
21

A Survey of Context Simulation for Testing Mobile

Context-Aware Applications

CHU LUO, JORGE GONCALVES, EDUARDO VELLOSO, and VASSILIS KOSTAKOS,

University of Melbourne

Equipped with an abundance of small-scale microelectromechanical sensors, modern mobile devices such as
smartphones and smartwatches can now offer context-aware services to users in mobile environments. Al-
though advances in mobile context-aware applications have made our everyday environments increasingly
intelligent, these applications are prone to bugs that are highly difficult to reproduce and repair. Compared to
conventional computer software, mobile context-aware applications often have more complex structures to
process a wide variety of dynamic context data in specific scenarios. Accordingly, researchers have proposed
diverse context simulation techniques to enable low-cost and effective tests instead of conducting costly and
time-consuming real-world experiments. This article aims to give a comprehensive overview of the state-of-
the-art context simulation methods for testing mobile context-aware applications. In particular, this article
highlights the technical distinctions and commonalities in previous research conducted across multiple dis-
ciplines, particularly at the intersection of software testing, ubiquitous computing, and mobile computing.
This article also discusses how each method can be implemented and deployed by testing tool developers and
mobile application testers. Finally, this article identifies several unexplored issues and directions for further
advancements in this field.

CCS Concepts: • Software and its engineering • Human-centered computing → Ubiquitous and mo-

bile computing;

Additional Key Words and Phrases: Mobile devices, sensors, software testing, multimedia

ACM Reference format:

Chu Luo, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. 2020. A Survey of Context Simulation for
Testing Mobile Context-Aware Applications. ACM Comput. Surv. 53, 1, Article 21 (February 2020), 39 pages.
https://doi.org/10.1145/3372788

1 INTRODUCTION

With the prevalence of small-scale microelectromechanical sensors, modern mobile devices such
as smartphones and smartwatches can now provide context-aware services to users in the mobile
environment. Mobile context-aware applications are increasingly emerging in multiple domains.

This work was partially funded by a Samsung Global Research Outreach grant, the ARC Discovery Project DP190102627,
and Google. E. Velloso was the recipient of an Australian Research Council Discovery Early Career Award (Project Number:
DE180100315).
Authors’ address: C. Luo, J. Goncalves, E. Velloso, and V. Kostakos, School of Computing and Information Systems,
University of Melbourne, Parkville, VIC, 3010, Australia; emails: {chu.luo, jorge.goncalves, eduardo.velloso, vassilis.
kostakos}@unimelb.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2020/02-ART21 $15.00
https://doi.org/10.1145/3372788

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

https://doi.org/10.1145/3372788
mailto:permissions@acm.org
https://doi.org/10.1145/3372788

21:2 C. Luo et al.

A renowned example is Uber [105], a location-aware smartphone application that helps passen-
gers hire regular vehicles driven by casual drivers. On the user interface (UI) of Uber, passengers
can see their own location and that of nearby vacant vehicles. Moreover, mobile context-aware
applications based on advanced machine learning algorithms can recognise complex context from
sensor data to provide relevant services. For example, CarSafe [117] is a smartphone application
enabling safe driving by monitoring the driver behaviour and road conditions. From a smartphone
mounted on the car windscreen, it uses the front camera to monitor the driver and the rear camera
to track road conditions. It also uses the Global Navigation Satellite System (GNSS) (e.g., Global Po-
sition System), accelerometer, and gyroscope to infer the vehicle’s movement. If dangerous driving
behaviours are detected, CarSafe will instantly trigger alerts.

Although advances in mobile context-aware applications have made our everyday environments
increasingly intelligent, these applications are prone to bugs that are highly difficult to reproduce
and repair [33, 75, 102]. Compared to conventional computer software, mobile context-aware ap-
plications often have more complex structures to process a wide variety of dynamic context data
in real time. Traditional software testing techniques cannot effectively examine the behaviours of
such applications corresponding to dynamic environments. In addition, as mobile context-aware
applications are generally designed for specific scenarios (e.g., particular locations and user activ-
ities), it is often laborious, time consuming. and costly to conduct real-world tests [69, 102].

Consequently, researchers have proposed multiple methods that can use simulated context data
to test mobile context-aware applications. However, designing context simulation methods for
mobile context-aware applications is a highly challenging task for three reasons:

(1) Platform limitations: In Integrated Development Environments (IDEs) of popular mobile
platforms, it is easy to simulate UI events such as clicks and touchscreen gestures on
emulators. In addition, it is possible to simulate a handful of context events on emulators
via manual input in IDEs such as Android Studio [38] and Xcode [7]. Some IDEs can offload
such simulation to cloud-based testing platforms. Firebase Test Lab [40] and Xamarin Test
Cloud [77] host various physical devices and emulators on the cloud to simulate manual
input and several system events for Android and iOS applications. However, on current
IDEs and cloud platforms, there is little support for advanced context simulation regarding
more context event types.

(2) Context heterogeneity: Typically, mobile context-aware applications rely on various sen-
sor types. Due to differences in low-level design, each sensor type may need a unique
mechanism that is suitable for simulation in practice.

(3) Ecosystem fragmentation: The architectures and features of mobile platforms are often
different. Although certain actions are supported on one platform, they may not work on
another. Researchers often struggle for platform-specific design of context simulation.

Although technically challenging, context simulation is a popular way for testers to avoid labo-
rious, time-consuming, and costly real-world tests. Here, we provide a comprehensive overview
of state-of-the-art context simulation methods for testing mobile context-aware applications.

1.1 Related Work

The literature has several survey and tutorial articles on mobile application testing [19, 29, 58, 65,
99, 103, 121], as summarised in Table 1.

Gao et al. [29] present a tutorial of mobile application testing in terms of (1) requirements,
(2) activities, (3) approaches, (4) environments, and (5) automation. For each area, they provide a
high-level comparison among major features of 15 popular mobile testing tools.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:3

Table 1. Summary of Related Work

Study Focus
Number of Year of

Studied Works Publication

Gao et al. [29] Features of generic mobile testing tools 15 2014

Choudhary et al. [19] Features of Android GUI testing tools 14 2015

Starov et al. [99] Cloud-based mobile application testing 34 2015

Zein et al. [121] Systematic mapping on mobile testing research 79 2016

Linares-Vásquez et al. [65] Technical features of automated mobile testing 81 2017

Kong et al. [58] Automated testing techniques for Android apps 103 2018

Tramontana et al. [103]
Systematic mapping on automated functional

131 2018
mobile testing

This study
Context simulation techniques for testing mobile

51 —
context-aware apps

Choudhary et al. [19] compare and evaluate several Android testing tools that have automatic
input generation. As the focus is mainly GUI testing, most of evaluated tools can only gener-
ate GUI events. Little is discussed about system events such as sensor readings and hardware
states.

Starov et al. [99] make a brief review of cloud-based services and stand-alone tools for mobile
application testing. They point out that cloud-based testing environments for mobile applications
can serve as testing-as-a-service (TaaS) resources which help developers, especially startup com-
panies, conduct low-cost and efficient tests.

Zein et al. [121] conduct a systematic mapping study on empirical research in the domain of mo-
bile application testing. They compare technicalities, contributions, object software applications
(e.g., real-world applications, sample applications), and research methodologies by classifying test-
ing approaches into five high-level categories: test automation, usability, context-awareness, se-
curity, and general testing techniques.

Linares-Vásquez et al. [65] provide a brief review of automated testing techniques for mobile
applications. They discuss the main technical features of automated mobile testing approaches
in seven categories: automation frameworks, record-and-replay tools, automated test input gen-
eration, bug tracking tools, testing services, cloud-based testing services, and device streaming
tools.

Kong et al. [58] summarise the automated testing techniques for Android applications regarding
test objectives (e.g., security, performance), test targets (e.g., events, communication), test levels
(e.g., unit testing, system testing), and test techniques. Beyond general challenges of mobile testing,
their survey also covers Android-specific aspects, such as the fragmentation problem.

Tramontana et al. [103] perform a systematic mapping study on automated functional testing
techniques for mobile applications. They focus on testing activities of functional testing, charac-
teristics of testing techniques, and evaluation methodologies used in research experiments.

The literature mainly has focused on two kinds of topics: (1) generic features of mobile appli-
cation testing and (2) specialised tools for mobile application testing. These specialised tools may
only work for limited cases. For example, Android GUI testing tools cannot be used for iOS ap-
plications. In addition, some previous studies only aimed to discuss the features of mobile testing
tools, without providing insights and deliberations about technical mechanisms behind. Although
the changing context of mobile devices and applications is often mentioned in the literature, little
attention has been paid to building an overview of the state-of-the-art context simulation tech-
niques. A detailed review in this field is needed but lacking.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:4 C. Luo et al.

Table 2. Built-In Sensors on Common Smartphones, Smartwatches, and Tablets

Device
Smartphone Smartwatch Tablet

Sensor

Motion
Accelerometer Accelerometer Accelerometer
Gyroscope Gyroscope Gyroscope

Environment

Ambient Temperature Ambient Temperature Light
Barometer, Light Barometer, Light
Device Temperature Relative Humidity
Relative Humidity

Position
Cellular Antenna GNSS, Magnetometer GNSS
Magnetometer Proximity Magnetometer
GNSS, Proximity

Multimedia
Camera, Microphone Microphone Camera

Microphone

Connectivity
Bluetooth, NFC, USB Bluetooth, NFC, USB Bluetooth
WiFi WiFi NFC, USB

WiFi
Health PPG PPG, ECG

2 BACKGROUND

2.1 Mobile Devices and Sensors

After outnumbering personal computers (e.g., desktops) in 2013, mobile devices have become the
most popular computers. People are increasingly linked to the digital world via mobile devices such
as smartphones, smartwatches, tablets, and wearable computers. In developed countries, smart-
phones are adopted by more than 90% of the population. Now we are witnessing a quickly shrink-
ing gap by developing nations. In addition, smartwatches, tablets, and wearable computers are
gradually gaining popularity. Given that mobile context-aware applications generally operate on
smartphones, tablets, and smartwatches, we focus our analysis on the scope of these three device
types.

2.1.1 Basic Modules. Mobile devices have several essential components that a regular com-
puter also has, including a Central Processing Unit (CPU), memory, power supply (i.e., battery on
mobile devices), screen, and buttons/keys. Although these modules provide considerable computa-
tional capabilities, resources on mobile devices remain more constrained compared to non-mobile
devices. A notorious example is their short battery life. Similarly, due to the small screen size
and virtuality of keyboards, text input on smartphones is inefficient, and even more so on smart-
watches. Beyond supporting computational purposes, these essential components, including the
CPU, battery, and screen, can also provide information (e.g., CPU workload) as useful clues for
context recognition.

2.1.2 Built-In Sensors. Modern mobile devices come with multiple built-in sensors. Table 2 clas-
sifies them into six classes: motion, environment, position, multimedia, connectivity, and health.

Motion sensors (i.e., accelerometers and gyroscopes) are low-power and small size microelec-
tronic instruments that provide sensitive acceleration and rotation measurements. When the user
carries the device, the accelerometer provides high-quality information indicating the physical
activity.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:5

Environmental sensors measure a variety of physical quantities: ambient/device temperature,
luminosity, atmospheric pressure, and relative humidity. Due to their diversity, infrequent usage,
and limited space of each device, manufacturers may embed only some of them into a certain device
model. Environmental sensors collect information from the world regardless of user presence.
Thus, they can sense both user activities and phenomena of environments.

Position sensors provide information to locate a mobile device. The proximity sensor works by
detecting whether there is a physical object near the device surface. A typical usage scenario of
proximity sensor is to detect whether the phone is in a pocket. Magnetometers measure mag-
netism which is strongly influenced by the position of the device. Since the geomagnetic field ex-
ists and varies in any place on the earth’s surface, a magnetometer serves as a compass in outdoor
environments. In indoor environments, the magnetic field also varies within buildings, enabling
magnetometer-based indoor localisation approaches. In contrast, GNSS directly offers latitude and
longitude coordinates to the device. However, indoor environments may impede the GNSS signal.
Another solution for explicit location coordinates is the cellular network that locates devices by
estimating the distance and/or angles to nearby cellular towers.

Multimedia components (e.g., the camera and microphone) are not primarily sensors, but recent
machine learning approaches are able to recognise context from audio and video. Most smart-
phones and tablets have dual cameras (front and back) which can simultaneously record video
from two directions. Several approaches infer context using machine vision algorithms and dual
cameras, such as identifying driving behaviour on the road. However, the camera may be blocked
in many cases (e.g., devices are in pockets or bags). Comparatively, the microphone has fewer con-
straints to record audio for context recognition, leading to mobile sound sensing systems that can
infer human activities and ambient events.

Connectivity transceivers include Bluetooth, which enables short-range device-to-device detec-
tion and communication. It is a crucial component for most smartwatches to access information
(e.g., app installation, Internet, and locations) via smartphones, because not many smartwatches
have WiFi, cellular, or GNSS modules. Since Bluetooth can find nearby devices without establishing
a paired connection, researchers have built various Bluetooth-based systems on mobile devices to
infer both social and environmental context [27]. WiFi (i.e., IEEE 802.11) is another wireless tech-
nology that allows devices to connect to networks such as the local area network (LAN) and the
Internet. Similar to Bluetooth, WiFi is also used for social context recognition [27]. In addition,
researchers have proposed WiFi localisation approaches (e.g., Liu et al. [66]) using Receive Signal
Strength (RSS) readings from an array of WiFi access points. Near-Field Communication (NFC)
offers contactless communication within a close distance, enabling use cases such as contactless
payment systems. NFC-based mobile devices can also trigger smart services by reading NFC tags,
such as home care systems. In addition, a Universal Serial Bus (USB) is an essential component
of mobile devices for the purpose of recharging. Mobile devices can also use USB to receive data
from integrative pluggable sensors.

Health sensors on mobile devices are currently photoplethysmogram (PPG) and electrocardio-
graphy (ECG) sensors. PPG can monitor the human heart rate and blood oxygen level (SpO2) by
tracking the light absorption of an illuminated finger. ECG, mainly on smartwatches, monitors
cardiac electrical potential waveforms from heartbeats.

2.1.3 Software Applications and Human Input. A wide variety of software applications are de-
signed for mobile devices, including browsers, email, music, game, and social media, just to name
a few. They generate heterogeneous data which contains valuable insights of the user’s context for
personal and contextual services. For example, using the data generated by software applications,
mobile devices can infer one’s health status, such as mental health.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:6 C. Luo et al.

In some cases, humans can describe their current context much more accurately than hardware
or software, such as when it comes to measuring physical pain. Based on simple experience sam-
pling methods such as phone diary and surveys, mobile users can directly input descriptions that
are relevant to the goals of context-aware services. Especially tablets, due to their bigger size, can
serve as an essential tool for human input in workplace environments.

2.1.4 External Data Sources. Mobile devices can obtain data from sources other than their built-
in sensors, such as USB pluggable sensors. One such major category is the biochemical sensor. Re-
searchers have integrated a wide range of biosensor technology into smartphone sensing systems
[24], including the colorimetric test strip, electrochemical detection, microfluidic genetic analy-
sis, and microscopy. With such an integration, mobile users can benefit from additional services,
ranging from nutrition and micronutrient management to disease diagnostics. Similarly, the com-
bination of additional portable electronic sensors and mobile devices also creates numerous op-
portunities in mobile context-aware computing.

However, smart objects and stationary sensors in the Internet of Things (IoT) can exchange
information with mobile devices via diverse heterogeneous communication channels. Thus, mobile
devices are able to improve context recognition using environmental phenomena and physical
events captured by IoT. A typical scenario is intelligent transportation where mobile devices guide
car drivers to avoid traffic jam using road monitoring systems in IoT.

