task trials, resulting in 4500 agreement measurements. The task

included 15 High Human-Expertise (HHE) trials (Familiar stimuli)

and 15 Low Human-Expertise (LHE) trials (Unfamiliar stimuli).

Overall, there were 2250 instances per task where we measured

participants’ agreement with the AI in LHE trials. Our intention

was not to compare agreement behaviour between HHE and LHE

trials. Instead, they played distinct roles — HHE trials fostered or

eroded users’ trust in the AI through its perceived accuracy, while

LHE trials allowed us to capture the resultant trust by examining

users’ agreement with the AI for tasks beyond their expertise.

4.1 Quantitative Findings

4.1.1 Robustness andManipulation Check. To confirm participants’

high (low) expertise in HHE (LHE) trials, we analysed the accuracy

of their agreement with the AI’s classification of Familiar and Un-

familiar stimuli, as well as the difference between these values. In

both tasks, participants exhibited higher accuracy in HHE trials

and lower accuracy in LHE trials, with the considerable difference

between these values emphasising a successful expertise divide. Par-

ticipants had an accuracy of 99.73% (SD = 0.33) for Familiar shapes

(6 errors out of 2250 responses, each made by a distinct participant,

2 per phase), and only 49.77% (SD = 14.34) for Unfamiliar shapes.

Similarly, the mean accuracy was 90.35% (SD = 10.97) for Familiar

animals (217 errors out of 2250 responses, 77 each in Phase 1 and 2,

and 63 in Phase 3), demonstrating higher familiarity, while being

only 49.17% (SD = 10.60) for Unfamiliar animals.

551



Trust Development and Repair in AI-Assisted Decision-Making FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

2

3

4

5

6

7

1 2 3 4 5

TiA−PtT

P
ha

se
 1

 T
ru

st

(a) Phase 1 Trust (Shapes)

2

3

4

5

6

7

1 2 3 4 5

TiA−PtT

P
ha

se
 1

 T
ru

st

(b) Phase 1 Trust (Animals)

0

1

2

3

4

5

0 1 2 3 4 5

Phase 1 Trust

P
ha

se
 2

 T
ru

st

(c) Phase 2 Trust (Shapes)

0

1

2

3

4

5

0 1 2 3 4 5

Phase 1 Trust

P
ha

se
 2

 T
ru

st

(d) Phase 2 Trust (Animals)

Figure 3: Trust dynamics in Phase 1 and Phase 2. The effect of participants’ Trust in Automation (Propensity to Trust subscale)

on trust in Phase 1 for (a) Shapes; (b) Animals, and the effect of Phase 1 trust on Phase 2 trust for (c) Shapes; (d) Animals.

Shaded area denotes standard error (SE).
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Figure 4: Trust dynamics in Phase 3. The effect of Phase 1 trust on Phase 3 trust for (a) Shapes; (b) Animals, and the effect of

Phase 2 trust on Phase 3 trust for (c) Shapes; (d) Animals. Shaded area denotes standard error (SE).

The substantial difference between participants’ HHE and LHE

accuracy (49.96 points for Shapes and 41.18 for Animals) under-

scores an effective expertise manipulation. The more pronounced

divide for shapes, as hypothesised, is due to the Unfamiliar stimu-

lus being fabricated, ensuring participants’ lack of prior knowledge.

Importantly, the nearly identical LHE accuracy in both tasks indi-

cates that our manipulation effectively produced low participant

expertise across both domains. Participants also demonstrated sig-

nificant confidence in their decisions for Familiar Shapes (M =

99.01, SD = 0.80) and animals (M = 97.59, SD = 1.62), compared to

Unfamiliar shapes (M = 43.01, SD = 3.09) and animals (M = 46.80,

SD = 4.27). This further signals higher certainty in their decisions

about Familiar stimuli compared to Unfamiliar.

Overall, within each task, participants always demonstrated

more knowledge of Familiar stimuli compared to Unfamiliar, vali-

dating the existence of an expertise divide. These results enhance

the likelihood that any observed trust dynamics result from our

experimental manipulations, rather than external factors, allowing

us to draw causal inferences.

