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Figure 1: A summary of how HCI researchers study cognitive biases. Computing systems can trigger cognitive bi-
ases in humans and influence (or steer) their behaviours and decision-making. Cognitive biases affect the real-
world behaviours of humans, which motivates HCI researchers to develop (1) tools and methods measuring the occur-
rences of cognitive biases to study their effects on the interaction between humans and computers. Consequently, 
(2) the understanding of cognitive biases informs (3) the design of computing systems, which mitigates or utilises cognitive 
biases and helps address (4) the real-world behaviour of humans. 
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Abstract 
Computing systems are increasingly designed to adapt to users’ 
cognitive states and mental models. Yet, cognitive biases affect how 
humans form such models and, therefore, they can impact their 
interactions with computers. To better understand this interplay, 

we conducted a scoping review to chart how Human-Computer 
Interaction (HCI) researchers study cognitive biases. Our findings 
show that computing systems not only have the potential to in-
duce and amplify cognitive biases but also can be designed to steer 
users’ behaviour and decision-making by capitalising on biases. 
We describe how HCI researchers develop algorithms and sens-
ing methods to detect and quantify the effects of cognitive biases 
and discuss how we can use their understanding to inform system 
design. In this paper, we outline a research agenda for more theory-
grounded research and highlight ethical issues when researching 
and designing computing systems with cognitive biases in mind as 
they affect real-world behaviour. 
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CCS Concepts 
• Human-centered computing → HCI theory, concepts and 
models. 
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1 Introduction 
When interacting with computers, humans form mental models 
– internal representations of the external reality – based on what 
they believe, prefer, and are familiar with [30]. The design of ev-
eryday user interfaces, such as desktops, digital games, or online 
websites, is predominantly based on the mental representation of 
humans from real-world physical objects. However, human mental 
models are subject to bounded rationality [166]. Humans use sim-
ple rules of thumb, developed through their beliefs and experience 
of the world, to sift through the complexity of everyday decision-
making. The pioneers of behavioural economics, Tversky and Kah-
neman [97, 187, 188] coined such phenomena as cognitive bias 
and documented different ways such biases systematically skew 
human behaviours and judgements. For example, the anchoring 
bias makes us tend to rather stick with the first piece of information 
we encounter [188], or the framing effect influences people to make 
decisions differently based on how the choices are presented [189]. 
While computing systems are built to adapt to people’s cognitive 
states and mental models [22, 30], cognitive biases affect how they 
form such models and, therefore, impact the interaction between 
humans and computers. 

More importantly, cognitive biases can cause harm and open 
the door to manipulation. Misinformation triggers confirmation 
bias in Internet users (tendency to seek information that only 
aligns with one’s own beliefs), which lets them believe and prop-
agate such information [60, 164]. Dark patterns [132] and social 
engineering [23] exploit people’s cognitive biases and steer their 
decision-making. The issue of cognitive biases, hence, becomes a 
crucial research agenda in HCI to design systems that not only 
take cognitive biases into account but also remediate their adverse 
effects [5, 18, 46, 47, 125, 200, 213]. 

Due to HCI’s multidisciplinary nature, research about cognitive 
biases in HCI is scattered and targets the issue from different an-
gles, methodologies, and application areas. However, there exists 
no comprehensive review of cognitive bias studies in HCI. In this 
paper, we provide a scoping review of 127 articles that study cogni-
tive biases in HCI. Our goal is to form a systematic understanding 
of how cognitive biases manifest in the interaction with computers. 
Therefore, we analyse the literature and chart how the HCI com-
munity conducts research around cognitive biases by categorising 
papers based on their study focus and application context. 

Our results show that HCI research considers cognitive biases 
as a human factor. HCI researchers aim to understand how human-
computer interactions reinforce cognitive biases to inform design 
considerations that address these biases. We found five different 
ways HCI researchers engage with cognitive biases (Investigat-
ing Effects, Mitigating, Observing, Utilising, and Quantifying) and 
mapped them in an overarching picture of how HCI researchers 
study cognitive biases (Figure 1). Computing systems can trigger 
cognitive biases, which influence, and sometimes steer, real-world 
human behaviours. Motivated by these concerns, HCI researchers 
develop (1) tools and methods that quantify and capture the occur-
rences of cognitive biases. These tools and methods help researchers 
to closer investigate (2) their effects on the interaction between 
humans and computers. With a better understanding of cognitive 
biases, HCI researchers design (3) systems and interfaces that 
mitigate and leverage cognitive biases, ultimately addressing (4) 
real-world human behaviours. Additionally, we found that cog-
nitive biases are a double-edged sword: not only can their effects 
steer human judgements, but they are also leveraged for the greater 
good. 