2.2 Mobile Context-Aware Applications

Enabled by the data richness that the preceding sources provide, researchers and developers have
built diverse mobile context-aware applications for a multitude of purposes. In this section, we
discuss the general characteristics of mobile context-aware applications.

2.2.1 Architecture. To describe the architecture of conventional desktop-based and server-
based context-aware systems, an early work [9] proposed a layered conceptual framework con-
sisting of the following:

(1) Sensors: Sensors represent not only hardware sensors but all data sources providing clues
for context recognition, including physical sensors (i.e., hardware), virtual sensors (i.e.,
software applications, calendar) and logical sensors (i.e., combinations of data sources).

(2) Raw data retrieval: Retrieval of raw context data involves the invocation of drivers
and APIs connected to data sources. Details such as the sampling rate of sensors are
implemented.

(3) Preprocessing: The preprocessing phase refines coarse-grained raw data into descriptive
information. For example, GNSS coordinates are converted to specific locations.

(4) Storage/management: The layer of storage and management gathers and redistributes all
of the data, normally using an information system.

(5) Application: The application layer includes information retrieval, context reasoning, and
services to end users. These actions are encapsulated on client devices.

Since this context-aware framework was not primarily designed for mobile devices, its archi-
tecture contains the process of information management and exchange with the help of online
systems. This outdated framework does not fit the current view on the context processing mech-
anism of mobile applications. Comparatively, modern mobile devices are able to locally collect,
store, and process data. A subsequent work on mobile phone sensing [59] suggests a simpler
architecture:

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:7

(1) Sense: The sense phase refers to not only raw data collection from sensors but also the
scheduling strategies for energy-efficient continuous sensing.

(2) Learn: The learning phase interprets raw data to gain useful knowledge. Features and
patterns are extracted from raw data by context models and algorithms, such as machine
learning.

(3) Inform, share, and persuasion: The last phase of mobile phone sensing systems is inform,

share, and persuasion, where human-readable information is presented to end users. For
specific goals, users may receive such feedback in varying modalities, such as using a
chronological achievement graph to spur users in weight loss.

Considering that some mobile context-aware systems are rule based, the learning phase may
not be needed. Due to the similarity of data management between smartphones and other mobile
devices, the architecture of mobile context-aware applications should conform to that of mobile
phone sensing applications. In addition, some mobile context-aware systems are designed to take
action rather than interact with users, such as temperature controls of smart home systems. Biegel
and Cahill [10] use the term actuator to describe the process after context recognition.

2.2.2 Examples of Mobile Context-Aware Applications. Mobile context-aware applications may
use one or more sensors, are able to analyse the collected information, and provide services locally
on mobile devices. Several representative examples include the following:

(1) SoundSense [68] is a smartphone-based application that can infer the ambient sound
events in users’ daily life. It collects only audio data from the microphone on smartphones.
Then, it splits raw data into short frames and extracts features in temporal and spectral
domains. Using these features, it classifies sound events into {speech, music, ambient sound}
by a decision tree classifier and Markov models. Within these three sound event classes,
it can further generate finer classification, such as music genre.

(2) CarSafe [117] is smartphone application which aims to ensure safe driving by monitoring
the driver behaviour and road conditions. On a smartphone mounted on the car wind-
screen, it uses a front camera to monitor the driver states and a rear camera to track road
conditions. Beyond the visual information of dual cameras, it also relies on the GNSS,
accelerometer, and gyroscope to infer the vehicle’s movement. If dangerous driving be-
haviour is detected, CarSafe triggers alerts.

2.2.3 Summary. The diversity of sensors makes mobile devices a kind of multipurpose plat-
form. By collecting contextual information in physical and social environments, mobile context-
aware applications can infer various situations of users and deliver more relevant services. As
people frequently use their mobile devices in most places, mobile context-aware applications are
designed for an increasingly wide range of purposes in daily life.

2.3 The Need of Context Simulation for Testing Mobile Context-Aware Applications

As mobile context-aware applications respond to certain contexts, testing these applications re-
quires contextual input generated in either simulated conditions or real-world scenarios [83]. Al-
though real-world tests provide realistic situations for mobile context-aware applications to oper-
ate, testers may have to bear high cost (e.g., time and money) [83]. Moreover, the dynamic nature
of real-world environments, and random hardware drifts, can influence the reproducibility of test
results.

Hence, testers often conduct context simulation to examine mobile context-aware applications
for lower testing cost, higher automation, and guaranteed result reproducibility [33, 87]. To simu-
late context, testers have two options [4]:

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:8 C. Luo et al.

(1) Data-driven approaches: Data-driven context simulation aims to directly test actual soft-
ware applications by delivering simulated sensor data. Testers can deliver test data by
writing scripts or using a data replay/generation tool. Such sensor data drives context
recognition modules of mobile context-aware applications so that the response of appli-
cations can be triggered and analysed.

(2) Model-based approaches: Model-based context simulation mainly focuses on the exami-
nation of software design models, whereas other model-based approaches generate test
cases to examine actual software. Testers usually have to create a model as an abstraction
of software (sometimes also including the intended environment) for simulation tools to
analyse. Most model-based context simulation tools can automatically generate abstract
test cases that can change the states of a model. The transitions of states can represent the
designed dynamic behaviours of target systems.

For various domain-specific contexts, context simulation via either data-driven or model-based
approaches is a multifaceted process involving the following phases:

(1) Test case acquisition: For most data-driven approaches, testers should prepare sensor data
as concrete test cases before simulation. During simulation, such data is used to re-
construct the intended context where applications operate. In addition, a small num-
ber of model-based approaches require testers to provide abstract test cases, although
most model-based approaches can automatically generate abstract test cases to conduct
simulation.

(2) Test case refinement: Based on initial test cases, some context simulation approaches can
further generate a set of filtered or augmented test cases. These refined test cases are more
likely to achieve higher coverage or efficiency.

(3) Test execution: Context simulation approaches execute test cases on target models or soft-
ware applications to examine different properties. Data-driven approaches operate by de-
livering raw sensor data to mobile context-aware applications which may run on physical
devices, emulators, servers, or the cloud. Comparatively, most model-based approaches
use high-level states and actions to validate the design of models, although a few model-
based approaches also generate concrete test cases for execution on actual applications.

3 DATA-DRIVEN CONTEXT SIMULATION

In this section, we summarise data-driven context simulation approaches, whereas in the next
section, we turn to model-based context simulation. In this section, we consider the three phases
we have identified: acquisition (Section 3.1), refinement (Section 3.2), and execution (Section 3.3).

3.1 Test Data Acquisition

3.1.1 Record-and-Replay. Record-and-replay approaches play a crucial role in software testing
for their ability to automate test data acquisition and test execution. With a record-and-replay tool
capturing data at runtime, testers can easily obtain test data by interacting with the targeted appli-
cation as usual. Then, testers can use the same tool to replay the captured data to simulate context
for testing purposes. Before the emergence of mobile applications, record-and-replay techniques
were widely used for testing PC and server applications. For example, Jovic et al. [56] present a
Java GUI test automation tool that can capture and replay users’ mouse and keyboard events on
a PC. To capture contextual data for testing mobile context-aware applications, researchers and
developers have proposed various record-and-replay tools for mobile platforms, as summarised in
Table 3.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:9

Table 3. Data-Driven Context Simulation Approaches Relying on Data Recording

Approach Recording Mechanism Supported Data Type
RERAN [33] getevent [36] GUI action, system event, sensor

MobiPlay [87]
getevent GUI action, system event, sensor
API invocation Location

VALERA [49, 51]
Event interception GUI action, network, image, audio, IPC
API invocation Sensor, location, random number, I/O

ODBR [81]
getevent GUI action
API invocation Sensor, location

MoTiF [34]
Event interception GUI action
API invocation system event, sensor, network, exception

DroidForensics [119] Event interception API use, IPC, system call
Paranoid [85] Event interception System event, sensor, network, exception

Gomez et al. [33] presented an Android-based record-and-replay tool called RERAN. RERAN can
record three types of low-level events with timestamps: touchscreen input events, physical sensor
data, and OS events. The supported physical sensors include an accelerometer, proximity, and a
magnetometer. However, RERAN cannot capture GNSS or network location information because
Android encapsulates localisation as a specialised service. The recording feature of RERAN relies
on Android’s getevent tool which runs inside the Linux kernel of Android. getevent can be called
manually via the command line or programmatically by code through the Android Debug Bridge
(ADB). The captured events and data are saved in an event trace file that can be replayed.

Regarding the limited event types supported by RERAN, Qin et al. [87] designed a record-
and-replay tool called MobiPlay which can capture a wider variety of events on Android devices.
Its supported event types to capture consist of touchscreen events, key events, physical sensor
data, screen orientation, and location information. For location information recording, Mobi-
Play uses Android LocationListener API which operates as a specialised service and reports
the location change, location provider (GNSS or network), and the state of location providers
(enabled/disabled). MobiPlay can also track the angle of screen orientation within {0, 90, 180, 270}
degrees. MobiPlay stores each captured event as a structure called Request. Representing all of
the captured events, the set of Request objects are written into an InputLog instance on the device
disk for replay. Since the formatted Request objects are human readable and revisable, testers can
use them not only for regular context simulation but also data analysis or data augmentation.

Furthermore, Hu et al. [49] and Hu and Neamtiu [51] proposed a versatile record-and-replay
tool for Android called VALERA. Beyond GUI events and physical sensor data, VALERA can
record the events and data generated by a camera and microphone. In addition, VALERA captures
the network state, traffic, exceptions, and API calls of HTTP/HTTPS connections. Since mobile
context-aware applications may involve randomised algorithms (they make random decisions in
the same context), VALERA records the seeds of random number generators (two Android APIs:
java.util.Random and java.security.SecureRandom) at runtime. In addition, VALERA captures An-
droid Intent events which are widely used in inter-application communications to transfer param-
eters and/or to launch new software components.

Unlike general-purpose record-and-replay tools, Moran et al. [81] developed a bug-oriented
record-and-replay prototype called ODBR (completed as CrashScope [82]). ODBR focuses on the
functionality of bug reporting so that testers can find the correlations between bugs and captured
contextual information. With the knowledge of such correlations, testers can more efficiently fix
the bugs. ODBR can capture GUI input events, sensor data, system events, and screenshots to

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:10 C. Luo et al.

Table 4. Data-Driven Context Simulation Approaches Relying on External Data Sources

Approach Data Format Supported Data Type
Hermes [95] XML GUI action, network
PUMA [44] PUMAScript GUI action, system event
Node.fz [22] Node.js System event
Thor [2] Format neutral GUI action, system event, sensor, network
Amalfitano et al. [4] JUnit GUI action, system event, network
MobileTest [12] Database GUI action, system event, sensor, network
Caiipa [62] Database GUI action, system event, sensor, network
KnowMe [13] AWARE [25] System event, sensor, network
TestAWARE [70] AWARE, WAV System event, sensor, network, audio
Hu and Neamtiu [50] VALERA [49, 51] Location, image, audio
CamTest [71] MP4 video Single-camera video

describe a bug in a JSON file. This JSON file is saved on the cloud where a web application gen-
erates a html report for testers to read. Using this web application, testers can also download an
executable script to replay the recorded contextual data on a physical device for bug reproduction.

Another bug-oriented record-and-replay tool called MoTiF [34] collects contextual data and app
crash information using a crowdsourced approach. MoTiF has a mobile app client operating on
devices of a crowd of users. This client captures the data when users interact with their devices “in
the wild.” Once an app crashes, the client will send the captured data to the MoTiF server at the
next moment when the device is charging (to preserve battery life) and linked to the Internet. The
MoTiF client captures three types of data: GUI event metadata (including user input and device
response), exception metadata (i.e., crash information), and context data.

In addition, a specialised record-and-replay tool, called DroidForensics, in Yuan et al. [119] aims
to reconstruct cyber attacks on Android devices for post-mortem analysis. DroidForensics records
API calls onto Android framework resources (e.g., fetching installed application list), hardware
modules (e.g., accessing a microphone, camera, or GNSS), and storage (e.g., database or Android’s
ContentProvider usage). In addition, DroidForensics captures Inter-Process Communication (IPC)
between different applications. DroidForensics can also detect system calls (e.g., the usage of native
components) using a module inside Android’s Linux kernel. DroidForensics assigns each event a
timestamp in its log so that the replay process can reproduce the original sequence of events.

Similarly, Portokalidis et al. [85] proposed a record-and-replay tool called Paranoid Android for
malware detection on Android smartphones. Paranoid Android has a data collection module called
tracer which can record inputs and events of an application using the process identifier (pid) of
the targeted process. tracer captures system calls containing all hardware messages (e.g., device
clock, GNSS location, sensor data, and network traffic) sent from Linux kernel to user space. In
addition, it records synchronous and asynchronous notifications (e.g., expired timers and runtime
exceptions).

3.1.2 External Data Sources. Many data-driven context simulation tools rely on external
sources or tools to acquire test data. These context simulation tools allow testers to import test
data in specific formats (e.g., SQL databases and XML files). Since testers can use data collected by
a third party, these tools can avoid the cost of recording contextual data in real-world scenarios.
Table 4 outlines data-driven context simulation approaches relying on external data sources.

A popular way of importing external data is to embed it into test scripts. For example, She
et al. [95] presented Hermes, an automated testing framework for mobile applications. On Hermes,

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:11

test cases containing contextual data are represented in XML schemas. Different GUI actions and
network states of mobile devices can be defined as XML elements inside these schemas. Testers
can create such XML schemas either manually or by using a test case generator. Similarly, PUMA
[44] also imports test cases from test scripts in its own scripting language called PUMAScript.
Using PUMAScript, testers can define GUI actions and app-specific events (e.g., change of network
states).

Node.fz [22] is a fuzz testing tool for Node.js to detect concurrency bugs (e.g., race conditions) in
non-deterministic processes. It can fuzz the order of input events, task executions, and completions
in the worker pool. Hence, with a small number of input events, Node.fz can explore all of the pos-
sible consequences to increase the test coverage. In the same way, Node.fz can reliably reproduce
bugs corresponding to specific input events. Furthermore, some language-neutral methodologies
allow testers to inject contextual events into manually written test scripts. For example, a light-
weight methodology is proposed in Adamsen et al. [2], aiming to support the injection of GUI
actions, system events, sensor data, and network states.

Beyond test scripts, Amalfitano et al. [4] designed a context simulation approach that can import
test data from external repositories. It supports the simulation of GUI events, system events, and
sensor data. Specifically, testers can import GUI events collected by a GUI ripper described in
Amalfitano et al. [5]. In addition, testers can write scripts to manually define events to simulate
the intended scenarios.

Bo et al. [12] proposed an automated black-box testing tool called MobileTest which considers
test cases as part of test resources. MobileTest has a database to store all of the test resources, such
as configuration information, test plans, test cases, and results. For each kind of test resources,
MobileTest provides a unique interface to access data so that the tester can easily manage test
resources and analyse results corresponding to certain test cases.

Liang et al. [62] presented an automated large-scale cloud-based testing platform called Caiipa,
aiming to provide contextual fuzzing [61]. Caiipa consists of various virtual and real smartphones
and tablets for testers to conduct remote simulation. Caiipa supports three types of contextual
data:

(1) Wireless network conditions: Delay, jitter, loss, throughput, and power consumption
(2) Sensor data and states: Availability/settings of sensors and sensor readings
(3) Device specifications: Chipset, memory size, processors, screen size/resolution, and avail-

ability of hardware modules (e.g., NFC and camera).

Caiipa contains a context management module called ContextLib which stores a variety of third-
party contextual data. Part of the data is collected from real devices, including OpenSignal [96]
(crowdsourced observations of mobile networks) and WER [32] (automated error reports from
Microsoft applications, Microsoft OS since Windows XP, Windows Mobile, and Windows Live
JavaScript programs for browsers). In addition, the data contains test cases specialised by domain
experts for particular contexts and device categories.