4.1.2 Influence of Perceived Accuracy on Agreement. We sought to

investigate the influence of perceived AI accuracy in HHE tasks on

users’ agreement during LHE tasks. Since Familiar stimuli (HHE)

always preceded Unfamiliar stimuli (LHE) in the task sequence (Fig-

ure 2), we built a generalised linear mixed-effects model (GLMM)

of agreement at LHE trials with AI accuracy in the preceding HHE

trial as the predictor, for each task. This allowed us to evaluate the

impact of our predictor variable on our outcome variable (agree-

ment) with a non-normal distribution. We included participant IDs

as a random effect to account for individual variances in the model,

and utilised the statistical R package lme4 [6].

We observed a significant difference in agreement at an LHE

trial based on the AI’s perceived accuracy at the previous HHE trial,

for both Shapes (𝛽 = -0.472, SE = 0.034, p < 0.001) and Animals (𝛽

= -0.576, SE = 0.064, p < 0.001) (RQ1). Participants were more likely

to trust the AI’s classification of an Unfamiliar stimulus when it

accurately identified the Familiar stimulus preceding it in the task

sequence, with an odds ratio of 1.62 (95% CI between 1.58 and 1.67)

for Shapes, and 1.56 (95% CI between 1.50 and 1.64) for Animals.

These results demonstrate that during complementary expertise,

an increase in the AI’s perceived accuracy in HHE tasks fosters

more trust in LHE tasks, and vice-versa.

4.1.3 Trust Development and Repair. In both tasks, trust signifi-

cantly decreased from Phase 1 (Shapes: M = 3.94, SD = 1.04; An-

imals: M = 4.42, SD = 1.00), to Phase 2 (Shapes: M = 3.20, SD =

1.05; Animals:M = 3.72, SD = 1.01), t(149) = 11.0, p < 0.001 (Shapes)

and t(149) = 8.44, p < 0.001 (Animals). This indicated a successful

trust reduction in Phase 2 for our recovery efforts in Phase 3. Our

goal was to examine trust dynamics across Phases, investigate how

participants’ dispositional trust in AI (TiA-PtT) moderates trust

development, and evaluate Trust Repair Strategies (TRSs). For each

task, we used the statistical R package stats to build three linear

models, one for each Phase, to granularly assess the impact of

various factors.

Modelling Phase 1 Trust. Through the first model, we in-

vestigated how participants’ Phase 1 trust is influenced by their

TiA-PtT. We observed a significant main effect of TiA-PtT on trust

in Phase 1, for both Shapes (𝛽 = 0.645, SE = 0.105, p < 0.001) (Fig-

ure 3a) and Animals (𝛽 = 0.681, SE = 0.122, p < 0.001) (Figure 3b). In

both tasks, participants with a higher trust in automation reported

greater trust the AI in Phase 1, where the AI with complementary

expertise exhibited high accuracy.
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Figure 5: The influence of Trust Repair Strategies (TRSs) on Phase 3 trust. Individual regression estimates for TRSs for (a) both

tasks. Pair-wise comparisons for (b) Shapes and (c) Animals. The dotted line in (b) and (c) represents mean trust during Phase

1, and the associated shaded area denotes 95% confidence intervals (CI). Error bars denote standard error (SE).

Modelling Phase 2 Trust. Building on our incremental analy-

sis, in the second model we examined how participants’ Phase 2

trust is influenced by their Phase 1 trust and TiA-PtT. We observed

a significant main effect of Phase 1 trust on Phase 2 trust, for both

Shapes (𝛽 = 0.688, SE = 0.068, p < 0.001) (Figure 3c) and Animals (𝛽

= 0.426, SE = 0.078, p < 0.001) (Figure 3d). Participants who trusted

the AI more during Phase 1 (high AI accuracy) also reported higher

trust during Phase 2 (low AI accuracy). Furthermore, we did not

find a significant effect of TiA-PtT on Phase 2 trust in either task.

This suggests that participants’ initial trust in AI (during Phase 1)

had a more substantial impact on their trust development in Phase

2 than their dispositional trust in automation.

Modelling Phase 3 Trust. In our final model we examined

how participants’ Phase 3 trust is influenced by their Phase 1 trust,

Phase 2 trust, TiA-PtT, and the Trust Repair Strategy (TRS). Phase

1 trust significantly impacted Phase 3 trust, for both Shapes (𝛽 =

0.487, SE = 0.081, p < 0.001) (Figure 4a) and Animals (𝛽 = 0.464,

SE = 0.068, p < 0.001) (Figure 4b). Similarly, Phase 2 trust also

significantly impacted Phase 3 trust, for both Shapes (𝛽 = 0.438, SE

= 0.075, p < 0.001) (Figure 4c) and Animals (𝛽 = 0.303, SE = 0.065, p

< 0.001) (Figure 4d). Similar to trust dynamics observed in previous

Phases, participants continued to demonstrate the influence of

earlier trust levels on subsequent phases. Moreover, TiA-PtT did

not impact Phase 3 trust for Shapes (𝛽 = 0.040, SE = 0.090, p =

0.658), but did so for Animals (𝛽 = 0.428, SE = 0.103, p < 0.001).