In sum, this paper provides the following contributions: 

• We provide a scoping review of cognitive bias studies based 
on a corpus of 127 HCI papers published between January 
2010 and May 2024. 

• Based on open coding, we derive five ways HCI researchers 
engage with cognitive biases (Investigating Effects, Mitigat-
ing, Observing, Utilising, and Quantifying) and eight appli-
cation areas where cognitive biases are studied in HCI (Infor-
mation Interaction and Recommender Systems, Human-AI 
Interaction, Visualisation, Usability, Behaviour Change, Com-
puter Supported Cooperative Work and Social Computing, 
Human-Robot Interaction and Autonomous Systems, and 
Games). 

• We map out recommendations and future opportunities for 
the HCI community to research cognitive biases, voicing 
the need for community standards, methodological frame-
works, and theory-oriented research while discussing the 
ethical considerations regarding cognitive bias research in 
HCI. We identify gaps in the literature (Table 2), which guide 
opportunities for future work. 

2 Background 
Bias refers to a systematic deviation from the norm. There can 
be several kinds of bias depending on how we set the norm, ac-
tors, and application contexts. For example, algorithmic bias de-
scribes systematic errors in computing systems that create unfair 
outcomes [91], and gender bias implies a systematic difference of 
treatment of one gender over another [41]. In this paper, we focus 
on cognitive bias, first coined by Tversky and Kahneman [188], to 
refer to a systematic deviation in judgement from the norm of ratio-
nality. In this section, we incorporate the literature in cognitive and 
behavioural science to discuss the notion of cognitive biases, the 
dual-process theory, and techniques to debias people. We wrap up 
this section with a discussion of how cognitive biases impact HCI, 
a review of relevant surveys, and a statement of our contribution 
to the HCI community. 
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2.1 Cognitive Biases and Their Interpretations 
Humans are not always rational because their cognitive capac-
ity is limited. During the decade of 1950s, Herbert Simon coined 
the concept of Bounded Rationality to explain that, given the 
complexity of the world and constraints on time and cognitive re-
sources, humans apply Mental Shortcuts to faster sift through 
information and make judgments [166]. Such mental shortcuts can 
lead to flawed and suboptimal decision-making. Two decades later, 
Tversky and Kahneman extended this concept and proposed the 
notion of Cognitive Bias: humans employ Heuristics as men-
tal shortcuts which systemically deviate their behaviour and the 
decision-making outcome from the norm of rationality [188]. Guar-
anteeing a fast but suboptimal outcome, heuristics are rules of 
thumb that humans have adopted through basic instinct, preexist-
ing beliefs, and prior experiences [87]. Through a series of empirical 
experiments [95, 98, 187–189], Tversky and Kahneman showed that 
humans employ heuristics and, thus, exhibit several kinds of cogni-
tive biases which systematically skew their decision-making. For 
example, the anchoring bias makes people rely heavily on the first 
information presented to them [188]; and the framing effect causes 
individuals to react to a piece of information differently depend-
ing on how it is presented [189]. Subsequent works in cognitive 
psychology and behavioural science discovered more variations 
of cognitive biases, such as confirmation bias [142], the halo ef-
fect [12] (tendency to rate attractive individuals more favourably 
for their characteristics), the fundamental attribution error [160] 
(tendency to overattribute the behaviour of others based on their 
characteristics), or the Dunning-Kruger effect [113] (tendency to 
overestimate one’s ability despite lacking competence). Up to date, 
there have been over 180 documented forms1 of cognitive bias [58]. 
Meanwhile, recent research has argued that most cognitive biases 
can be simplified to a form of confirmation bias [147]. 