KnowMe [13] is a Java-based context replay tool that can import data from the third-party
data collection framework AWARE [25]. Mobile devices can use the AWARE client to collect data
generated by hardware sensors, OS, and human input. The AWARE client sends data to an AWARE
server periodically. KnowMe can directly download data from an AWARE server using its API.
After downloading the data, KnowMe can replay the data for context simulation on a PC. Based
on KnowMe, Bobek et al. [14] proposed a context analysis tool called ContextViewer for testers to
visualise and to preprocess mobile sensor data. However, ContextViewer cannot perform context
simulation for mobile applications. Similarly, using AWARE as the data source, Luo et al. [70]
designed a context simulation tool called TestAWARE.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:12 C. Luo et al.

Table 5. Data-Driven Context Simulation Approaches Using Self-Generated Data

Approach Generation Mechanism Supported Data Type
Majchrzak and
Schulte [73]

Random generation
Hardware/software state,
system event, sensor, network

Liu et al. [67] ART GUI action, system event, sensor
RainDrops [123] Sampling from physical devices System event, sensor, network
CATLES [30] Sampling from physical devices WiFi, cellular signal
VanarSena [89] Random generation GUI action, sensor, network
Song et al. [98] Analysing declared permissions Hardware state, network

Usman et al. [106]
Analysing declared permissions Hardware state, network
Analysing source code GUI action, system event

ATT [76]
Analysing declared permissions Hardware state, IPC
Analysing source code GUI action, system event, sensor

Snowdrop [122] Analysing source code IPC
Chizpurfle [53] Fuzz operators Parameters of method
QGJ [115] Fuzz operators GUI action, IPC
ANDROFLEET [74] Sampling from emulators WiFi P2P action

TestAWARE aims to conduct context simulation to test Android applications on emulators or
physical devices. With TestAWARE, testers can download mobile sensor data from an AWARE
server using either API in scripts or the UI of the TestAWARE client. In addition to mobile sensor
data, TestAWARE supports the context simulation of audio data to test microphone-based mobile
context-aware applications. To import audio data, testers need to transfer a file in Waveform Audio
File Format (WAV) on the storage of emulators or physical devices.

Hu and Neamtiu [50] presented a fuzzy and cross-app context replay approach which reads
data collected by VALERA. This approach supports context simulation of location, images, and
audio with semantic sensor data alteration (SSDA). Moreover, to simulate single-camera video for
camera-based applications, CamTest [71] can read and replay video frames from MP4 video files
on the Android platform.

3.1.3 Self-Generated Data. Despite record-and-replay tools and external data sources, testers
may still need more data to increase test coverage. In addition, recording contextual data in real-
world scenarios or using third-party data may involve high cost. Hence, researchers and developers
have designed several context simulation tools that can automatically generate test data to test
mobile context-aware applications. Table 5 compares data-driven context simulation approaches
that can automatically generate test data.

Majchrzak and Schulte [73] proposed a concept of block-based context-sensitive testing. This
concept performs gray-box testing by splitting test code into blocks containing assertions. Between
blocks, a test case can change the context so that assertions can examine context-dependent be-
haviours. Generators can be implemented to automatically create test cases. The supported context
types include hardware/software states, system events, sensor data, and network states.

From a black-box view, Liu et al. [67] proposed an adaptive random testing (ART) approach
that can fully automatically generate test cases without access to the application source code.
Unlike common random testing, ART [16] generates random test cases that are more evenly dis-
tributed in the input space. For mobile applications, Liu et al. [67] defined a new measure of test
case distance by considering sequence and value distance between two lists of events. To measure
sequence distance, they employed a common string distance metric, Levenshtein distance [60],
which represents the minimal operation to transform a string to another. For value distance, they

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:13

transform two event lists into identical types and lengths, and sum up distances between each pair
of the events. The distance between two events depends on the data type (e.g., Euclid distance for
integers).

Zhang et al. [123] developed a cloud-based testing platform called RainDrops for mobile appli-
cations. RainDrops aims to examine the stability of mobile applications under various network
environments, sensor events, and geo-locations. It also considers device heterogeneity by allocat-
ing suitable emulators and devices according to different test specifications. RainDrops offloads the
collection of contextual data from emulators to physical devices in the wild. For each test session,
RainDrops continuously fetches contextual data generated by physical devices.

In addition, for location-based mobile context-aware applications, CATLES [30] simulates
location-related context by replaying crowdsensed WiFi and cellular signals that are publicly avail-
able. CATLES provides a 3D virtual view of the world for testers to define a position trace.

Similarly, Ravindranath et al. [89] designed another cloud-based testing platform, VanarSena,
for testing Windows Phone apps. VanarSena accepts app binary files from testers. During testing,
VanarSena first instruments the target app with additional modules for emulators to inject input
and induce faults. When the app is running, VanarSena can emulate contextual data such as HTTP
response messages (e.g., 404 Not Found), network conditions (e.g., disconnection), sensor values
(e.g., null and extreme values), and GUI actions (e.g., invalid entry and interruption of interaction).
In VanarSena, the interception and manipulation of HTTP requests rely on Fiddler [20]. In addition,
varying network conditions are simulated using a customised tool similar to Dummynet [91].

To test Android context-aware applications, Song et al. [98] proposed an approach that generates
test cases by referring to the permissions requested by the applications. Each Android application
contains an AndroidManifest.xml file [37] to describe the required permissions of resources, such
as the use of WiFi, location, and camera. Users can see the permission list when they attempt to in-
stall an application. During tests, this approach generates and explores all possible combinations
of states regarding each resource specified in the permission list. Moreover, Usman et al. [106]
pointed out that the AndroidManifest.xml file cannot provide information about applications’ be-
haviours corresponding to intra-/inter-application communications or events from the OS. Hence,
they extend the work of Song et al. [98] by analysing both the AndroidManifest.xml file and appli-
cation source code. The generated test cases can contain hardware-related events, system events,
and GUI events. Similarly, another Android testing platform, ATT [76], generates test cases by
investigating GUI layout files, the AndroidManifest.xml file, and the invocations of system services
in source code.

To test background services of Android applications, Zhang et al. [122] developed Snowdrop. It
can identify and test background components from source code. Using a code miner, it localises the
code block of each background service to parse the required data for service execution. After the
analysis of each service, Snowdrop generates test cases that consist of service trigger and execution
input. A service trigger input is the unique name of a background service. A service execution input
comprises the schemes and values of inbound and outbound messages, such as application local
storage path and URL addresses of web pages. To generate relevant values in service execution
inputs, Snowdrop analyses word semantics using Word2Vec [79] and the Support Vector Machine
[21] classifier on the fields of messages.

To test vendor-specific Android services, Iannillo et al. [53] proposed a gray-box fuzzing tool
called Chizpurfle. By analysing the methods of services, Chizpurfle generates inputs as parame-
ters of each targeted method. Its fuzz operators support various types of parameters, including
primitive types (e.g., Boolean and float), strings, arrays/lists, and object. To increase test cover-
age, Chizpurfle can dynamically tune its Fuzz Input Generator according to the latest coverage
measurement.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:14 C. Luo et al.

Table 6. Data-Driven Context Simulation Approaches Using Multiple Ways of Data Acquisition

Approach Data Acquisition Supported Data Type

Griebe et al. [43]
External source

Sensor
Embedded math model

Dynodroid [72]
Recording

GUI action, system event
Machine generation

MobiCoMonkey [6]
External source

GUI action, network
Random generation

AppDoctor [48]
External database Text input
Random generation GUI input
Heuristic search GUI action, sensor, network, IPC, storage

ERVA [52]
VALERA

GUI action, network, image, audio, IPC
Sensor, location, random number, I/O

Event analysis Event dependency graph (EDG)
EventRacer [11] Race report

RacerDroid [100]
Dynamic analysis Statement execution
API interception Sensor, network, IPC, random number

Also based on fuzz testing, Qui-Gon Jinn (QGJ) [115] aims to simplify the testing of applications
on wearable devices. Towards a targeted program of an application, QGJ can systematically inject
a large number of mutated inter-component communication messages (intents) and GUI events
by two of its components: QGJ-Master and QGJ-UI. However, QGJ cannot simulate interactions
between smartphones and wearables, focusing only on context simulation inside wearables.

To test WiFi P2P applications for Android (also known as WiFi Direct [3]), Meftah et al. [74]
presented a simulator called ANDROFLEET. Testers can define WiFi P2P scenarios by applying
test scripts and installing the target application on each device. Then, ANDROFLEET can generate
a large number of emulated devices that interact with each other in the intended scenarios, such
as scanning peers, building/closing connection, and point-to-point communication.

3.1.4 Hybrid Approaches. Several approaches aim to cover more data types or improve the effi-
ciency of context simulation by providing more than one method of data acquisition. Table 6 lists
data-driven context simulation approaches that receive data in multiple ways.

Griebe et al. [43] presented an approach to simulate sensor input for user acceptance tests of
mobile context-aware applications. By extending a UI testing tool Calabash-Android [15], this
approach can generate sensor values as test cases written in the Gherkin language. Testers can
edit Gherkin scripts to include explicit sensor data from external data sources. In addition, for
higher abstraction in test cases, this approach contains a mathematical model that generates data
by parsing human language expressions (e.g., “I shake the phone”).

Machiry et al. [72] proposed an input generator Dynodroid that also supports both automated
and manual generation. Testers or Dynodroid can interact with the targeted app to trigger UI and
system events, including broadcasts and system service usage (e.g., location service). Testers can
use console commands to switch between human and machine mode.

A similar design is also adopted by MobiCoMonkey [6]. MobiCoMonkey can inject contextual
events such as network status, network delay, key events, and screen orientation changes. To
provide contextual events, testers can either import a predefined context scenario file or let Mobi-
CoMonkey automatically generate random values with a given seed for result reproduction.

Hu et al. [48] designed the cloud-based automated testing framework AppDoctor. It injects ac-
tions into an app to explore its possible executions. It can inject GUI gestures, network states,

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:15

intents, and the changes of device storage (e.g., removal of an SD card). For user input such as text
boxes, AppDoctor can recognise its type (e.g., email address) and assign a corresponding value
imported from an external database.

Beyond the testing of deterministic processes, Hu et al. [52] designed the tool ERVA to detect
and reproduce concurrency bugs caused by races. ERVA acquires test data from three sources:

(1) VALERA [49, 51]: ERVA reads the contextual data of a race from the log created by the
record-and-replay tool VALERA. The contextual data may comprise GUI gestures, IPC,
sensor data, and I/O (e.g., file access).

(2) Event analysis: ERVA constructs an event dependency graph (EDG) describing the causal
relationship by analysing the captured events. During replay, ERVA explores races by
flipping the execution sequence of events according to the EDG.

(3) EventRacer [11]: Every time ERVA runs the application, EventRacer generates a report of
potential races. During verification, ERVA classifies race reports to find harmful races.

Similarly, Tang et al. [100] proposed RacerDroid to detect concurrency bugs in Android appli-
cations. Given the source code of an application, RacerDroid constructs a state space model using
dynamic analysis. Then, RacerDroid generates test cases to explore the potential race with two
statements. Meanwhile, RacerDroid also collects contextual data comprising sensor readings, net-
work traffic, intents, and random numbers by API interception. Finally, RacerDroid includes the
captured contextual data into the test case being generated for future simulations.

3.1.5 Summary. Test data acquisition is the start of a data-driven context simulation process.
Recording context data is suitable for common context scenarios, such as physical activities. When
there are third-party datasets available, reusing context data for simulation is a convenient solu-
tion. Otherwise, context simulation should use manually or automatically generated data. When
selecting ways of test data acquisition, testers should consider the test resources (e.g., available
datasets, available data recording tools), the types of context data, and scenarios for applications.

3.2 Test Data Refinement

Test data refinement comprises three strategies: no refinement, reduction, and augmentation.
Table 7 summarises these strategies for all presented data-driven context simulation approaches.

3.2.1 No Refinement. Most record-and-replay approaches replay the recorded data without any
refinement. As a result, to achieve sufficient test coverage without redundancy, testers must en-
sure that the targeted application operates in all intended contexts during recording. In addition,
most context simulation approaches based on external data do not refine the imported data. When
importing external data, testers should check what context a dataset reflects.

In contrast, although some approaches that automatically generate test data do not refine the
generated data, they optimise the generation process when they generate test data. For example,
adaptive random test case generation [67] attempts to diversify test cases by maximising the dis-
tance between selected test cases from a pool. Aiming to detect and reproduce concurrency bugs,
RacerDroid [100] only generates test cases for potential data races between two statements. More-
over, Snowdrop [122] generates relevant values of input fields using natural language processing
(NLP) techniques that infer word semantics of input fields.

3.2.2 Reduction. To avoid redundant test data and to improve efficiency, several approaches
employ a test data reduction technique. For example, Adamsen et al. [2] proposed a simple reduc-
tion approach to avoid redundant injections of events. When testing an application, it maintains

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:16 C. Luo et al.

Table 7. Test Data Refinement of Data-Driven Context Simulation Approaches

No Refinement Reduction Augmentation

Record-and-
Replay

RERAN [33], MobiPlay [87], MoTiF [34]
VALERA [49, 51], ODBR [81],
DroidForensics [119],
Paranoid [85]

External Data
Hermes [95], PUMA [44], Thor [2], Amalfitano et al. [4],
Node.fz [22], MobileTest [12], Caiipa [62] KnowMe [13],
TestAWARE [70], CamTest [71] Hu et al. [50]

Self-Generation

Snowdrop [122], Liu et al. [67], Song et al. [98] ATT [76],
VanarSena [89], CATLES [30], Chizpurfle [53]
QGJ [115], Majchrzak and Schulte [73],
ANDROFLEET [74],
RainDrops [123], Usman et al. [106]

Hybrid
Griebe et al. [43], AppDoctor [48], Dynodroid [72]
MobiCoMonkey [6], ERVA [52],
RacerDroid [100]

a history of previous abstract states and skips the injections of the events that lead to previously
observed states.

In Song et al. [98], the generated test cases increase exponentially as contextual data sources in-
crease. To maximise the test coverage in limited test runs, a two-level strategy is used to prioritise
context conditions of test cases. The first phase considers test objectives, including normal or unac-
ceptable behaviours. When testing normal behaviours, more weight is assigned to regular contexts
(e.g., the SD card has space). When testing unacceptable behaviours, exceptional scenarios (e.g., the
SD card is full) have more weight. In the second phase, three criteria are considered: frequency,
user controllability, and minimal resource requirement. Frequency measures how many times a
data source is requested in the application permission list. Sources with higher frequency are pri-
oritised. User controllability distinguishes user-controlled data sources from system-controlled
data sources. User-controlled data sources are prioritised to test applications with explicit UIs.
Minimal resource requirement identifies a least number of data sources that can satisfy a permis-
sion request. For example, the request of accessing precise location may be supported by {GNSS
and WiFi} or {GNSS, WiFi, and radio}. In this case, the minimal resources required are GNSS and
WiFi, which gain more weights because of their necessity.

Similarly, the cloud-based framework Caiipa [62] contains the module ContextPrioritizer to
prioritise test cases. Among all test cases, ContextPrioritizer aims to search for unique per-app
sequences which are most likely to cause problems. Given a test app, ContextPrioritizer analyses
previously tested apps to find a set (called AppSimSet) of apps with most similar behaviours. Then,
ContextPrioritizer mines the history of test cases executed by each app in AppSimSet. Finally,
ContextPrioritizer gives high priority to test cases that caused more problems in AppSimSet.