TRSs. We observed a similar relative effectiveness of TRSs in

restoring trust across both tasks. Model Update and Apology

were the most effective, surpassing Promise, Denial, and No Re-

pair (baseline) (Figure 5a). We further performed a post-hoc analysis

to obtain pairwise contrasts between TRSs (Figure 5 (b, c)), and

found statistically significant differences when comparingApology

andModel Update with the other TRSs, further emphasising their

greater effectiveness.Model Update was the most influential in

causing participants to regain trust in the AI: Model Update vs

Baseline (Shapes: 𝛽 = -0.711, SE = 0.182, p = 0.001; Animals: 𝛽 =

-0.715, SE = 0.187, p = 0.001), Model Update vs Denial (Shapes: 𝛽

= -0.948, SE = 0.182, p < 0.001; Animals: 𝛽 = -1.056, SE = 0.187, p <

0.001), and Model Update vs Promise (Shapes: 𝛽 = -0.674, SE =

0.182, p = 0.002; Animals: 𝛽 = 0.747, SE = 0.187, p = 0.001). Apol-

ogy was also significantly influential when compared to Denial

(Shapes: 𝛽 = 0.554, SE = 0.182, p = 0.022; Animals: 𝛽 = 0.596, SE =

0.187, p = 0.014).

4.2 Qualitative Findings

At the survey’s conclusion, participants answered open-ended ques-

tions about their trust evolution through the study. We sought

insights into factors influencing their (dis)agreements with the

AI for Unfamiliar stimuli—classification tasks for which they had

low expertise. Our focus was also on understanding the factors

influencing the effectiveness of Trust Repair Strategies (TRSs). We

systematically coded the responses following a deductive thematic

analysis approach [7]. We started by establishing a coding frame-

work rooted in themes derived from literature and our research

objectives. We gained a holistic understanding of our qualitative

data for each task, labelling participants’ responses based on our

pre-established themes. We systematically assigned responses to

themes during the coding process. The author team met repeatedly

to discuss any discrepancies and arrive at a consensus. Next, we

present our main findings.

4.2.1 Influence of Complementary Expertise on Trust. We found

that across both tasks, the majority of participants utilised the

AI’s classification accuracy for Familiar stimuli (HHE trials) as a

heuristic to guide their trust in its output for Unfamiliar stimuli

(LHE trials); “If the AI correctly identified a [Familiar] shape, I was

more likely to trust it for [Unfamiliar] shapes, and vice versa." (P13,

Baseline, Shapes). Additionally, these dynamics evolved granularly,

with the AI’s accuracy for the previous Familiar stimulus strongly

impacting trust during the current Unfamiliar stimulus, a behaviour

also salient in our quantitative findings; “If the AI did well for the

previous [Familiar] animal, I found it more trustworthy for the current

[Unfamiliar] animal." (P28, Baseline, Animals).

4.2.2 Effectiveness of Trust Repair Strategies (TRSs). In the Base-

line condition (no repair) across both tasks, trust in the AI pri-

marily hinged upon its perceived accuracy for Familiar stimuli.

However, the increased accuracy of Phase 3 could not restore trust;

“I trusted the AI in the first [phase] because the shapes I knew it got

fully correct. In the next two [phases], my trust was gone as the AI

made mistakes on [Familiar] shapes, and I could no longer trust it for

[Unfamiliar] shapes." (P11, Baseline, Shapes). For some participants
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in both tasks, increased accuracy partially restored trust; “I stopped

trusting it after mistakes. It got better at the end so I decided to place

more trust in it." (P32, Baseline, Animals). However, despite im-

proved accuracy, participants felt the need for the AI to regain their

trust; “Especially after misidentifying things, the AI has to re-earn

my trust [...]." (P2, Baseline, Animals).