Being the by-product of mental shortcuts in decision-making, 
Kahneman and Tversky viewed cognitive biases as erroneous re-
sponses or mental fallacies resulting from the deviation from the 
norm of rationality [54, 64, 188]. However, recent discourses in psy-
chology have started to shift away from the original interpretation 
of cognitive biases. The prominent psychologist Gerd Gigerenzer 
has been a critic of the idea that humans are biased, disputing 
that the norm of rationality does not always exist [194]. In his 
later works, he argued that heuristics are fast and frugal reasoning 
that helps people make a fast and rational decision at the same 
time [62, 63]. Some psychologists define cognitive biases as the be-
havioural consequence of the unconscious, unintended use of men-
tal shortcuts [149, 206]. Hilbert [86] proposes that cognitive biases 
can be statistically modelled as a result of humans’ noisy memory 
and information processing. In evolution psychology, Haselton and 
colleagues [78, 79] discuss cognitive biases as rather design features 
of the human mind, citing that humans develop many cognitive 
biases and heuristics as part of their survival and the natural se-
lection. In this paper, we refer to the more inclusive definition: we 
consider cognitive biases an inherent human factor that broadly 
and systematically affects and distorts their behaviour. 

1Not all forms of cognitive bias have been empirically validated in peer-reviewed 
studies. 

2.2 Dual-Process Theory and Debiasing 
Human cognition employs two systems of information process-
ing: a fast, automatic, and error-prone System 1 Thinking and a 
slow, conscious, and deliberative System 2 Thinking [172, 201]. 
The so-called Dual-Process Theory explains that most of the 
time, humans resort to using System 1 thinking to make judgments. 
Psychologists argue that cognitive biases largely emerge from the 
activation of System 1 thinking [31, 56, 95, 171]. People, therefore, 
employ heuristics and cognitive biases when sifting through com-
plex information without explicit awareness. 

Research in psychology and behavioural science suggests that 
cognitive biases could be reduced or avoided if people bypass Sys-
tem 1 and shift to System 2 thinking [124, 168, 172]. This can be 
done through Cognitive Aid to guide people to make alternative, 
rational decisions. Kozyreva et al. [112] propose three main ap-
proaches to intervene users away from cognitive biases: nudging, 
technocognition, and boosting. Nudging [181] changes the envi-
ronment (i.e., the user interface) and shifts people’s behaviour in a 
subtle way. Notably, nudges can substitute people’s autonomous 
choices with preselected rational decisions. Technocognition [119] 
are psychological interventions that safeguard people from their 
biases. For example, slowing down decision-making invites peo-
ple to reflect on their judgment [170]. Boosting [85] fosters users’ 
metacognition and critical thinking skills to empower control over 
their decision-making. This also includes education and psycho-
logical innoculation [40] that build people’s resilience to fast and 
error-prone thinking. 

Correcting people’s cognitive biases is, however, not straight-
forward. Lilienfeld et al. [124] suggest a number of factors that are 
potential barriers to debiasing. For example, individual differences 
in working memory and intelligence influence the motivation to 
engage in rather System 1 or System 2 thinking and, therefore, an 
individual’s receptibility to debiasing interventions [55, 171]. In 
addition, interventions may not work in the long term and over dif-
ferent contexts [205]. There is also a possibility that interventions 
may backfire and rather exacerbate the user’s existing cognitive 
biases [207]. 

2.3 Impact of Cognitive Biases on HCI 
Cognitive biases profoundly affect user behaviours, especially when 
they come into contact with computing systems. The role of cog-
nitive biases influencing the interaction has been discussed in the 
HCI community over the recent decade [5, 6, 18, 20, 125, 213]. As a 
result, we observe a growing number of HCI studies investigating 
cognitive biases (Figure 3). HCI research generally studies the prac-
tical aspects of cognitive biases to optimise the human-computer 
interaction, e.g., how does anchoring bias affect people when they 
use AI to make decisions [76, 143] or how could nudging inter-
faces mitigate confirmation bias when people search information 
on the web [123, 158, 159]. Additionally, interface designers have 
employed nudges [181], which harness cognitive biases, to steer 
the user behaviour [28, 109]. Dark patterns [132, 133] and social 
engineering [23] are interesting case studies where people’s cog-
nitive biases are exploited to manipulate their decision-making. 
Recent works have discussed the notion of Bias-Awareness [17, 126] 
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as computing systems take users’ existing cognitive biases into 
account, mitigate their drawbacks, and maximise their benefits. 