As a crowdsourcing-based test platform with numerous real-world users, MoTiF [34] selects
test cases by aggregating crash reports from these users. The importance of a test case is also mea-
sured by its frequency of causing crashes. After collecting crowd data, MoTiF builds a crowd crash
graph (CCG) which is modelled by a Markov chain representing a set of traces for an exception.
Then, within a CCG, MoTiF deduces the shortest path of a crash using graph traversal algorithms.
Moreover, MoTiF can identify test cases for device-specific crashes by considering both static and
dynamic environments. Static contexts are constant properties of devices, such as manufacturers

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:17

and device models. Dynamic contexts are context changes including network disconnection and
memory running out.

The input generator Dynodroid [72] contains a module SELECTOR that supports three selection
strategies. The first strategy, Frequency, gives higher priority to least generated events and least
used UI widgets to increase state coverage. The second strategy, UniformRandom, randomly selects
candidate test cases. However, these two strategies cannot effectively find critical test cases rele-
vant to certain contexts. To address this issue, the third strategy, BiasedRandom, counts frequency
in a context-sensitive way. Every time an event is selected in a certain context, SELECTOR reduces
the chance of selecting it again in such a context.

3.2.3 Augmentation. Considering that the original test data may be insufficient, several ap-
proaches are able to generate more test data for higher test coverage.

During contextual data replay, KnowMe [13] provides an option to mix the original data with
Gaussian noise generated by an internal function. By adjusting the distribution parameters of
Gaussian noise, testers can simulate different noise levels in contexts to examine how noise affects
the behaviours and performance of the tested application.

Similarly, Hu and Neamtiu [50] proposed SSDA which can automatically create semantically
meaningful data by modifying captured sensor data. SSDA supports the alteration of geo-locations,
audio, and images. For geo-locations, SSDA has three alterations: null, map shift, and speed
change. Null location represents the unavailability of location access due to poor signal or the
closure/malfunction of hardware modules. Map shift and speed change are straightforward. They
modify values of location coordinates and the speed of coordinate change within a period. To test
microphone-based apps, SSDA can alter audio streams by changing the sampling rate and adding
background noise. For apps analysing photos, SSDA transforms an original image by adjusting
brightness, colour balance, size, blur, and rotation.

In Amalfitano et al. [4], a mutation-based technique is used to extend existing test cases. It
generates new test cases by embedding additional sequences of contextual event patterns into
existing test cases. For example, to test the robustness of a smartphone app, testers can add an
event of an incoming phone call when the tested app is operating in a specific context defined by
an existing test case. Testers can apply this technique either manually or using automated tools.

Another mutation-based technique is used in Chizpurfle [53]. This technique aims to generate
new test cases that are likely to drive the app to execute more new blocks in source code. Given
a seed (i.e., the initial test case), the test case generator of Chizpurfle constructs a new test case
by mutating the seed using fuzzing tools for different data types. Chizpurfle measures the number
of new code blocks executed after test cases are input. If a test case leads to the execution of new
blocks, Chizpurfle will use it as a seed to further generate new test cases.

In addition to static components, ATT [76] can generate data for dynamic data requests. As
applications may register system services or build IPC to request momentary contextual data at
runtime, ATT can detect these dynamic requests to generate corresponding data on the fly.

3.2.4 Summary. Test data refinement can be a critical step, as the amount and quality of test
data can improve the efficiency and effectiveness of tests. Due to the context heterogeneity of vari-
ous mobile context-aware applications, refinement approaches have many unique data processing
mechanisms for different context types. Some data-driven context simulation approaches already
embed refinement into their data generation process. For other approaches, sufficient reduction or
augmentation of original data may significantly improve test performance and results.

3.3 Execution of Context Simulation

Table 8 summarises the execution characteristics of these approaches.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:18 C. Luo et al.

Table 8. Execution Characteristics of Data-Driven Context Simulation Approaches

Approach
Test Data
Delivery

Simulator
Speed

Operating
Environment

OS
Modification

App
Modification

MobiPlay [87] Event injection Original, fast Device+server Android OS No

CrashScope [82] Debug command Original Device+cloud No No

DroidForensics [119] Debug command Uncontrolled Device+cloud Android SDK No

Hu et al. [50] Event injection Original Device Android OS Bytecode

VALERA [49, 51]
Event injection

Original Device Android OS Bytecode
Task scheduling

Chizpurfle [53] Event injection Uncontrolled Device No Bytecode

QGJ [115]
Event injection

Uncontrolled Device No No
Debug command

TestAWARE [70] Event injection
Slow, original,
fast

Device No Source code

CamTest [71] Event injection
Slow, original,
fast

Device No Source code

KnowMe [13] Event injection
Slow, original,
fast

PC No Source code

Amalfitano et al. [4] Event injection Uncontrolled Device No No

Majchrzak and
Schulte [73]

Code injection Uncontrolled Device No Source code

Node.fz [22] Task scheduling Original PC Node.js (libuv) No

Song et al. [98] Debug command Uncontrolled Device No No

Usman et al. [106] Debug command Uncontrolled Device No No

ANDROFLEET [74] Debug command Uncontrolled PC Android SDK No

MobileTest [12] Debug command Uncontrolled PC No No

Liu et al. [67] Debug command Uncontrolled PC No No

Caiipa [62] Event injection Uncontrolled Cloud Windows OS No

Griebe et al. [43] Event injection Original Device Android SDK No

Hermes [95] Event injection Uncontrolled Device+server No No

RERAN [33] Event injection Original, fast Device No No

MoTiF [34] Debug command Original Device+cloud No No

RacerDroid [100]
Event injection

Uncontrolled Device Android SDK Source code
Task scheduling

ATT [76] Debug command Original PC+cloud No Bytecode

RainDrops [123] Event injection Original Cloud Android OS No

CATLES [30] Event injection Original Device+cloud No Source code

Snowdrop [122] Event injection Uncontrolled PC+device No No

Paranoid [85] Task scheduling Original Device+cloud Android OS No

ERVA [52] Task scheduling Uncontrolled Device Android OS No

VanarSena [89] Event injection Uncontrolled Cloud No Bytecode

Dynodroid [72] Debug command Uncontrolled Device Android SDK No

PUMA [44] Debug command Uncontrolled Device No Bytecode

AppDoctor [48] Event injection Slow, fast Cloud No Bytecode

Thor [2] Code injection Uncontrolled Cloud Android OS Source code

MobiCoMonkey [6] Debug command Original Emulator No No

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:19

3.3.1 Test Data Delivery. An essential feature of a data-driven context simulation approach is
its way to deliver test data to targeted applications. For different test purposes, context simulation
approaches employ various ways of test data delivery. Several approaches use more than one way
of data delivery to support multiple test purposes.

Debug command. Mainstream mobile platforms provide versatile command line tools for testers
to perform tests on emulators or actual devices. For example, Android has its debug infrastructure
ADB [35] which can control a suite of preinstalled testing tools. To simulate generic scenarios,
many context simulation approaches deliver test data by invoking debug commands. An advantage
of using debug commands is the simplicity in implementing context simulators. With light-weight
design and implementation, MobiCoMonkey [6] simulates network conditions and several GUI ac-
tions on Android emulators using ADB commands. CrashScope [82] also uses ADB to deliver GUI
actions and sensory values (only for emulators) via adb input commands and telnet connections.

In addition to official command line tools from mobile platforms, several third-party testing
tools have customised command lines that can be invoked or extended by context simulators. For
instance, MoTiF [34] and ATT [76] feed events into apps using the Android testing tool Robotium
[90]. ANDROFLEET [74] introduces a novel vocabulary to define WiFi Direct scenarios based on
Calabash-Android [15]. During simulation, the host machine loads Calabash-Android to parse sce-
nario definition files that configure a cluster of emulators. Based on SQL commands, DroidForen-
sics [119] provides an interface that receives SQL-like queries for post-mortem examination of
cyber attacks. Such examination operates on a cloud server with data mining algorithms to gen-
erate a causal graph that summarises the contextual information.

Event injection. As most mobile context-aware applications are event-based applications, event
injection is a popular way adopted by context simulation approaches. For example, Snowdrop
[122] and Chizpurfle [53] automate the testing of background services by mocking apps or the OS
to send inter-component messages which contain contextual information.

To simulate sensor data on Android without modifying the targeted app, several tools, such
as RERAN [33] and MobiPlay [87], inject values into communications between hardware drivers
and the Linux kernel of Android OS. However, such injection requires root privileges and cannot
work for all types of contextual data. In RainDrops [123] and Griebe et al. [43], event injection is
achieved by modifying API classes in Android SDK (Software Development Kit) so that all types
of events can be simulated to unmodified apps. For Windows 8 and Windows Phone 8 apps, Caiipa
[62] modified the GNSS driver of the Windows OS to deliver spoofed coordinates and response.
In contrast, VanarSena [89] rewrites sensor API calls in the bytecode of Windows Phone apps to
inject sensor values without modifying the Windows OS. AppDoctor [48] also uses this method
for event injection on Android. To simulate single-camera video for camera-based Android appli-
cations, CamTest [71] requires developers to call its customised APIs, instead of standard camera
APIs, for the decoding and replay of video frames from MP4 video files on a physical device.

Considering that mobile context-aware applications may collect contextual data from third-
party data collection tools, several context simulation approaches deliver data by simulating third-
party tools. For instance, KnowMe [13] and TestAWARE [70] deliver data in the format of inter-
component communication messages defined by AWARE [25]. Hence, AWARE-based applications
can receive data from them without any modification. To test other applications with them, testers
have to modify the source code of data collection to receive AWARE format messages.

Code injection. Code injection is widely used in cyber attacks. Rather than launching attacks,
Thor [2] and Majchrzak and Schulte [73] inject code into the source code of apps to change contex-
tual information at runtime. The purpose is to validate how different contexts affect the execution

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:20 C. Luo et al.

traces of apps at the source code level. However, this technique cannot be applied to closed source
apps.

Task scheduling. As some mobile context-aware applications involve non-deterministic pro-
cesses (e.g., multithread and asynchronous tasks), events and executions are often randomly in-
terleaved. The preceding context simulation approaches may fail to reproduce a concurrency bug
(e.g., race conditions) caused by certain context. Hence, several approaches provide determinis-
tic simulation by modifying task scheduling processes of OS or environments so that testers can
explore all possible schedules of events to ensure the reproduction of a concurrency bug.

On Node.js servers such as for IoT devices, Node.fz [22] simulates events in a deterministic way
by organising the sequence of three kinds of non-deterministic events: external input, callback re-
sponses, and worker pool scheduling. To achieve this, Node.fz replaces the corresponding modules
in the libuv [63] library which arranges asynchronous events and I/O controls in Node.js.

On Android, Paranoid [85] schedules threads and I/O control system calls using a light-weight
scheduler in the user space of the Linux kernel. By sending system calls that manages locking of
threads, Paranoid can prevent threads with shared memory from running concurrently. Regarding
non-deterministic network traffic, VALERA [49, 51] modifies APIs of HTTP/HTTPS connection in
the Android SDK to feed apps data from its log rather than real networks. To detect data races be-
tween two statements, RacerDroid [100] directly controls the dispatch sequence of the statements
by extending the event dispatching functions of the automated testing tool Espresso [39].

3.3.2 Simulator Speed. Numerous mobile applications analyse time-series data to recognise
context. Thus, delivering contextual data to apps at right time is the key to high fidelity in context
simulation. However, testers may want to run quick simulations with longitudinal datasets which
may last for several weeks. They may also want to slow down simulations to thoroughly examine
complex programs which may take some seconds to complete each action. To achieve these goals,
researchers have designed several methods to control the speed in context simulation.

Original speed. It is technically challenging to deliver events at timings with microsecond accu-
racy [33]. As the sendevent tool in the Android debug command has a lag when releasing continu-
ous events, RERAN [33] and MobiPlay [87] choose to inject events through hardware driver inter-
faces which can trigger signals instantly. VALERA [49, 51] delivers events with modified Android
APIs. It is found that replaying recorded data from log files is faster than normal data collection
with standard APIs. Hence, VALERA lets the replay process sleep for the same amount of time
as standard API calls. During video replay, CamTest [71] can follow the original speed of a video
file by referring to the video frames per second. Delivering contextual data via inter-component
messages, KnowMe [13], TestAWARE [70], and Paranoid [85] modify the original timestamps by
considering current device clocks and time differences in consecutive data samples.

Acceleration and slow motion. To accelerate simulations, RERAN [33] and MobiPlay [87] enable
fast forwarding by compressing time in idle periods between two events. On KnowMe [13] and
TestAWARE [70], testers can set an arbitrary speed multiplev for slow, normal, or fast simulation.
Given the original time difference t in two consecutive data samples, the two simulators wait
for time t/v to achieve the speed setting. Moreover, for audio streams, TestAWARE takes into
account the sampling rate of audio files (denoted as s) by using 1

s×v
as the wait time between two

consecutive audio frames. CamTest [71] also allows the targeted application to change the speed
of video replay by interrupting or accelerating the replay process using its customised API. In
contrast, AppDoctor [48] handles acceleration and slow motion differently for each event. It has
two modes: approximate and faithful. The approximate mode accelerates simulations by invoking
high-level APIs that contain multiple executions, whereas the faithful mode injects each event and

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:21

waits for an event-specific period of time before next event. Hence, the faithful mode can correlate
events and responses from time-consuming executions.

Uncontrolled. Many context simulation approaches do not explicitly control the simulation
speed. One reason is that some approaches do not simulate time-series data. For instance, focus-
ing on testing background services, Chizpurfle [53] invokes each targeted method and analyses
the output in a round-by-round process. Similarly, using code injection, Majchrzak and Schulte
[73] and Thor [2] execute one statement and one assertion at a time during simulation. In addi-
tion, although without speed control, some approaches consider the timing of events. For example,
VanarSena [89] simulates impatient users by injecting the next event before the response for the
last event.

3.3.3 Operating Environment. To a large extent, the operating environment determines the ef-
fectiveness and efficiency of context simulation. Numerous approaches perform context simula-
tion on physical devices. Many of them are record-and-replay approaches (e.g., RERAN [33] and
VALERA [49, 51]) because the data must be captured on physical devices first. In addition, per-
forming simulation on physical devices can help testing tools find performance issues, as PC-
based emulators are often high performance [70]. In addition, certain apps, such as games, can
only run on mobile devices with ARM processors, because x86 processors on PCs cannot execute
code from ARM-oriented libraries. For apps supporting multiple architectures such as x86 and
ARM, several approaches conduct context simulation on PC or PC-based emulators. This method
is convenient for testers who do not own a suitable physical device. Exemplar approaches include
MobiCoMonkey [6] and Node.fz [22], as Android and Node.js are designed for different kinds of
hardware devices. Android emulators especially support injections of many data types, such as
GNSS and network states, from debug commands. However, Android debug commands do not of-
fer this feature on physical devices. Another advantage of context simulation on PCs is that testers
can simultaneously run multiple instances of emulators. On a PC, ANDROFLEET [74] simulates a
cluster of Android emulators to test WiFi P2P apps.

The cloud is also a popular operating environment of context simulation approaches. Testing
resources are cost efficient and easily expandable with cloud infrastructures. For example, based
on a private cloud with virtual processor cores or physical devices, ATT [76] can launch context
simulation tasks on emulators or physical devices in parallel to increase test coverage. RainDrops
[123] also relies on a cloud of physical devices and emulators where emulators offload the sensor
data collection to physical devices for high fidelity. Another advantage of cloud is that testing tools
can learn from previously tested apps and test cases recorded in cloud. Given an app, Caiipa [62]
prioritises its test cases by mining the history of similar apps and test cases.

3.3.4 OS Modification. Many context simulation approaches require testers to customise OS.
The benefit of OS modification is that testers can simulate all data types for unmodified apps.
However, the installation of a modified OS may be a time-consuming task for common testers.