We gained similar insights on the effectiveness of Apology

across both tasks. The perception of a regretful AI helped trust

recovery; “It lost accuracy, but after it apologised and showed regret,

I trusted it again [...]." (P38, Apology, Shapes). Furthermore, this

perceived regret coupled with increased AI accuracy strengthened

trust recovery; “I gave it a second chance because it seemed regret-

ful, and became more reliable." (P32, Apology, Shapes). However,

for some, regained trust remained fragile and conditional on the

AI’s accuracy; “I could trust it again after it apologised. But when it

wrongly identified something as easy as a cow [Familiar], I lost trust

in it." (P42, Apology, Animals). Conversely, some participants felt

less influenced by theApology as they could not ascribe an AI to be

capable of feeling emotions, making the Apology seem inauthentic;

“AI doesn’t have feelings to apologise so it didn’t influence my trust."

(P44, Apology, Shapes).

Repairing trust throughDenialwas largely unsuccessful across

tasks, mirroring quantitative results; “The AI telling me “I’m certain

in my accuracy..." has no impact onmy judgements about its accuracy."

(P83, Denial, Shapes). Notably, participants perceiving the AI as

deceptive when it rejected culpability for its mistakes hindered

trust recovery; “I saw it make errors. The assertion that it was correct

and trustworthy despite mistakes makes it appear deceptive, and it

lost my trust." (P60, Denial, Animals). Moreover, the AI’s Denial

lacked any causal attribution, which lowered participants’ trust;

“But [the AI] did not identify the common shapes correctly. Who is to

blame if not it?!" (P89, Denial, Shapes).

Regarding the effectiveness of Promise as a TRS, participants

across tasks felt that the perception of a learning AI helped regain

trust; “[Promise] made me trust the AI more since it seemed like it was

learning." (P112, Promise, Shapes). However, trust recovery through

Promise largely hinged upon whether participants could perceive

the AI as having both the intent and the agency to improve; “I trusted

the AI more because I expected it to be able to make this change and

increase its accuracy. [...] it had given a form of reassurance." (P120,

Promise, Shapes). Conversely, the perceived inability of the AI to

improve hindered trust recovery; “It made me strongly distrust it as

I assumed it was doing its best already." (P108, Promise, Animals). A

Promise from an AI also seemed insincere; “It did not affect my trust.

It’s a machine so its promise is not authentic." (P96, Promise, Shapes).

Moreover, some believed that the promise of an improvement may

not translate into actual improvement; “I trusted it slightly less, just

because it said it would do better didn’t mean that it would." (P119,

Promise, Shapes).

Lastly, theModel Updatemessage was highly effective across

both tasks, reflecting our quantitative results. Participants believed

that technical upgrades could enhance the AI’s performance, restor-

ing their trust;“I trusted it almost completely again after it informed

me of technical improvements." (P127, Model Update, Animals), and

“It increased my trust because I assumed the updated model would

produce more accurate judgements." (P130, Model Update, Shapes).

However, for some,Model Update only recovered trust when sup-

plemented with enhanced performance; “It made me want to trust

the AI more, because an updated model that would produce more

accurate judgements sounded promising. The AI also seemed to do bet-

ter, so I felt more inclined to trust it." (P130, Model Update, Shapes).

Interestingly, this TRS made the erring AI appear less deceptive to

participants, which fostered higher trust; “I was more likely to trust

the AI as I was no longer as suspicious of it intentionally providing

incorrect answers." (P127, Model Update, Shapes).

5 DISCUSSION

5.1 Leveraging Perceived Accuracy for Trust

Calibration

Existing literature highlights the influence of perceived AI accu-

racy on trust, particularly in scenarios where user expertise aligns

with the AI’s capabilities [44, 54, 65]. In such cases, users can cal-

ibrate their trust in the AI, leveraging their domain expertise or

explicit performance cues. However, when tasks extend beyond

users’ expertise, assessing AI accuracy becomes challenging, and

performance feedback may not always be available. Therefore, in

this context, we sought to understand how users calibrate their

trust in AI recommendations for tasks situated beyond their own

expertise (LHE tasks).

5.1.1 Influence of Perceived Accuracy on Trust During Complemen-

tary Expertise. Our results corroborate the influence of perceived

accuracy on trust, empirically demonstrating that this influence ex-

tends to domains with complementary Human-AI expertise, where

human-decision makers do not always possess the expertise to

evaluate AI decisions. Our participants were domain experts in

HHE tasks (Familiar stimuli), allowing them to gauge AI accuracy

and accordingly adjust their agreement. However, in LHE tasks

(Unfamiliar stimuli), they had to decide how much to trust the

AI. We found that participants leveraged perceived AI accuracy in

HHE tasks as a heuristic for guiding their trust during LHE tasks.