2.4 Related Surveys 
Our review builds upon the existing surveys in the HCI commu-
nity that ground on cognitive biases, particularly in the areas of 
behaviour change technologies and human-centred AI. Hekler et al. 
[83] survey studies on behaviour change published at CHI between 
2002-2012. The authors recommend that insights into cognitive 
biases in behavioural science can inform the design and evaluation 
of technologies that help people change their behaviours (e.g., eat-
ing more healthy food). More importantly, they suggest that HCI 
and behavioural science literature remain largely siloed within the 
two communities. On the other hand, the domain of HCI is in a 
unique position to contribute to the field of behavioural science. 
Not only can HCI leverage insights in behavioural science, such as 
cognitive biases, but it can also complement them through ubiq-
uitous sensing, fast prototyping, and data-driven practice. In the 
same vain, Pinder et al. [152] provide a critical review of digital 
health behaviour change interventions and suggest that cognitive 
biases can be leveraged to induce change in health behaviours (e.g., 
to quit smoking or reduce anxiety) through the use of Cognitive 
Bias Modification (CBM), which modifies people’s subconscious 
mental shortcuts by gradually modifying attentional bias (tendency 
to prioritise attention on a certain type of stimuli), approach bias 
(tendency to approach rather than avoid repetitive cues), and the 
priming effect (an individual’s exposure to one stimulus influences 
how they respond to a subsequent stimulus). Caraban et al. [28] re-
view HCI studies that proposed and employed technology-mediated 
nudges to induce behaviour change. They cover 23 mechanisms of 
nudging by tapping into people’s cognitive biases. While nudges 
are often criticised as manipulating people’s autonomy [156, 176], 
they find that the majority of the nudges rather transparently pro-
mote reflective thinking and influence the user choice rather than 
implicitly manipulating user behaviour. 

Researchers have also explored cognitive biases in AI-assisted 
decision-making [14, 69, 104, 200]. Wang et al. [200] conduct a lit-
erature review of concepts in explainable AI (XAI) and synthesise 
a conceptual framework of how human cognitive patterns drive 
the need for building XAI and how XAI can alleviate common cog-
nitive biases. Kliegr et al. [104] review and analyse the effects of 
cognitive biases on the interpretation of machine learning models. 
Their work suggests that individual differences (e.g., personality 
traits and numerical literacy) could influence the effectiveness of 
cognitive bias mitigation. They also highlight that a study of the 
effects of cognitive biases should precede bias mitigation to ensure 
that the bias occurs and the bias mitigation strategy does not back-
fire. Bertrand et al. [14] survey studies that involve cognitive biases 
in AI-assisted decision-making. The authors provide an overview 
of the context in which different cognitive biases affect how XAI 
systems are designed and evaluated in user studies. The work also 
outlines that XAI systems can mitigate, as well as cause, trigger, or 
amplify, the users’ existing cognitive biases. The authors argue that 
not all cognitive biases are harmful. Some of them are inherent to 
the interaction with the AI explanation. 

While the prevailing surveys have explored how cognitive biases 
manifest in human-computer interaction from different angles of 
HCI, there is a lack of a comprehensive review of cognitive biases 
throughout the field. Therefore, we propose a scoping review that 
charts how the broader HCI community studies cognitive biases. In 
this regard, we review research papers that investigate cognitive bi-
ases in different application domains of HCI and draw a framework 
(Figure 1) of where cognitive biases are situated in the dynamics 
of human-computer interaction. To the best of our knowledge, we 
are the first to comprehensively review the research on cognitive 
biases across different HCI contexts. 

2.5 Our Contributions 
Limited work has reviewed the issue of cognitive biases in HCI. 
While this issue is clearly emerging, research has scattered around 
different angles and application domains due to the multidisci-
plinary nature of HCI. Therefore, it is essential to summarise these 
research spans and assemble the big picture of cognitive biases’ 
prevalence in human-computer interaction. In this paper, we present 
a systematic scoping review that highlights the issue of cognitive bi-
ases in HCI. Importantly, our work provides a holistic overview 
of cognitive biases in the interaction with computer systems. 
We differentiate our work from existing surveys in HCI, which 
address the question in a specific domain and application scenario 
(e.g., behaviour change or human-AI interaction). To this end, we 
augment our discussion with insights from the existing surveys 
and discussions around cognitive biases in HCI. 