Although cannot directly operate on commercial devices, some approaches only need root priv-
ileges which can be obtained from an unmodified OS. For example, root privileges allow RERAN
[33] and MobiPlay [87] to inject events into hardware driver interfaces. Root privileges can also
allow the installation of privileged programs as light-weight OS modification. Paranoid [85] is
implemented as a privileged user application in the user space of Linux kernel below Android.
However, many approaches rely on customised OS components.

More complexly, some approaches (e.g., RainDrops [123] and Griebe et al. [43]) overwrite sensor
APIs in OS SDK. Moreover, several approaches instrument hardware drivers (e.g., GNSS driver
modification by Caiipa [62]) or task schedulers (e.g., event and worker scheduling modification by
Node.fz [22]).

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:22 C. Luo et al.

3.3.5 App Modification. Some context simulation approaches have to operate with modified
apps. Such modification can be at two levels: bytecode and source code. Bytecode modification is a
popular method, as many apps are distributed as a package of bytecode. For example, VALERA [49,
51] rewrites bytecode of Android apps for sensor data interception. Chizpurfle [53] modifies byte-
code of Android services to track the test coverage on each code block. ATT [76] and AppDoctor
[48] instrument the package of Android apps by gaining network permission for controller-app
communication and unifying signatures for sharing memory with tested apps.

Comparatively, few approaches involve modification at the source code level. To deliver audio
streams, TestAWARE [70] wraps audio frames inside Android Intent messages that can only be
received by apps with an extra corresponding message listener. CamTest [71] has a package of
its customised APIs that can replace standard camera APIs to deliver video frames to targeted
applications. RacerDroid [100] instruments the statements in source code for purposely determin-
istic executions to detect data races. Source code modification is also adopted by Thor [2] and
Majchrzak and Schulte [73] for tests with injected statements and assertions.

3.3.6 Summary. As mobile context-aware applications are designed for various running envi-
ronments, the execution requirements of data-driven context simulation approaches significantly
vary. Many approaches require testers to modify OS or applications for test data delivery. Some ap-
proaches rely on specialised servers or the cloud. Hence, certain system configuration knowledge
and programming skills are needed for the execution of data-driven context simulation.

4 MODEL-BASED CONTEXT SIMULATION

We now turn our attention to model-based context simulation. As in the previous section, we con-
sider the three phases: application modelling and acquisition of test cases (Section 4.1), refinement
(Section 4.2), and execution (Section 4.3).

4.1 Application Modelling and Acquisition of Test Cases

For test case acquisition, model-based context simulation approaches typically have to first build an
abstract model to describe the tested application with its operating context. Table 9 summarises the
modelling and test case acquisition mechanisms of model-based context simulation approaches.

Yu et al. [118] presented an approach that involves two different models. It uses an Extended
Finite State Machine (EFSM) [17] to model sensors and a Biographical Reaction System (BRS)
[80] to model the environment. Beyond a regular finite state machine, an EFSM uses variables,
operations, and transition conditions to describe a sensor. To model multiple sensors, they build
an overall EFSM by the Cartesian product of each single EFSM. To model the environment, a BRS
consists of both static and dynamic properties about a bigraph. A bigraph is represented by a
place graph with locality or containment about entities and a link hyper-graph with relationships
between entities. According to reaction rules, a Bigraphical Labeled Transition System (B-LTS)
can be created for a BRS. Using the Cartesian product of an EFSM and a B-LTS, test cases can be
structured. To avoid the exhaustive generation of all possible test cases, they proposed a pattern-
flow-based strategy to generate test cases only for specific patterns in reactions.

Regarding different phases in the testing process, Wang et al. [109] proposed the Model-based
Simulation Testing Framework (MSTF) comprising five models: the SUT model (abstraction of soft-
ware under test), environment model (abstraction of physical surrounding around software), test
case model (specifications of input and output data), test execution model (specifications of hard-
ware and software resources), and test conclusion model (specifications of potential correlation
between faults and expected test results). MSTF allows testers to determine the format of these

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:23

Table 9. Modelling and Test Case Acquisition of Model-Based Context Simulation

Approach Application and Context Modelling Test Case Acquisition

Yu et al. [118]
BRS (app model),

Pattern-flow generation strategies
EFSM (sensor model)

MSTF [109]
SUT model, environment model, test case
model, test execution model, test
conclusion model

External data sources

Liñán et al. [64] Augmented model Automatic ripping

Zhang et al. [124] Graph-based test model External data sources

SIT [86] Interactive app model Sampling-based generation strategy

Wang et al. [110] Function call graph, control flow graph Enhancing existing test suites

Griebe and Gruhn [42] Unified Modeling Language Activity Diagram Petri net trace analysis

Micskei et al. [78] Context model, scenario model Search-based generation strategy

Sama et al. [94] Adaptation Finite-State Machine Not required

Xu et al. [114] Adaptation model Manual definition

Tönjes et al. [102] EFSM
Transition coverage,
transition and state-coverage search

Ben Abdessalem
et al. [1]

ADAS formalisation
Multi-objective search,
decision tree classification

Garzon and
Hritsevskyy [31]

Discrete event system specification (DEVS) Stochastic DEVS

JPF-ANDROID [107] JPF-generated Promela model Exhaustive generation

DroidPF [8] JPF-generated Promela model Incremental driver generation

models. A weakness of MSTF is that it does not support automated test case generation. Testers
must import test cases and corresponding expected results from external data sources.

Similarly, Liñán et al. [64] proposed another multi-model concept called the augmented model.
An augmented model comprises context (e.g., sensors and hardware states), domain (e.g., applica-
tion data, entities and relations), usage (e.g., user interactions), and GUI (e.g., graphic components)
information. The augmented model can be generated automatically by ripping and static code
analysis. Using the augmented model, the context states can be simulated by ripping triggers.

Targeting location-based mobile apps, Zhang et al. [124] introduced a novel graph-based test
model that can be denoted byG = (N ,E, S,Lc),whereG is a graph model, Lc is the location context
map, N are map nodes (e.g., buildings, app users, and traffic jams), E is service execution (e.g., one
node detects another), and S is the service set for all nodes. Although this model can reflect dynamic
contexts and app states, it lacks automation support. Testers need to use external data sources to
obtain test cases.

Qin et al. [86] presented an approach called Sampling-based Interactive Testing (SIT) which uses
an interactive app model (IAM) to specify the characteristics of the app, environment, and inter-
actions in between. IAM also considers uncertainties of interactions, such as unreliable sensor
values and flawed physical actions (as defined in Ramirez et al. [88]). To generate test cases, SIT
adopts a sampling-based strategy which tracks execution traces of input and derives new input
from previous input with low similarity in execution traces. SIT is implemented in Java 8 and can
automate test case generation. Although the source code of the target application can be directly
included into an IAM, testers must manually specify the rest part of the IAM according to the
documentation of the app.

Aiming to enhance existing test suites, Wang et al. [110] developed an approach that automat-
ically generates variant test suites by identifying statements associated to context changes. From

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:24 C. Luo et al.

the source code of an app, it generates the function call and control flow graphs (CFG) to find such
statements (marked as nodes in CFGs). Based on the flows containing these CFG nodes, it searches
for variant test suites involving context conditions that cause different app behaviours.

Griebe and Gruhn [42] proposed an approach that can automatically parse models in Unified
Modeling Language (UML) [92] to generate test cases. Beyond regular UML Activity Diagrams
(ACD) context, they associate ACD elements and context parameters using UML stereotype classes
in a UML profile. Then, each ACD is converted into a Petri net to simplify test coverage quantifi-
cation and to generate test cases represented by traces.

Micskei et al. [78] described a method which allows testers to specify an app by a context model
in OWL2 ontology and a scenario model in UML Sequence Diagrams. A context model defines
static properties and dynamic relations about environment objects. A scenario model describes an
app’s input events and output actions. Based on the two models, a search-based technique is used
to automate test case generation. The search strategies can find minimal context objects required
for a scenario requirement, combined context objects related to multiple requirements, and context
objects with boundary values.

To model applications adapting to context, Sama et al. [94] defined an Adaptation Finite-State
Machine (A-FSM) denoted as M = (S,δ , Sinitial, Sfinal), where S denotes all possible states of an
app, Sinitial the initial state, Sfinal the final state, and δ ⊆ S × R × S the transition relation. δ can
be derived from adaptation rules in set R by δ = {(S,R, S0) |∃R = (S, P , S0,A,N) ∈ R}. R ⊆ S ×
P × S × A ×N, where P denotes logical predicates on propositional context variables, A the
actions of adaptations, and N the natural numbers representing rule priorities. Based on A-FSM,
they use five algorithms to automatically detect two kinds of faults: behavioural faults caused by
wrong rule predicates and context hazards caused by asynchronous updates of multiple context
variables. These algorithms operate by exploring rules and states in A-FSM so that test cases are
not required.

Moreover, Xu et al. [114] designed an Adaptation Model (AM) to express complex adaptations of
apps. An AM is defined as AM = (S,R, s0, Sf ,V , sc), where S represents the state set, R the adapta-
tion rule set, s0 the initial state, Sf the final state set (apps stop at any state in Sf),V the assignment
of all contextual variables, and sc the current state. Compared to approaches based on propositional
logic, an AM can describe complex rules in adaptation using a customised language based on first-
order logic. In addition, an AM can detect faults expressed by dynamic transitions between states.
To test adaptations of an app, an algorithm takes as input the AM and context changes specified
by testers to detect faults.

To automate modelling of an app, Tönjes et al. [102] proposed a tool that reads application
specifications in Web Application Description Language (WADL). Based on WADL files, this tool
constructs an Application Behaviour Model (ABM) represented by an EFSM which contains app
states, context events, app actions, and transitions between states. By searching for traces from
the initial state to the final state in an EFSM, this tool generates test cases in the TTCN-3 language
that can be executed on simulators.

For testing Advanced Driver Assistance Systems (ADAS), Ben Abdessalem et al. [1] provided
an evolutionary search approach that can explore complex input space using a formalised ADAS
model. The ADAS formalisation considers both the autonomous vehicular system and environ-
ment, including states of pedestrians and vehicles. The test case generation first produces a set of
context scenarios using a genetic algorithm. Then, these context scenarios are used to test the sys-
tem behaviours which may fail to ensure safety. A decision tree learns from the results to identify
critical regions in the ADAS input space.

For personalised context-aware applications, Garzon and Hritsevskyy [31] proposed a model-
based context simulator which produces recurrent user behaviour using discrete event system

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:25

specification (DEVS) [120]. Each model represents a scenario-specific event pattern of a human
user. Using stochastic DEVS [57], for both deterministic and non-deterministic scenarios, this ap-
proach is able to generate recurrent user behaviour as sensor readings with timestamps.

For Android apps, Van der Merwe et al. [107] designed a verification tool called JPF-ANDROID

by extending Java PathFinder (JPF) [45]. JPF can translate Java code into a model in Promela lan-
guage for the SPIN model checker [47] which performs simulation to examine properties such as
absence of deadlocks and races. JPF-ANDROID automatically extracts key components (e.g., ac-
tivity, service, and message queue) of Android apps to rewrite the apps in standard Java code. In
addition, JPF-ANDROID allows users to specify system events written in scripts. During the verifi-
cation process, JPF-ANDROID generates all possible combinations of system events in exhaustive
search to explore the states of the abstract app model.

In addition, Bai et al. [8] proposed another JPF-based verification tool, DroidPF, to verify secu-
rity properties (e.g., correct transmissions of sensitive data) of Android apps by a driver program
to explore the state space. According to a property specified by testers, DroidPF extracts related
components and events by statically analysing source code. Then, DroidPF explores the states
of the extracted modules with an mock-up Android OS on JPF. To take into account user interac-
tion and contextual input, DroidPF can construct drivers that simulate and schedule such events to
perform corresponding state transitions during exploration. Moreover, with an incremental mech-
anism, DroidPF can also generate ad hoc drivers to explore components that are newly created
on the fly.

4.1.1 Summary. Most mode-based context simulation approaches rely on specialised modelling
methods, unlike a few approaches using common modelling methods such as UML and Promela.
Testers often need to manually create application and context models using specific software mod-
elling skills. In addition, most approaches can automatically generate test cases, although several
approaches require testers to provide test cases.

4.2 Refinement of Test Cases and State Space

Model-based context simulation approaches may refine their test cases or state space before test
executions. Some of them remove low-quality test cases or simplify the state space of a model
to improve test efficiency. Some generate more relevant test cases to augment original input to
increase test coverage. Table 10 lists these refinement methods of model-based context simulation.

Several approaches do not refine test cases or state space, including MSTF [109], Zhang et al.
[124], Xu et al. [114], Micskei et al. [78], and JPF-ANDROID [107]. Among these, refinement is not
necessary in Micskei et al. [78] since the test case generation phase already minimises the number
of test cases to sufficiently cover a functionality.

The remaining approaches all make an effort to refine test cases or state space. In Yu et al. [118],
testers have two options to select relevant test cases: all-defs and all-uses. All-defs aim to test every
pattern with some test cases, whereas all-uses find a sufficient set of test cases to explore every
pattern use.

SIT [86] optimises both test cases and state space by pruning. Inside the input space, it removes
redundant test cases that are shared by multiple partitions. In addition, it discards redundant traces
that involve an identical set of input at highly similar states of the target model.

In Wang et al. [110], a context manipulator augments original tests cases by generating new
context data that leads to unexplored context scenarios.

In Griebe and Gruhn [42], test case generation relies on the automatic analysis of the reachability
graph of a Petri net which represents an application model with stereotypes for context description
in a UML profile. First, all paths from the tree root to leaves are selected as potential test cases.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:26 C. Luo et al.

Table 10. Test Case Refinement and State Space Refinement of Model-Based

Context Simulation Approaches

Approach Test Case Refinement State Space Refinement
Yu et al. [118] Pattern-flow testing No
MSTF [109] No No
Liñán et al. [64] No No
Zhang et al. [124] No No
SIT [86] Pruning Pruning
Wang et al. [110] Context manipulation No
Griebe and Gruhn [42] UML stereotype-based reduction No
Micskei et al. [78] No No

Sama et al. [94] No
State matrix-based
simplification

Xu et al. [114] No No
Tönjes et al. [102] Similarity analysis No
Ben Abdessalem et al. [1] Decision tree learning No
Garzon and Hritsevskyy [31] No No
JPF-ANDROID [107] No No

DroidPF [8]
Dependency-constrained event

Slicing-based reduction
permutation

Then, in each path, the refinement process removes the nodes that are not associated to UML
stereotypes. Considering that the resulting paths may have duplicates, the refinement process
discards all but one path within these duplicates.

In Sama et al. [94], a derivative representation, named state matrix, is proposed to simplify the
state space of models. A state matrix contains sets of truth assignments of context variables and sets
of associated rules. A state matrix excludes state assignments that are not related to any associated
rule.

In Tönjes et al. [102], similarity analysis is used to reduce the number of highly similar test cases.
It computes a pairwise similarity score between two test cases using the Levenshtein distance.
Given a target number, it adopts a greedy search to find a set of test cases with the lowest average
similarity between pairs of test cases.

In Ben Abdessalem et al. [1], a decision tree is trained with initial context scenarios and test re-
sults to identify critical regions in the input space. These critical regions contain context scenarios
that are more likely to expose failures of ADAS.

DroidPF [8] refines both test cases and state space. Given the source code of an Android ap-
plication, DroidPF applies a slicing-based reduction to extract an executable slice using program
slicing [112]. Since the sliced program contains only key components that are essential for execu-
tions or are related to security properties, DroidPF can efficiently explore the state space without
loss of security vulnerabilities in verification. In addition, considering that not all event sequences
are relevant to security properties, DroidPF adopts a dependency-constrained event permutation
to construct only feasible event sequences as selected test cases.