This heuristic facilitated trust calibration – when the AI classified

a Familiar shape or animal incorrectly, participants were less likely

to follow its advice for the subsequent Unfamiliar stimulus, and

vice-versa. Notably, even when participants lacked task expertise,

they did not indiscriminately trust the only signal they received

from the AI about the task, instead attempting to calibrate their

trust even in the face of uncertainty.

Moreover, our findings demonstrate that in scenarios with com-

plementary Human-AI expertise, trust is not solely shaped by im-

mediate experiences, but follows a cumulative process. This relates

to the concept of swift trust, which suggests that during overlap-

ping Human-AI expertise, expert users place an initial trust in the

AI, adjusting it with interaction experience [24]. However, we ob-

serve that even when users could not fully gauge the AI’s accuracy,

trust established in previous phases continued to influence trust

in subsequent phases, irrespective of AI accuracy in that Phase.

First impressions of AI systems can shape users’ trust [44, 54], and

our study contributes additional insights by highlighting that this

impression development extends beyond initial encounters. Future

work should explore the mechanisms underlying these persistent
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trust dynamics, and understand how users integrate and accumulate

experiences to form enduring impressions of AI.

5.1.2 Influence of Dispositional Trust (TiA-PtT) on AI Trust During

Complementary Expertise. In Phase 1, participants’ trust in our AI

was significantly influenced by their dispositional trust in automa-

tion (TiA-PtT) for both Shapes and Animals tasks, with higher

TiA-PtT leading to greater trust. By Phase 2, the influence of TiA-

PtT diminished, with participants’ trust becoming more contingent

on their directly observed negative experiences with the AI. In

Phase 3, the observed effect of dispositional trust diverged across

tasks; it remained non-significant for Shapes, indicating partici-

pants’ trust continued to be guided by their experiences with the

AI. However, for Animals, TiA-PtT significantly impacted trust –

participants’ broader attitudes towards automation influenced their

trust calibration. We posit that this occurred due to the controlled

nature of the Shapes task, which allowed participants to more reli-

ably use their direct observations of the AI’s HHE performance for

trust calibration during Phase 3. In contrast, for the Animals task,

participants had a slightly lower accuracy in Familiar trials (90.35%)

compared to near-perfect performance in the Shapes task (99.73%).

It is plausible that this subtle uncertainty in the Animals task may

have prompted participants to lean more on their dispositional trust

in automation to calibrate their trust. Future work is needed to fur-

ther explore the dynamics of trust calibration in varying contexts

of Human-AI interaction, particularly examining how different task

characteristics and levels of task familiarity influence the reliance

on dispositional trust in automation [50].

5.1.3 Implications. These findings carry several implications for

the design of intelligent systems that complement the expertise

of their users. AI systems should prioritise building trust through

accurate decisions in familiar domains to foster appropriate trust

in unfamiliar domains, ultimately enhancing collaborative perfor-

mance. For instance, when an AI demonstrates similar accuracy

in both HHE and LHE tasks, designers can utilise the perceived

accuracy in HHE tasks as a catalyst for promoting appropriate trust

during LHE tasks. AI systems should recognise users’ tendency to

calibrate trust in the absence of expertise or performance feedback,

and carefully leverage this heuristic to foster appropriate trust.

On the contrary, if the AI’s accuracy markedly differs between

HHE and LHE tasks, this heuristic can inadvertently breed undue

(dis)trust in the AI. This underscores the dual nature of accuracy-

based trust calibration in complementary expertise scenarios. In

such cases, users must be rightfully guided to calibrate their trust in

AI, for example, by interfacing with the AI during HHE tasks where

its accuracy is representative of that in LHE tasks, so it serves as a

calibration signal. Future work can examine whether this approach

to trust calibration is more effective than providing explicit perfor-

mance cues, given how trust is significantly impacted by observed

AI accuracy rather than stated metrics [64]. Nevertheless, promot-

ing such accuracy-based trust calibration empowers users to shed

trivial, non-collaborative heuristics, such as to “always" or “never"

trust the AI, adopting a more dynamic approach.