Our scoping review seeks to understand the question: how do 
HCI researchers study cognitive biases? Through analysing 
cognitive bias studies throughout different spaces in HCI, we (1) 
chart the landscape of cognitive biases in HCI, i.e., what aspects 
of them are studied and leveraged. This helps us to (2) form guide-
lines on what HCI researchers should consider when researching 
cognitive biases. Specifically, our work reflects the practice of how 
HCI researchers have studied cognitive biases. Furthermore, our 
work identifies (3) challenges and opportunities for HCI research 
to develop tools, understanding, and designs that take cognitive 
biases into account to address concerns about human real-world 
behaviours. We publish our study corpus and the coding manual as 
supplementary materials for future work to expand upon. 

3 Methodology 
Our work qualifies as a scoping review [138]. To address our re-
search question, we systematically examine how cognitive bias 
research is conducted, identify areas or gaps of research, and clarify 
the notion of cognitive bias in the HCI literature. To conduct this 
scoping review, one researcher performed (1) database searches, (2) 
article screening, and (3) data extraction and coding. Three other 
researchers iteratively cross-checked the process. 

3.1 Database Searches 
We followed the PRISMA 2020 guidelines [137] to select relevant 
publications for this scoping review. First of all, we identified HCI 
research articles published in leading venues in HCI that are likely 
to publish work on cognitive biases. This includes venues sponsored 
by ACM SIGCHI (e.g., CHI, CSCW, TOCHI, CHIIR, or IUI), TVCG, 
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IJHCS, and IJHCI. We first started with the search query “cognitive 
bias” in publication titles and abstracts to identify research articles 
relevant to cognitive biases. We then iteratively derived synonyms 
based on the initial search. Therefore, we identified new terms: 
“human bias”, “confirmation bias”, and “decision bias”. We note that 
the terms “human bias” and “decision bias” are relevant to biases 
related to humans. To maximise coverage of cognitive bias stud-
ies, we included “confirmation bias” as a keyword because of its 
prevalence as the most common form of cognitive bias. Research in 
psychology suggests that most cognitive biases can be simplified 
to confirmation bias [147]. Due to the large number of cognitive 
biases identified in the literature, we found that the terminologies 
may differ between different articles. More importantly, some pa-
pers do not explicitly use the abovementioned terms in the abstract. 
By title or abstract, we found that searching these terms returned 
limited results (only 31 results are returned in the ACM Digital 
Library, as of 31 May 2024). Therefore, we performed full-text 
searches to get better coverage of articles. However, we did not 
include the generic term “bias” as it returned a large number of 
irrelevant records from the online databases. After fine-tuning, we 
performed library searches using the following research query: 

[[Full Text: "cognitive bias" OR "human bias" OR 
"decision bias" OR "confirmation bias"] AND [E-Publication 
Date: (01/01/2010 TO 31/05/2024)]] 

3.2 Article Screening 
We obtained a total of 483 unique records through the database key-
word search up to 31 May 2024. We then performed title and abstract 
screening. At this stage, we included articles that mention keywords 
that relate to the themes of cognitive biases (including bounded 
rationality, heuristics, dual-system thinking, decision-making, and 
mental models). We excluded articles that were clearly outside our 
scope (e.g., those examining algorithmic bias or media bias). This 
process left us with 234 papers. Subsequently, we assessed the ar-
ticles at the full-text level to filter out irrelevant articles that did 
not investigate cognitive biases. To do so, we excluded papers that 
did not have cognitive biases as their main focus or study variables 
(92 papers). In addition, we excluded short papers, posters, late-
breaking works, and extended abstracts (14 papers) because they 
have a different level of maturity than full papers. One paper was 
excluded because it was not written in English. We derived the 
final corpus of 127 papers for data extraction. Figure 2 shows a flow 
diagram for our article selection process. 

3.3 Data Extraction and Coding 
With our corpus, we created a data extraction sheet to systemati-
cally explain our papers from different angles. For each study, we 
extracted (1) what cognitive biases are studied with their defini-
tions, (2) how cognitive biases are studied, and (3) what applica-
tion context it covers. We describe the data extraction and coding 
methodology in the following. 