4.2.1 Summary. Most model-based context simulation approaches refine test cases or state
space. Since the state space of models is often large, many approaches aim to avoid time-consuming
and memory-hungry exhaustive search (computers may not have enough physical memory for
this) by simplifying their models or removing test cases that are likely to be redundant.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:27

Table 11. Execution Characteristics of Model-Based Context Simulation Approaches

Approach Deployment Software Dependency Operating Environment
Yu et al. [118] Offline Eclipse [28] PC
MSTF [109] Offline App specific Distributed system
Liñán et al. [64] Online ADB [35] Device/emulator + server
Zhang et al. [124] Offline App specific App specific
SIT [86] Online Java 8 App specific
Wang et al. [110] Online Java 1.4 App specific
Griebe and Gruhn [42] Online Calabash [15] Device/emulator + server
Micskei et al. [78] offline App specific App specific
Sama et al. [94] Online TestingEmulator [93] Emulator
Xu et al. [114] online Cabot middleware [113] PC+device
Tönjes et al. [102] Online TTworkbench [101] Server
Ben Abdessalem et al. [1] offline App specific App specific
Garzon and Hritsevskyy [31] Offline Java PC
JPF-ANDROID [107] Offline JPF [45] Java virtual machine

DroidPF [8] offline
JPF [45]

Java virtual machineSAAF [46], apktool [104]
dex2jar [23], Dare [84]

4.3 Execution of Context Simulation

Table 11 shows the execution characteristics of model-based context simulation approaches in
terms of deployment, software dependencies, and operating environments.

4.3.1 Deployment. Model-based context simulation can be deployed in an online or offline
manner for execution. Online simulation approaches execute tests on target applications, whereas
offline simulation approaches operate on software/context models that represent target applica-
tions and context factors of ambient environments.

Online approaches directly interact with target applications during context simulation. An ad-
vantage of online context simulation is that future test cases can be improved on the fly accord-
ing to the current output and context state. For example, sampling-based interactive testing (SIT)
[86] considers the target application a component of the model to conduct sampling-based testing
which optimises future input by analysing the recent result from the application at runtime. Such
online context simulation is also adopted in other works [42, 94, 102, 110, 114].

As direct transmission of test cases to implemented applications may be technically impractical,
some offline approaches perform simulation to generate application-executable test cases that can
be downloaded for execution on implemented applications. In MSTF [109], a development node,
usually a PC, manages context simulation and generates test cases. Then, the test cases are down-
loaded to distributed real-time executing nodes based on target hardware devices which can vali-
date real-time requirements of applications. Similar mechanism is also used in Micskei et al. [78].

In addition, considering that executing test cases on implemented applications may not be effi-
cient or practical, several offline approaches only perform simulation on abstract software/context
models, without directly examining implemented software applications. Hence, their test cases
are abstract and can only be processed by models rather than actual applications. For example,
in Yu et al. [118], context simulation operates on only abstract software/context models. As well,
in Zhang et al. [124], JPF-ANDROID [107], and DroidPF [8], context simulation only aims to
examine the behaviours represented by models.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:28 C. Luo et al.

4.3.2 Software Dependency. To execute context simulation, approaches may have to employ
other software packages. In Yu et al. [118], modelling and simulation are managed by two cus-
tomised plug-ins of Eclipse [28]. Specific versions of Java are used in SIT [86] and Wang et al.
[110]. Conversely, several approaches rely on third-party simulation and testing tools. Supporting
the script-based simulation of Android and iOS applications, Calabash [15] is used in Griebe and
Gruhn [42]. Aiming at J2ME applications, TestingEmulator [93] is adopted in Sama et al. [94]. In Xu
et al. [114], Cabot middleware [113] is used for context management. Based on the cross-platform
TTCN-3 language [41], TTworkbench [101] serves as the execution automation tool in Tönjes et al.
[102]. To perform model checking for Android applications, JPF-ANDROID [107] and DroidPF [8]
rely on JPF [45] to convert Java bytecode into Promela models. DroidPF [8] also uses SAAF [46]
for static slicing, and apktool [104], dex2jar [23], and Dare [84] for decompilation. Comparatively,
software dependencies are not restricted in MSTF [109], Zhang et al. [124], Ben Abdessalem et al.
[1], and Micskei et al. [78], only providing abstract frameworks for testers to specialise.

4.3.3 Operating Environment. Most model-based context simulation approaches are designed
for specific operating environments. In Yu et al. [118], context simulation generates offline test
cases on a PC for applications to download on intended devices. Aiming at the examination of
distributed embedded systems, MSTF [109] operates within Ethernet to generate test cases on a
development node and execute tests on real-time execution nodes within a real-time network.
In Griebe and Gruhn [42], context simulation operates on a server to interact with targeted appli-
cations on physical devices or emulators on the fly. In Sama et al. [94], context simulation is man-
aged by a customised J2ME emulator—TestingEmulator [93]. In Xu et al. [114], context simulation
operates on a PC which communicates with applications on mobile devices using a wireless net-
work. In Tönjes et al. [102], context simulation can be conducted on a TTworkbench [101] server
using a web service interface or manually. Based on JPF [45], JPF-ANDROID [107] and DroidPF
[8] launch context simulation using Java virtual machines. By contrast, operating environments
are not bounded in Zhang et al. [124], SIT [86], Wang et al. [110], Ben Abdessalem et al. [1], and
Micskei et al. [78], because they rely on cross-platform dependencies or high abstraction levels.

4.3.4 Summary. Most model-based context simulation approaches only examine abstract mod-
els to check the correctness of software design. These types of examination can be deployed in
generic computing environments, such as PCs. Meanwhile, some model-based context simulation
approaches can generate concrete test cases to directly check the functionality of implemented ap-
plications. However, testers must have sufficient knowledge to configure operating environments.

5 DISCUSSION

5.1 Comparison Between Data-Driven and Model-Based Context Simulation

Table 12 shows a comparison of characteristics of data-driven and model-based context simula-
tion. Generally, model-based approaches focus on abstract software design and are more flexible,
whereas data-driven approaches aim at implementation details.

5.1.1 Popularity. According to the number of studied works, data-driven approaches are the
main component of context simulation for testing mobile context-aware applications. Researchers
and developers have designed various techniques for test case acquisition, test case refinement, and
test execution of data-driven context simulation. These techniques cover a relatively large part of
the need of testing, in terms of diversity of supported context events and examined properties
of applications. Compared to data-driven approaches, model-based context simulation receives
less attention from developers and researchers. But we still observed significant diversification

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:29

Table 12. Comparison Between Data-Driven and Model-Based Context Simulation

Data Driven Model Based
Popularity High Low
Test Object Implemented software Software model, implemented software*
Software/Hardware
Dependency

Strict Flexible

Context Type Diversity High Low
Non-Deterministic Test Weak Strong

Laborious Process
Data acquisition,* Model definition,*
environment configuration environment configuration*

∗If necessary.

in application modelling, test case acquisition, test case refinement, state space reduction, and
execution of model-based techniques.

5.1.2 Test Object. Regarding test objects, data-driven approaches focus only on implemented
software. This implies that testers cannot perform any simulation to test a mobile context-aware
application before the completion of coding activities. In contrast, most model-based approaches
aim to test software models instead of actual applications. These model-based approaches operate
with a higher level of abstraction of applications, since software models are created in the software
design phase. Some model-based approaches also generate concrete test cases for execution on
actual applications to ensure the correctness of both software models and implementation.

5.1.3 Software/Hardware Dependency. Data-driven approaches often require strict software or
hardware dependencies (e.g., a certain version of a third-party library or a specific cloud server),
due to the compatibility of applications and simulators. Some data-driven approaches rely on modi-
fied OS. Comparatively, model-based approaches can generally operate in different environments,
although a few model-based approaches require specific environments to execute concrete test
cases for the validation of actual applications.

5.1.4 Context Type Diversity. Compared to model-based approaches, data-driven approaches
support a wider range of context types. Many data-driven approaches can simulate multiple types
of context events, whereas a few focus only on one kind of context. Although model-based ap-
proaches consider context as states in models, they have limited ability to simulate complex con-
text such as video and audio for the validation of low-level processing.

5.1.5 Non-Deterministic Test. Due to the technical challenges of modifying task scheduling pro-
cesses of OS, only a small number of data-driven approaches can simulate context to test non-
deterministic processes (e.g., random decisions and asynchronous tasks). It is worth noting that
developers have no access to the source code of closed source mobile OS, such as iOS, for testing
purposes. In contrast, many model-based approaches take into account uncertainty. Hence, these
model-based approaches can efficiently examine non-deterministic processes.

5.1.6 Laborious Process. Although several data-driven approaches can automatically generate
relevant context data for tests, most data-driven approaches require testers to record or import test
cases. When there is no previous or third-party data recording, it can be time consuming or costly
to obtain such data. In addition, to simulate context data during data-driven tests, testers have to
correctly configure simulators and applications in a proper environment. Complicated modifica-
tion of OS or applications is sometimes needed. For model-based approaches, testers have to define
an abstract model to represent the application. Despite a few automatic modelling techniques, most

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:30 C. Luo et al.

model-based approaches require testers to manually input a specialised model. Compared to data-
driven approaches, most model-based approaches are based on common software or hardware
dependencies. Only few model-based approaches involve complicated configuration.

5.2 Special- and General-Purpose Context Simulation

Regardless of being data driven or model based, all context simulation approaches can be grouped
into two categories: special-purpose and general-purpose approaches.

5.2.1 Special-Purpose Context Simulation. Special-purpose approaches focus only on one type
of mobile context-aware applications. A typical example is location simulation for location-based
services. Beyond other simulation approaches only considering location coordinates, location sim-
ulators take into account more geographical characteristics such as buildings, roads, and traffic.
The actions of location-based services may vary in different geographical conditions. For example,
vehicle navigation applications may use road and traffic information to avoid traffic jams. Some lo-
cation simulators (e.g., CATLES [30]) even provide a virtual 3D environment as a control interface
for testers. Special-purpose context simulation also include multimedia simulators (e.g., CamTest
[71]) that can simulate audio or video streams to test mobile applications based on microphone or
camera. Hence, special-purpose approaches can effectively examine the features of specific mobile
context-aware applications.

5.2.2 General-Purpose Context Simulation. General-purpose approaches aim at common fea-
tures of mobile context-aware applications. Since a large number of mobile context-aware appli-
cations take into account network conditions and sensor readings, most general-purpose context
simulators support the simulation of network status and sensor data collection. In addition general-
purpose context simulators accept applications with an arbitrary set of different context events.
Testers can select a suitable combination of context events for an application in simulations. Some
general-purpose context simulators can even summarise and prioritise context situations that are
likely to cause problems in different kinds of applications. Thus, general-purpose context simu-
lation is suitable to examine the features that are in common with regular mobile context-aware
applications.

5.3 The Notion of Context in Simulation

In the field of mobile computing, the notion of context is essentially open ended in different sce-
narios. Likewise, the connotation of context varies among simulation approaches.

5.3.1 Physical and Virtual Context. Most context simulation approaches focus only on physical
context such as location, network status, and sensor readings, since many mobile context-aware
applications only take physical context as input. For example, location simulators produce dummy
location information for location-based services. As well, many context simulators are able to gen-
erate sensor readings, such as acceleration and luminosity, for applications that track human/object
physical activities and ambient environments. In addition to physical context, a small number of
context simulation approaches support the simulation of virtual context, such as smartphone no-
tifications, application output/crashes, and user input text. The simulation of virtual context can
benefit the validation of applications that rely on software information and human input.

5.3.2 General and Personalised Context. The majority of context simulation approaches do not
consider individual differences of users’/objects’ context. These approaches use general context as
test cases to represent the common characteristics of a group of users or objects. In contrast, sev-
eral context simulation approaches can distinguish personalised context patterns from individual
users/objects. This function is necessary for testing applications that should adjust decisions for

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:31

Table 13. Summary of Challenges and Future Opportunities

Challenge Desired Feature Supportive Technique

Early-stage testing
Continuous sensing simulation Combinatorial optimisation
Context model evaluation Model visualisation

Emulation fidelity
High-fidelity execution
High-fidelity injection
Device fragmentation Mobile virtualisation

Context heterogeneity
Multi-channel context replay Multimedia synchronisation
Simulation of external sensors

Multiple devices Simulation of multi-device sensing Multi-device synchronisation

Automation support
Auto model extraction NLP
Auto model transformation Quiver mutation, deep learning
Auto test configuration Cloud testing, cross compiling

different user demographics. For instance, age and gender are importance factors for judging the
correct output of healthcare-related mobile context-aware applications.

5.3.3 Context Granularity. The granularity of context differs across context simulation ap-
proaches. Some approaches use coarse-level context. For example, to test applications that rely
on WiFi, simulators may only generate the on/off state of WiFi. Although this granularity can test
features such as data synchronisation, it cannot provide WiFi Received Signal Strength Informa-
tion (RSSI) of an access point to test features such as indoor positioning and activity recognition.
Hence, some approaches support the simulation of fine-grained context that includes more low-
level attributes related to context events.

5.4 Challenges and Future Opportunities

Despite the advances in context simulation techniques for testing mobile context-aware appli-
cations, there are still several unexplored issues in this field. Hence, we propose a vision of ex-
isting challenges and desired features of future context simulation approaches. Specifically, we
discuss how current techniques that have not been applied in this field can support future context
simulation. Finally, we provide some deliberations about potential architectures of future context
simulators.

Table 13 shows a summary of challenges and future opportunities, including desired features of
future context simulation approaches, and current techniques that have not been applied in this
field can support future context simulation.

5.4.1 Context Simulation in Early-Stage Testing. The current trend for context simulation is to
test implemented mobile context-aware applications. Only a handful of model-based approaches
aim to perform context simulation before the implementation stage. In addition to software bugs
introduced in coding activities, software flaws can emerge from improper requirement analysis and
software design [54]. Early-stage testing can reduce the difficulty and cost of software repair [97].

Hence, future context simulation approaches can place more emphasis on requirement analy-
sis and software design of mobile context-aware applications. A desired features is the validation
of continuous sensing design which often contains tradeoffs between performance and overhead
[59]. Developers can use this feature to make better choices of sensors and duty cycling algorithms
during the design phase, avoiding time-consuming trial and error in experiments on different im-
plemented versions. Combinatorial optimisation is a promising supportive technique to find the
optimal design choice rather than an exhaustive search. In addition, at the very early stage of

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:32 C. Luo et al.

development, conducting context simulation can help developers design and evaluate context mod-
els [14]. In this sense, a desired feature is the evaluation of context models via early-stage context
simulation. Context simulators can generate various context events to preliminarily assess con-
text models. Visualising the change of model states is a supportive technique for developers to
understand and improve their context models.

5.4.2 Emulation Fidelity. Although context simulation on physical devices can obtain reliable
results in some types of tests (e.g., real timeness in performance testing), emulation on PCs or the
cloud is more suitable for low-budget and large-scale tests.

Current emulators (e.g., Genymotion and BlueStacks) are designed to maximise their compu-
tation speed and minimise computation cost [55]. The major goals of these emulators include
(1) playing mobile video games on PCs and (2) offloading computation-intensive tasks from mo-
bile devices to the cloud. Although these emulators can obtain good performance in computation
tasks and may be used for functional tests of mobile applications, they cannot reflect how well
applications perform on physical devices. Hence, testers cannot use these emulators to examine
non-functional properties of applications. To avoid significant performance differences between
test results on emulators and physical devices, future research can explore new techniques that
enable high-fidelity emulators. A desired feature for future emulators is to reflect actual time and
resource cost of executions on various mobile platforms, because PCs or cloud servers have more
powerful hardware (e.g., processors) than physical devices [116]. Meanwhile, considering that mo-
bile context-aware applications are supposed to collect data from physical device sensors, another
desired feature for future emulators is to equalise their computational cost of context simulation
and the expected computational cost of real-world data collection on physical devices.