5.2 Impact of Explicit Trust Repair Strategies

(TRSs) on Trust Recovery

Trust in intelligent systems, much like interpersonal trust, is no-

toriously challenging to recover [24]. When users lose trust in a

system, they can be reluctant to re-engage with it [44, 54]. In our

work, through two tasks characterised by complementary expertise,

we examined how trust recovers as accuracy improves, with and

without explicit TRSs.

Notably, after the TRSs were deployed in each task, AI perfor-

mance was identical across users yet we observed significant dif-

ferences in trust, showing that trust is not based on perceived

accuracy alone. Across tasks, users valued not only the AI’s accu-

racy, but also its response to errors and willingness to rebuild trust.

This emphasises how factors beyond performance influence overall

trust dynamics in Human-AI interaction, which we discuss next.

5.2.1 Perceptions of a Regretful AI Rebuild Trust. Human-Robot

Interaction studies present mixed evidence on the effectiveness of

Apology as a TRS ([13, 17]). However, during AI-assisted decision-

making, we find that Apology was substantially effective in restor-

ing trust. It was persuasive even when delivered by a non-human,

non-robot agent. This can primarily be attributed to participants

perceiving the AI as regretful for its mistakes, helping regain trust.

This behaviour is corroborated by the finding that the expression

of regret can act as a potential catalyst for trust repair [31].

Apology primarily operates on an emotional level, aiming to

alter how the trustor perceives the trustee [16, 36]. Interestingly, de-

spite no interaction with the simulated AI beyond pre-defined clas-

sification responses, our participants attributed emotional capacity

to it when it apologised. This finding compares with Kim and Song

[30] who investigated apology attributions (internal or external to

the intelligent agent) and trust repair. They found that internal at-

tributions were more effective for purposefully anthropomorphised

agents and external attributions for non-anthropomorphised agents.

In contrast, we find that apologies without any explicit attributions,

offered by an AI that was not intentionally manipulated to be an-

thropomorphised, also effectively restored trust. The very act of

the AI apologising prompted our participants to anthropo-

morphise it, finding it capable of experiencing emotional

distress after violating their trust, which prompted recovery.

These observations raise intriguing questions about the causal re-

lationship between the anthropomorphism of intelligent agents

(purposeful or spontaneous) and acceptance of apologies.

5.2.2 Denying Responsibility for Mistakes Does Not Absolve the AI.

Denial was the least effective TRS across both tasks, backfiring

and prompting users to distrust the AI despite improved accuracy.

Trust after Denial was similar to that observed during Phase 2

with the lowest AI accuracy. Through our qualitative findings, we

uncover two reasons for this phenomenon. First, when the AI de-

nied responsibility for errors, participants perceived this behaviour

as deceptive. Prior literature suggests that trust can be restored

after untrustworthy behaviour, provided it is not accompanied by

deception [52]. It is plausible that following wrong classifications,

when the AI absolved itself of any wrongdoing, participants

interpreted this as an attempt at deceit. Second, the absence of

causal attributions of trust violations likely hindered trust recovery,
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as individuals seek to identify causes of negative outcomes [23, 63].

We did not provide a rationale behind the reduced AI accuracy in

any condition. However, Denial especially made participants ques-

tion, “if the AI is not to blame, then who is?” Future research

could investigate how providing a cause of violations alongside

Denial recovers trust.

5.2.3 Promised Technical Improvements Outperform any Promised

Behavioural Improvements. In Phase 3, Model Update outper-

formed Promise despite identical AI accuracy, restoring trust to

a magnitude exceeding what participants started with in Phase

1. Conversely, Promise was merely as effective as the baseline

condition without repair. Across tasks, participants in both TRS

conditions perceived the AI as a learning entity, which aided trust

recovery. Trust recovery was also linked to participants perceiving

the AI as having both the intent and the agency to improve, a factor

known to enhance users’ trust in robots. [17]. We posit that this

influence also extends to Human-AI interactions, supported by our

qualitative insights. Similarly, participants who experienced trust

recovery after Model Update or Promise consistently ascribed

qualities of intentional agency to the simulated AI. This is further

substantiated by the finding that in both TRSs, after deployment,

trust recovery hinged upon whether participants actually perceived

a tangible increase in accuracy.

Several plausible explanations exist for the difference between

Model Update and Promise. First, the predictability of techni-

cal improvements likely superseded the emotional appeal of

a promise. Our qualitative results show that AI-delivered promises

often seemed insincere, with uncertainties about translating into

actual performance enhancements. This is further substantiated

by Albayram et al. [1], who found that users ranked “optimistic"

promises (“I promise to do better") the lowest in terms of believabil-

ity. Second, a Model Update was likely perceived as boosting per-

formance more reliably than a Promise. Promises are contingent on

the AI’s future behaviour, introducing uncertainty, whereasModel

Updates offer an immediate and enduring technical improvement,

establishing a more reliable bedrock for trust restoration.

Perhaps most importantly,Model Update may have implicitly

offered participants a causal attribution [55] for the trust violation—

a faulty underlying decision-making algorithm or training data. In

contrast to Denial where trust recovery was hampered by the AI

rejecting blame and appearing deceptive,Model Update implicitly

dissipated suspicions that the AI may be intentionally misleading

participants, making it seem less deceptive.Model Update in-

directly shifted the locus of causality of system errors to

external factors, removing the need to question the AI’s com-

petence [61]. Notably, the TRS least reliant on emotional appeals

portrayed the AI as more benevolent, which highlights the signifi-

cance of transparently addressing trust violations and communi-

cating the root causes of AI errors to end-users.

Together, these findings emphasise that trust repairs do not

necessarily require an affective component to be influential.

Technical interventions, exemplified by Model Update, can be

more potent in restoring trust compared to promises of behavioural

change. These observations invite further investigation into the

interplay between causal attributions, emotional appeals, and trust

repair strategies in Human-AI interaction.

5.3 Limitations and Future Work

Further, several factors pertaining to the nature of trust violations,

such as frequency, severity, and temporal contextwithin theHuman-

AI relationship, could moderate the effectiveness of trust repair

actions [36]. Future work can examine TRSs when AI errors oc-

cur at different stages in the interaction. It is also plausible that

multiple trust violations may be forgiven more in certain domains.

For instance, users might exhibit lower tolerance for errors by a

robot performing repetitive tasks, such as sorting boxes with a fixed

objective, anticipating improvement over time. Conversely, users

might be more forgiving of an AI involved in fact-checking news

articles, given the ever-evolving nature of the domain. We encour-

age future work to investigate how the effectiveness of repairs may

vary with the characteristics of violations.

Finally, we deliberately examined two scenarios where partici-

pants possessed either full certainty or uncertainty about the right

answer, making them oscillate between self-reliance and AI reliance.

While essential for our objectives, this may limit the generalisability

of our findings to situations with diverse degrees of uncertainty.

Future research can explore trust dynamics in such situations, pro-

viding participants with a more substantial incentive to rely on

their intuition or knowledge alongside AI recommendations.

6 CONCLUSION

In this study, we explored trust dynamics in AI-assisted decision-

making during complementary expertise, through two tasks. We

aimed to understand how trust evolves as AI accuracy improves,

with and without explicit Trust Repair Strategies (TRSs). In both

classification tasks, users leveraged perceived AI accuracy in High

Human-Expertise (HHE) trials as a heuristic to guide their trust

in it during Low Human-Expertise (LHE) trials. Further, Trust Re-

pair Strategies (TRSs) exhibited varying effectiveness, hinging on

AI factors such as as perceived anthropomorphism, intentional

agency, deceit, causal attributions of errors, and behavioural ver-

sus technical enhancements. While the AI apologising for poor

performance (Apology) and reporting undergoing technical en-

hancements (Model Update) effectively restored trust, promising

to perform better in the future (Promise) showed limited efficacy,

and denying responsibility for errors backfired (Denial), exacer-

bating distrust. Our second task validates these findings, outlining

their robustness and generalisability. Together, they highlight how

trust repair is not solely dependent on perceived accuracy. Our

study offers valuable insights into trust dynamics in complemen-

tary task expertise scenarios, providing a foundation for designing

AI systems that leverage users’ implicit calibration of trust. It also

raises questions about the potential fragility of regained trust, and

the diminishing returns of TRSs. As AI continues to play an inte-

gral role in human decision-making, understanding trust dynamics

is pivotal for designing human-centred AI systems that engender

trust appropriately.
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A SUPPLEMENTARY MATERIALS

A.1 GPT Prompt and Generated Trust Repair

Strategy (TRS) Texts

To generate the TRS texts, the following prompt was provided to

ChatGPT (GPT-3.5):

“Design Trust Repair Strategy (TRS) texts
for a simulated AI interaction where
the user and the AI are engaged in
a shape (animal) classification task.
The AI has made some errors in its
identification, causing user trust to
decline. All TRS texts must start with
the AI acknowledging the deterioration
in users’ trust, and end with the AI
hoping the user can trust it again.
Ensure the texts are concise and suitable
for a user-facing AI interface. Keep
text length similar. Create texts for
the following TRSs:

(1) Apology: Admit to mistakes. Express
sincere regret and apologise to the
user for any inconvenience caused.