In addition, since mobile applications may perform differently on various device models and OS
[18, 70], a desired feature for future emulators is to realise device fragmentation caused by different
characteristics of physical devices. Advanced mobile virtualisation techniques can be helpful for
future emulators to achieve this feature on regular PCs or cloud servers.

5.4.3 Context Heterogeneity. As mobile devices tend to contain a wider range of sensors and
modules, the increasing diversity of contextual data is a great challenge in context simulation.

Future research needs to develop new tools that can provide sufficient coverage of such het-
erogeneous contextual data. For instance, considering that phone-based car driving monitoring
applications (e.g., You et al. [117]) may use dual cameras, a microphone, and inertial sensors, a de-
sired feature for future context simulation is multi-channel context replay, including multi-channel
video frames, audio streams, and sensor events. Multimedia synchronisation is a necessary tech-
nique to support this feature by delivering each type of context data at the correct timing. Further,
some mobile devices are able to collect data from external sensors, including USB accessories (e.g.,
FLIR One Thermal Imaging Camera Attachment [26]) and wireless sensors. A desired feature of
future context simulators is to perform context simulation for applications relying on external
sensors.

5.4.4 Multiple Devices. Multi-device context-aware applications can bring a few new issues
to context simulation [74]. Existing methods have limited features to simulate context scenarios
where various devices collaborate to sense the environment. In future context simulators, a de-
sired feature is to simulate the communication and collaboration within a certain number of mo-
bile devices serving a context-aware system. A typical example is the personal area network [108]
where personal devices, such as smartphones and smartwatches, are connected. It is worth noting
that many applications for wearable devices contain some components operating on smartphones.
Smart homes with diverse intelligent appliances is also an important area for further investigation.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:33

To achieve the context simulation for multi-device scenarios, a supportive technique is to synchro-
nise various context events from sensors on each device with respective timestamps to validate
the entire context-aware system across devices. In addition, to simulate multiple components of an
application, the simulator should be able to monitor and manage the components across devices or
emulators. Suitable signalling mechanisms are needed for the cross-component communications
such as sending commands, delivering context data, and reporting test results.

5.4.5 Automation Support. Some existing approaches require testers to manually complete spe-
cific operations (e.g., providing human-generated software models), lacking automation support
for context simulation. Hence, testers must have sufficient knowledge to apply these approaches.

To lower this barrier, future tools should provide automation features. For example, a desired
feature is automatic model extraction that can produce software models by parsing the source
code of applications that are written in various programming languages and for different OS. NLP
can be a supportive technique for future tools to understand semantics of context collection and
processing from software source code, similar to the automatic test case generation mechanism
in Snowdrop [122]. As testers often have software design models at the software design stage,
a desired feature is automatic model transformation that can convert these models for model-
based context simulation approaches, such as converting UML diagrams into different types of
finite state machines. To achieve such a feature, quiver mutation [111] (analysing and transforming
directed graphs using algebra) and deep learning can serve as supportive techniques to analyse and
generate equivalent models in different forms.

Another desired feature is to automatically adjust test configuration on various execution en-
vironments of hardware, since testers may conduct tests on different hardware and OS that may
cause compatibility issues, such as inconsistent data formats and debugging features. In particular,
cloud testing can be a supportive technique to automatically customise execution environments
(e.g., modifying standard OS SDK) for testers so that testers can avoid the pain of flashing OS im-
ages on their own devices. With a large number of physical devices hosted on cloud platforms, a
cross-compiling technique is also necessary for testers to quickly deploy appropriate versions of
their applications in each customised execution environment.

5.4.6 Potential Architectures of Context Simulators. Architectures of current context simulation
approaches are seldom mentioned in the literature. Thus, there is a lack of standards about what
components they should have. In the future, it is likely that context simulators will be built in a
modular fashion, as they have multiple features for different stages.

Future context simulators may have both data-driven and model-based context simulation to
support the validation of mobile context-aware applications in the entire software development
life cycle. During the design phase, model-based context simulation can help developers exam-
ine their design choices. After implementation, data-driven context simulation can validate the
finished software products. For model-based context simulation, future context simulators should
contain model management modules for the definition, modification, extraction, and transforma-
tion of application models. Model-based context simulators should also contain simulation man-
agement modules for the configuration, test case generation, execution, and summarisation of
tests. Likewise, future data-driven context simulators should contain data management modules
to record, generate, or manipulate test data. In addition, future data-driven context simulators
should contain simulation management modules for the configuration, test data import, execu-
tion, and summarisation of tests. If context simulation approaches require the modification of OS
or applications, they should also specific modules for OS and app modification. As well, cloud-
based context simulation approaches should contain remote control modules as an interface for
testers to control simulation processes, reducing the cost of simulation and the efforts of testers.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

21:34 C. Luo et al.

6 CONCLUSION

This article presents a survey of context simulation techniques for testing mobile context-aware
applications. We first characterise modern mobile devices, sensors, and mobile context-aware ap-
plications. Then, we identify the need of context simulation techniques for testing mobile context-
aware applications. With regard to the need, we provide an in-depth discussion and comparison
of the key technical details of relevant context simulation techniques including both data-driven
and model-based approaches. At the end of this survey, we highlight several unexplored issues
and future directions for further advancements in this field.

Testing mobile context-aware applications is often a costly and time-consuming process. The
emergence of context simulation techniques alleviates this problem by replacing impractical
real-world experiments with efficient simulated executions. However, context simulation on
mobile context-aware applications is a technically challenging task. Despite existing approaches
presented in the literature, more research is needed to help testers in a wide range of testing
activities and scenarios for mobile context-aware applications. In addition, further study on these
approaches is needed to help researchers find knowledge gaps and inspirations in the literature,
for example, by technical reports and systematic mapping on related techniques, tools, and
publications.

REFERENCES

[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018. Testing vision-based control sys-
tems using learnable evolutionary algorithms. In Proceedings of the 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE’18). IEEE, Los Alamitos, CA, 1016–1026.
[2] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. Systematic execution of Android test suites

in adverse conditions. In Proceedings of the 2015 International Symposium on Software Testing and Analysis. ACM,
New York, NY, 83–93.

[3] Wi-Fi Alliance. 2019. Wi-Fi Direct. Retrieved January 4, 2020 from https://www.wi-fi.org/discover-wi-fi/wi-fi-direct.
[4] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, and Nicola Amatucci. 2013. Considering context

events in event-based testing of mobile applications. In Proceedings of the IEEE 6th International Conference on Soft-

ware Testing, Verification, and Validation Workshops (ICSTW’13). IEEE, Los Alamitos, CA, 126–133.
[5] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M. Memon. 2012.

Using GUI ripping for automated testing of Android applications. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, New York, NY, 258–261.
[6] Amit Seal Ami, Md. Mehedi Hasan, Md. Rayhanur Rahman, and Kazi Sakib. 2018. MobiCoMonkey: Context test-

ing of Android apps. In Proceedings of the 5th International Conference on Mobile Software Engineering and Systems

(MOBILESoft’18). ACM, New York, NY, 76–79.
[7] Apple. 2019. Xcode 11. Retrieved January 4, 2020 from https://developer.apple.com/xcode/.
[8] Guangdong Bai, Quanqi Ye, Yongzheng Wu, Heila Botha, Jun Sun, Yang Liu, Jin Song Dong, and Willem Visser. 2018.

Towards model checking Android applications. IEEE Transactions on Software Engineering 44, 6 (2018), 595–612.
[9] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. 2007. A survey on context-aware systems. International

Journal of Ad Hoc and Ubiquitous Computing 2, 4 (2007), 263–277.
[10] Gregory Biegel and Vinny Cahill. 2004. A framework for developing mobile, context-aware applications. In Pro-

ceedings of the 2nd IEEE Annual Conference on Pervasive Computing and Communications (PerCom’04). IEEE, Los
Alamitos, CA, 361–365.

[11] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable race detection for android applications. ACM SIG-

PLAN Notices 50 (2015), 332–348.
[12] Jiang Bo, Long Xiang, and Gao Xiaopeng. 2007. MobileTest: A tool supporting automatic black box test for software

on smart mobile devices. In Proceedings of the 2nd International Workshop on Automation of Software Test. IEEE, Los
Alamitos, CA, 8.

[13] Szymon Bobek. 2016. Context Simulator (KnowMe). Retrieved January 4, 2020 from http://glados.kis.agh.edu.pl/.
[14] Szymon Bobek, Sebastian Dziadzio, Paweł Jaciów, Mateusz Ślażyński, and Grzegorz J. Nalepa. 2015. Understanding

context with context viewer–tool for visualization and initial preprocessing of mobile sensors data. In Proceedings

of the International and Interdisciplinary Conference on Modeling and Using Context. 77–90.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://developer.apple.com/xcode/
http://glados.kis.agh.edu.pl/

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:35

[15] Calabash. 2019. Calabash-Android. Retrieved January 4, 2020 from https://github.com/calabash/calabash-android.
[16] Tsong Yueh Chen, Hing Leung, and I. K. Mak. 2004. Adaptive random testing. In Proceedings of the Annual Asian

Computing Science Conference. 320–329.
[17] Kwang-Ting Cheng and Avinash S. Krishnakumar. 1993. Automatic functional test generation using the extended

finite state machine model. In Proceedings of the 1993 30th Conference on Design Automation. IEEE, Los Alamitos,
CA, 86–91.

[18] Min Choi and Seung-Ho Lim. 2016. x86-Android performance improvement for x86 smart mobile devices. Concur-

rency and Computation: Practice and Experience 28, 10 (2016), 2770–2780.
[19] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated test input generation for An-

droid: Are we there yet?. In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE’15). IEEE, Los Alamitos, CA, 429–440.
[20] Progress Software Corporation. 2019. Fiddler. Retrieved January 4, 2020 from https://www.telerik.com/fiddler.
[21] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning 20, 3 (1995), 273–297.
[22] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.fz: Fuzzing the server-side event-driven archi-

tecture. In Proceedings of the 12th European Conference on Computer Systems. ACM, New York, NY, 145–160.
[23] Dex2jar Group. 2019. Dex2jar. Retrieved January 4, 2020 from https://github.com/pxb1988/dex2jar/.
[24] David Erickson, Dakota O’Dell, Li Jiang, Vlad Oncescu, Abdurrahman Gumus, Seoho Lee, Matthew Mancuso, and

Saurabh Mehta. 2014. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.
Lab on a Chip 14, 17 (2014), 3159–3164.

[25] Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. 2015. AWARE: Mobile context instrumentation framework.
Frontiers in ICT 2 (2015), 6.

[26] FLIR. 2019. FLIR ONE Gen 3 Thermal Camera for Smart Phones. Retrieved January 4, 2020 from https://www.flir.
com/products/flir-one-gen-3/.

[27] Huber Flores, Denzil Ferreira, Chu Luo, Vassilis Kostakos, Pan Hui, Rajesh Sharma, Sasu Tarkoma, and Yong Li.
2016. Social-aware device-to-device communication: A contribution for edge and fog computing? In Proceedings of

the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM, New York, NY,
1466–1471.

[28] Eclipse Foundation. 2019. Eclipse. Retrieved January 4, 2020 from https://www.eclipse.org/.
[29] Jerry Gao, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro Uehara. 2014. Mobile application testing: A tutorial. Computer

2 (2014), 46–55.
[30] Sandro Rodriguez Garzon, Bersant Deva, Benoît Hanotte, and Axel Küpper. 2016. CATLES: A crowdsensing-

supported interactive world-scale environment simulator for context-aware systems. In Proceedings of the Inter-

national Conference on Mobile Software Engineering and Systems. ACM, New York, NY, 77–87.
[31] Sandro Rodriguez Garzon and Dmytro Hritsevskyy. 2012. Model-based generation of scenario-specific event se-

quences for the simulation of recurrent user behavior within context-aware applications (WIP). In Proceedings of

the 2012 Symposium on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium. 29.
[32] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince Orgovan, Greg Nichols, David Grant,

Gretchen Loihle, and Galen Hunt. 2009. Debugging in the (very) large: Ten years of implementation and experience.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM, New York, NY, 103–116.

[33] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran: Timing-and touch-sensitive record
and replay for Android. In Proceedings of the 2013 International Conference on Software Engineering. IEEE, Los
Alamitos, CA, 72–81.

[34] María Gómez, Romain Rouvoy, Bram Adams, and Lionel Seinturier. 2016. Reproducing context-sensitive crashes
of mobile apps using crowdsourced monitoring. In Proceedings of the IEEE/ACM International Conference on Mobile

Software Engineering and Systems (MOBILESoft’16). IEEE, Los Alamitos, CA, 88–99.
[35] Google. 2019. Android Debug Bridge (adb). Retrieved January 4, 2020 from https://developer.android.com/studio/

command-line/adb.
[36] Google. 2019. Android Getevent. Retrieved January 4, 2020 from https://source.android.com/devices/input/getevent.
[37] Google. 2019. Android App Manifest Overview. Retrieved January 4, 2020 from https://developer.android.com/guide/

topics/manifest/manifest-intro.
[38] Google. 2019. Android Studio. Retrieved January 4, 2020 from https://developer.android.com/studio.
[39] Google. 2019. Espresso. Retrieved January 4, 2020 from https://developer.android.google.cn/reference/android/

support/test/espresso/Espresso.
[40] Google. 2019. Firebase Test Lab. Retrieved January 4, 2020 from https://firebase.google.com/docs/test-lab.
[41] Jens Grabowski, Dieter Hogrefe, György Réthy, Ina Schieferdecker, Anthony Wiles, and Colin Willcock. 2003. An

introduction to the testing and test control notation (TTCN-3). Computer Networks 42, 3 (2003), 375–403.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

https://github.com/calabash/calabash-android
https://www.telerik.com/fiddler
https://github.com/pxb1988/dex2jar/
https://www.flir.com/products/flir-one-gen-3/
https://www.flir.com/products/flir-one-gen-3/
 ignorespaces https://www.eclipse.org/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://source.android.com/devices/input/getevent
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/studio
https://developer.android.google.cn/reference/android/support/test/espresso/Espresso
https://developer.android.google.cn/reference/android/support/test/espresso/Espresso
https://firebase.google.com/docs/test-lab

21:36 C. Luo et al.

[42] Tobias Griebe and Volker Gruhn. 2014. A model-based approach to test automation for context-aware mobile appli-
cations. In Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, New York, NY, 420–427.

[43] Tobias Griebe, Marc Hesenius, and Volker Gruhn. 2015. Towards automated UI-tests for sensor-based mobile appli-
cations. In Proceedings of the International Conference on Intelligent Software Methodologies, Tools, and Techniques.
3–17.

[44] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan. 2014. PUMA: Programmable UI-
automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th Annual International Confer-

ence on Mobile Systems, Applications, and Services. ACM, New York, NY, 204–217.
[45] Klaus Havelund and Thomas Pressburger. 2000. Model checking Java programs using Java Pathfinder. International

Journal on Software Tools for Technology Transfer 2, 4 (2000), 366–381.
[46] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth. 2013. Slicing droids: Program slicing

for smali code. In Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, New York, NY, 1844–
1851.

[47] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software Engineering 23, 5 (1997), 279–295.
[48] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively detecting mobile app bugs with

AppDoctor. In Proceedings of the 9th European Conference on Computer Systems. ACM, New York, NY, 18.
[49] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight record-and-replay for Android.

ACM SIGPLAN Notices 50 (2015), 349–366.
[50] Yongjian Hu and Iulian Neamtiu. 2016. Fuzzy and cross-app replay for smartphone apps. In Proceedings of the

IEEE/ACM 11th International Workshop in Automation of Software Test (AST’16). IEEE, Los Alamitos, CA, 50–56.
[51] Yongjian Hu and Iulian Neamtiu. 2016. VALERA: An effective and efficient record-and-replay tool for Android. In

Proceedings of the International Conference on Mobile Software Engineering and Systems. ACM, New York, NY, 285–
286.