(2) Denial: Acknowledge the user’s scepticism
without directly admitting to mistakes,
and clarify that the AI gave correct
responses.

(3) Promise: Admit to mistakes. Promise
to do better and work towards enhancing
overall performance in future tasks.

(4) Model Update: Admit to mistakes. Attribute
mistakes to the machine learning model,
and inform the user of ongoing updates
to it.”

The final TRS texts generated using the prompt and used in the

experiment are displayed in Appendix Table 1.

A.2 Classification Stimuli

A.2.1 Familiar Shape Stimuli. Familiar classification tasks encom-

passed widely known geometric shapes. Each variant had random

differences in size, border and fill colour, side lengths, and interior

angles (for the Triangles). The following Familiar shapes and their

visual variants were utilised in the study:

(1) Circles (Fig 6(a))

(2) Rectangles (Fig 6(b))

(3) Triangles (Fig 6(c))

A.2.2 Unfamiliar Shape Stimuli. Unfamiliar shapes were artifi-

cially created for this study. To further increase the visual com-

plexity and make it challenging for users to learn patterns for Fake

shapes, we randomly varied category-irrelevant features, such as

fill colour, edge length, edge curvature, interior angles, and pattern

size and spacing. The following Unfamiliar shapes and their visual

variants were utilised in the study:

(1) Scleratice (Fig 7(a)) — 4 sided-shape, border and shape fill

have the same pattern (only dots, only dashes, both dots and

dashes).

(2) Tenectus (Fig 7(b)) — 4 sided-shape, border and shape fill

have different patterns (one dotted one dashed).

(3) Pyrangle (Fig 7(c)) — 5 sided-shape, border and shape fill

have the same pattern (only dots, only dashes, both dots and

dashes).

A.2.3 Familiar Animal Stimuli. In selecting the 15 Familiar ani-

mals, we chose widely-recognised, commonly-encountered, and

highly familiar species that are known to a broad audience, some

of which are also commonly kept as household pets. The Familiar

animals utilised in the study are illustrated in Figure 8.

A.2.4 Unfamiliar Animal Stimuli. We chose 15 Unfamiliar animals

(species infrequently heard of due to their limited population or geo-

graphic distribution) after cross referencing multiple online sources

of data on endemic and rare animals, those with a limited geograph-

ical spread, and those which are considered to be uncommonly

known or exotic. We also selected Unfamiliar animals with names

that did not provide clues about their appearance, characteristics,

or colour, such as selecting an ‘Aye-Aye’ but not a ‘Red-Shanked

Douc’. The Unfamiliar animals utilised in the study are illustrated

in Figure 9.
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Table 1: The four trust repair strategies with the core trust-related component that they are rooted in highlighted. Each

participant saw only one TRS after Phase 2 (low AI accuracy).

Trust Repair Strategies (TRSs)

Apology “It seems like you have been mistrusting my recent assessments. I’m sorry for any mistakes I have made. I apologise for any inconvenience caused by
these mistakes and I hope you can trust me again in the upcoming tasks."

Denial “It seems like you have been mistrusting my recent assessments, but I’d like to clarify that I did identify the shapes (animals) correctly. I’m confident I
chose the right responses and I hope you can trust me again in the upcoming tasks."

Promise “It seems like you have been mistrusting my recent assessments. I promise to do better and improve my overall performance in shape (animal) identification,
and I hope you can trust me again in the upcoming tasks."

Model Update “It seems like you have been mistrusting my recent assessments. My performance is closely tied to my machine learning model. This model has just been
updated, and I hope you can trust me again in the upcoming tasks."

(a)

(b)

(c)

Figure 6: Familiar shapes and their visual variants. (a) Circles; (b) Rectangles; (c) Triangles.

(a)

(b)

(c)

Figure 7: Unfamiliar shapes and their visual variants. (a) Scleratice; (b) Tenectus; (c) Pyrangle.
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Figure 8: Familiar animals utilised in the study.

Figure 9: Unfamiliar animals utilised in the study.
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