[52] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. 2016. Automatically verifying and reproducing event-based races in
Android apps. In Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, New York,
NY, 377–388.

[53] Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina Nita-Rotaru. 2017. Chizpurfle: A gray-
box Android fuzzer for vendor service customizations. In Proceedings of the IEEE 28th International Symposium on

Software Reliability Engineering (ISSRE’17). IEEE, Los Alamitos, CA, 1–11.
[54] Pankaj Jalote. 2008. A Concise Introduction to Software Engineering. Springer Science & Business Media.
[55] Padmaja Joshi, Ashwin Nivangune, Ranjan Kumar, Sathish Kumar, Rakesh Ramesh, Sushant Pani, and Arif Chesum.

2015. Understanding the challenges in mobile computation offloading to cloud through experimentation. In Proceed-

ings of the 2015 2nd ACM International Conference on Mobile Software Engineering and Systems. IEEE, Los Alamitos,
CA, 158–159.

[56] Milan Jovic, Andrea Adamoli, Dmitrijs Zaparanuks, and Matthias Hauswirth. 2010. Automating performance testing
of interactive Java applications. In Proceedings of the 5th Workshop on Automation of Software Test. ACM, New York,
NY, 8–15.

[57] Ernesto Kofman and R. D. Castro. 2006. STDEVS, a novel formalism for modeling and simulation of stochastic
discrete event systems. In Proceedings of the 2006 AADECA Conference.

[58] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein. 2018. Automated testing of
Android apps: A systematic literature review. IEEE Transactions on Reliability 99 (2018), 1–22.

[59] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell. 2010.
A survey of mobile phone sensing. IEEE Communications Magazine 48, 9 (2010), 140–150.

[60] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics

Doklady 10 (1966), 707–710.
[61] Chieh-Jan Mike Liang, Nic Lane, Niels Brouwers, Li Zhang, Börje Karlsson, Ranveer Chandra, and Feng Zhao. 2013.

Contextual Fuzzing: Automated Mobile App Testing Under Dynamic Device and Environment Conditions. Microsoft.
[62] Chieh-Jan Mike Liang, Nicholas D. Lane, Niels Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu, Yan Liu, et al. 2014.

Caiipa: Automated large-scale mobile app testing through contextual fuzzing. In Proceedings of the 20th Annual

International Conference on Mobile Computing and Networking. ACM, New York, NY, 519–530.
[63] Libuv Team. 2019. Libuv. http://libuv.org/.
[64] Santiago Liñán, Laura Bello-Jiménez, María Arévalo, and Mario Linares-Vásquez. 2018. Automated extraction of aug-

mented models for Android apps. In Proceedings of the 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME’18). IEEE, Los Alamitos, CA, 549–553.
[65] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous, evolutionary and large-scale: A

new perspective for automated mobile app testing. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution (ICSME’17). IEEE, Los Alamitos, CA, 399–410.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

http://libuv.org/

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:37

[66] Hongbo Liu, Jie Yang, Simon Sidhom, Yan Wang, Yingying Chen, and Fan Ye. 2014. Accurate WiFi based localization
for smartphones using peer assistance. IEEE Transactions on Mobile Computing 13, 10 (2014), 2199–2214.

[67] Zhifang Liu, Xiaopeng Gao, and Xiang Long. 2010. Adaptive random testing of mobile application. In Proceedings

of the 2nd International Conference on Computer Engineering and Technology (ICCET’10), Vol. 2. IEEE, Los Alamitos,
CA.

[68] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T. Campbell. 2009. SoundSense: Scalable
sound sensing for people-centric applications on mobile phones. In Proceedings of the 7th International Conference

on Mobile Systems, Applications, and Services. ACM, New York, NY, 165–178.
[69] Chu Luo, Miikka Kuutila, Simon Klakegg, Denzil Ferreira, Huber Flores, Jorge Goncalves, Vassilis Kostakos, and Mika

Mäntylä. 2016. How to validate mobile crowdsourcing design? Leveraging data integration in prototype testing. In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM,
New York, NY, 1448–1453.

[70] Chu Luo, Miikka Kuutila, Simon Klakegg, Denzil Ferreira, Huber Flores, Jorge Goncalves, Mika Mäntylä, and Vassilis
Kostakos. 2017. TestAWARE: A laboratory-oriented testing tool for mobile context-aware applications. Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 80.
[71] Chu Luo, Zewen Xu, Ruining Dong, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. 2019. CamTest: A

laboratory testbed for camera-based mobile sensing applications. Pervasive and Mobile Computing 56 (2019), 106–
131.

[72] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for Android apps.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, 224–234.

[73] Tim A. Majchrzak and Matthias Schulte. 2015. Context-dependent testing of applications for mobile devices. Open

Journal of Web Technologies 2, 1 (2015), 27–39.
[74] Lakhdar Meftah, Maria Gomez, Romain Rouvoy, and Isabelle Chrisment. 2017. ANDROFLEET: Testing WiFi peer-to-

peer mobile apps in the large. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering. IEEE, Los Alamitos, CA, 961–966.
[75] Mirza Aamir Mehmood, M. N. A. Khan, and Wasif Afzal. 2018. Automating test data generation for testing context-

aware applications. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service

Science (ICSESS’18). IEEE, Los Alamitos, CA, 104–108.
[76] Zhanshuai Meng, Yanyan Jiang, and Chang Xu. 2015. Facilitating reusable and scalable automated testing and analy-

sis for Android apps. In Proceedings of the 7th Asia-Pacific Symposium on Internetware. ACM, New York, NY, 166–175.
[77] Microsoft. 2019. Xamarin Test Cloud. Retrieved January 4, 2020 from https://testcloud.xamarin.com/.
[78] Zoltán Micskei, Zoltán Szatmári, János Oláh, and István Majzik. 2012. A concept for testing robustness and safety of

the context-aware behaviour of autonomous systems. In Proceedings of the KES International Symposium on Agent

and Multi-Agent Systems: Technologies and Applications. 504–513.
[79] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Advances in Neural Information Processing Systems. 3111–3119.
[80] Robin Milner. 2006. Pure bigraphs: Structure and dynamics. Information and Computation 204, 1 (2006), 60–122.
[81] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Otten, Daniel Park, and Denys Poshyvanyk. 2017.

On-device bug reporting for Android applications. In Proceedings of the IEEE/ACM 4th International Conference on

Mobile Software Engineering and Systems (MOBILESoft’17). IEEE, Los Alamitos, CA, 215–216.
[82] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. 2017.

CrashScope: A practical tool for automated testing of Android applications. In Proceedings of the IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C’17). IEEE, Los Alamitos, CA, 15–18.
[83] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. 2012. Software testing of mobile applications: Chal-

lenges and future research directions. In Proceedings of the 7th International Workshop on Automation of Software

Test. IEEE, Los Alamitos, CA, 29–35.
[84] Damien Octeau, Somesh Jha, and Patrick McDaniel. 2012. Retargeting Android applications to Java bytecode. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM,
New York, NY, 6.

[85] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. 2010. Paranoid Android: Versatile
protection for smartphones. In Proceedings of the 26th Annual Computer Security Applications Conference. ACM, New
York, NY, 347–356.

[86] Yi Qin, Chang Xu, Ping Yu, and Jian Lu. 2016. SIT: Sampling-based interactive testing for self-adaptive apps. Journal

of Systems and Software 120 (2016), 70–88.
[87] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. MobiPlay: A remote execution based record-and-replay

tool for mobile applications. In Proceedings of the 38th International Conference on Software Engineering. ACM, New
York, NY, 571–582.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

https://testcloud.xamarin.com/

21:38 C. Luo et al.

[88] Andres J. Ramirez, Adam C. Jensen, and Betty H. C. Cheng. 2012. A taxonomy of uncertainty for dynamically
adaptive systems. In Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems. IEEE, Los Alamitos, CA, 99–108.
[89] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. 2014. Automatic and scalable fault de-

tection for mobile applications. In Proceedings of the 12th Annual International Conference on Mobile Systems, Appli-

cations, and Services. ACM, New York, NY, 190–203.
[90] Renas Reda and Hugo Josefson. 2019. Robotium. https://github.com/RobotiumTech/robotium.
[91] Luigi Rizzo. 1997. Dummynet: A simple approach to the evaluation of network protocols. ACM SIGCOMM Computer

Communication Review 27, 1 (1997), 31–41.
[92] James Rumbaugh, Ivar Jacobson, and Grady Booch. 2004. The Unified Modeling Language Reference Manual. Pearson

Higher Education.
[93] Michele Sama and David S. Rosenblum. 2019. TestingEmulator. Retrieved January 4, 2020 from https://code.google.

com/archive/p/testingemulator/.
[94] Michele Sama, David S. Rosenblum, Zhimin Wang, and Sebastian Elbaum. 2008. Model-based fault detection in

context-aware adaptive applications. In Proceedings of the 16th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. ACM, New York, NY, 261–271.
[95] Sakura She, Sasindran Sivapalan, and Ian Warren. 2009. Hermes: A tool for testing mobile device applications. In

Proceedings of the Australian Software Engineering Conference (ASWEC’09). IEEE, Los Alamitos, CA, 121–130.
[96] Open Signal. 2019. Open Signal Reports. Retrieved January 4, 2020 from http://opensignal.com.
[97] Yogesh Singh. 2012. Software Testing. Cambridge University Press, Cambridge, England.
[98] Kwangsik Song, Ah-Rim Han, Sehun Jeong, and Sung Deok Cha. 2015. Generating various contexts from permissions

for testing Android applications. In Proceedings of the 27th International Conference on Software Engineering and

Knowledge Engineering (SEKE’15). 87–92.
[99] Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko, and Vyacheslav Kharchenko. 2015. Testing-as-a-service for

mobile applications: State-of-the-art survey. In Dependability Problems of Complex Information Systems. Springer,
55–71.

[100] Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. 2016. Generating test cases to expose concurrency bugs in
Android applications. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineer-

ing. ACM, New York, NY, 648–653.
[101] Testing Technologies. 2015. TTworkbench. https://www.spirent.com/products/ttworkbench.
[102] Ralf Tönjes, Eike Steffen Reetz, Marten Fischer, and Daniel Kuemper. 2015. Automated testing of context-aware

applications. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). 1–5.
[103] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita Fasolino. 2018. Automated functional

testing of mobile applications: A systematic mapping study. Software Quality Journal 27, 1 (2018), 149–201.
[104] Connor Tumbleson and Ryszard Wiśniewski. 2019. Apktool. Retrieved January 4, 2020 from https://ibotpeaches.

github.io/Apktool/.
[105] Uber. 2019. Uber—Earn Money by Driving or Get a Ride Now. Retrieved January 4, 2020 from https://www.uber.com.
[106] Asmau Usman, Noraini Ibrahim, and Ibrahim Anka Salihu. 2018. Test case generation from Android mobile appli-

cations focusing on context events. In Proceedings of the 2018 7th International Conference on Software and Computer

Applications. ACM, New York, NY, 25–30.
[107] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying Android applications using Java

PathFinder. ACM SIGSOFT Software Engineering Notes 37, 6 (2012), 1–5.
[108] Changhong Wang, Wei Lu, Michael R. Narayanan, Stephen J. Redmond, and Nigel H. Lovell. 2015. Low-power

technologies for wearable telecare and telehealth systems: A review. Biomedical Engineering Letters 5, 1 (2015), 1–9.
[109] Yichen Wang and Yikun Wang. 2011. Model-based simulation testing for embedded software. In Proceedings of the

3rd International Conference on Communications and Mobile Computing (CMC’11). IEEE, Los Alamitos, CA, 103–109.
[110] Zhimin Wang, Sebastian Elbaum, and David S. Rosenblum. 2007. Automated generation of context-aware tests. In

Proceedings of the 29th International Conference on Software Engineering. IEEE, Los Alamitos, CA, 406–415.
[111] Matthias Warkentin. 2014. Exchange Graphs via Quiver Mutation. Ph.D. Dissertation. Technische Universitat

Chemnitz.
[112] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th International Conference on Software Engineering. IEEE,

Los Alamitos, CA, 439–449.
[113] Chang Xu, S. C. Cheung, Wing Kwong Chan, and Chunyang Ye. 2010. Partial constraint checking for context con-

sistency in pervasive computing. ACM Transactions on Software Engineering and Methodology 19, 3 (2010), 9.
[114] Chang Xu, Shing-Chi Cheung, Xiaoxing Ma, Chun Cao, and Jian Lu. 2012. Dynamic fault detection in context-aware

adaptation. In Proceedings of the 4th Asia-Pacific Symposium on Internetware. ACM, New York, NY, 1.

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

https://github.com/RobotiumTech/robotium
https://code.google.com/archive/p/testingemulator/
https://code.google.com/archive/p/testingemulator/
http://opensignal.com
https://www.spirent.com/products/ttworkbench
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.uber.com

A Survey of Context Simulation for Testing Mobile Context-Aware Applications 21:39

[115] Edgardo Barsallo Yi, Amiya Maji, and Saurabh Bagchi. 2018. How reliable is my wearable: A fuzz testing-based
study. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN’18). IEEE, Los Alamitos, CA, 410–417.
[116] Tetsuya Yoshida, Hiroshi Yamada, and Kenji Kono. 2009. Using a virtual machine monitor to slow down CPU speed

for embedded time-sensitive software testing. Information and Media Technologies 4, 4 (2009), 870–884.
[117] Chuang-Wen You, Martha Montes-de Oca, Thomas J. Bao, Nicholas D. Lane, Hong Lu, Giuseppe Cardone, Lorenzo

Torresani, and Andrew T. Campbell. 2012. CarSafe: A driver safety app that detects dangerous driving behavior
using dual-cameras on smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing. ACM,
New York, NY, 671–672.

[118] Lian Yu, Wei Tek Tsai, Yanbing Jiang, and Jerry Gao. 2014. Generating test cases for context-aware applications using
bigraphs. In Proceedings of the 8th International Conference on Software Security and Reliability (SERE’14). IEEE, Los
Alamitos, CA, 137–146.

[119] Xingzi Yuan, Omid Setayeshfar, Hongfei Yan, Pranav Panage, Xuetao Wei, and Kyu Hyung Lee. 2017. DroidForensics:
Accurate reconstruction of Android attacks via multi-layer forensic logging. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security. ACM, New York, NY, 666–677.
[120] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. 2000. Theory of Modeling and Simulation. Academic Press.
[121] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A systematic mapping study of mobile application testing

techniques. Journal of Systems and Software 117 (2016), 334–356.
[122] Li Lyna Zhang, Chieh-Jan Mike Liang, Yunxin Liu, and Enhong Chen. 2017. Systematically testing background

services of mobile apps. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engi-

neering (ASE’17). IEEE, Los Alamitos, CA, 4–15.
[123] Li Lyna Zhang, Chieh-Jan Mike Liang, Wei Zhang, and Enhong Chen. 2017. Towards a contextual and scalable

automated-testing service for mobile apps. In Proceedings of the 18th International Workshop on Mobile Computing

Systems and Applications. ACM, New York, NY, 97–102.
[124] Oum-El-Kheir Aktouf, Tao Zhang, Jerry Gao, and Tadahiro Uehara. 2015. Testing location-based function services

for mobile applications. In Proceedings of the IEEE Symposium on Service-Oriented System Engineering (SOSE’15).
IEEE, Los Alamitos, CA, 308–314.

Received May 2019; revised September 2019; accepted November 2019

ACM Computing Surveys, Vol. 53, No. 1, Article 21. Publication date: February 2020.