(1) Cognitive Biases Studied and Their Definitions: In each 
paper, we extracted all cognitive biases mentioned with 
the terms and definitions mentioned by the author(s). We 

 

Records identified from: 
Databases (n = 483) 
ACM Digital Library (n = 381) 
IEEE Xplore (n = 26) 
Science Direct (n = 30) 
Taylor & Francis (n = 29) 
Sage (n = 17) 

Records screened 
(n = 483) 

Publications included for analysis 
(n = 127) 

Records excluded based on 
abstract and title screening 

(n = 249) 

Records assessed for eligibility 
(n = 234) 

Records excluded (n = 107): 
Did not study cognitive 
biases (n = 92) 
Not a full paper (n = 14) 
Not written in English (n = 1) 

Identification 

Screening 

Included 

Figure 2: PRISMA 2020 [137] flow diagram for the article 
screening and selection process. 

performed a keyword search in the full-text paper to iden-
tify possible mentions of cognitive biases. By doing so, we 
included keywords “bias” and “effect” and cross-checked 
with Cognitive Bias Foundation’s taxonomy of cognitive bi-
ases [58], which provides a community-sourced extensive 
document of more than 180 cognitive biases. 

(2) Study Focus: For each paper, we extracted how cognitive bi-
ases are studied. We then performed open coding and derived 
five different study focuses in the following bullet points. 
We note that 14 papers (11.02%) have two study focuses as 
they consider cognitive biases in multiple angles. For com-
plete information, we publish the data extraction sheet in 
the supplementary materials. 
• Quantification: tools, methods, metrics, or mathemati-
cal/statistical models to detect, measure, or quantify cog-
nitive biases; 

• Mitigation: mitigation or prevention of cognitive biases 
and their adverse effects; 

• Utilisation: application and utilisation of the effects of 
cognitive biases in the interaction with computers; 

• Effect Study: investigation or demonstration of the em-
pirical effects of cognitive biases on the interaction with 
computers; 

• Observation: observations or case studies of cognitive 
biases in people, systems, and their interactions. 

(3) Application Contexts We extracted the primary applica-
tion context each paper worked on. Subsequently, we applied 
open coding to group each paper into eight broad, distinct 
themes, which represent different areas of HCI research: 
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Figure 3: The number of cognitive bias papers by application 
context and published year, dated from 2010 to May 2024. 

(1) Information Interaction and Recommender Systems, (2) 
Human-AI Interaction, (3) Visualisation, (4) Usability, (5) Be-
haviour Change, (6) Computer Support Cooperative Work 
(CSCW) and Social Computing, (7) Human-Robot Interaction 
and Autonomous Systems2 , and (8) Games. 

4 Results 
In the following subsections, we provide the analysis of 127 articles 
in our corpus based on each of our data extraction criteria: publica-
tion venue, term and definition of cognitive bias, study focus, and 
application context. 

4.1 Publication Venue and Year 
In our corpus, papers published at CHI form the majority of works 
(40 articles, 31.49%). Other than that, there are papers published at 
CSCW (12 articles, 9.44%), IJHCI (8 articles, 6.30%), IUI (8 articles, 
6.30%), TOCHI (7 articles, 5.51%), CHIIR (6 articles, 4.72%), TVCG 
(6 articles, 4.72%), and others (40 articles, 31.49%). We observe an 
upward trend of articles published by year (Figure 3). This reflects 
that the issue of cognitive biases has increasingly gained attention 
in HCI research. Notably, roughly half of our corpus (60 articles, 
47.24%) was published between 2022 and 2024, with CHI papers 
making up the majority (27 articles). 

4.2 Terms and Definitions of Cognitive Biases 
We identified 99 different terms referring to any form of cognitive 
bias. After merging synonyms (for example, “anchoring bias” and 
“anchoring effect” are considered the same cognitive bias), we ar-
rived at 92 unique cognitive biases. We found confirmation bias 
to be the most frequently studied (45 articles), which is partially 
due to its inclusion in the search query. We identified several other 
cognitive biases, such as anchoring bias (21 articles), the framing 
effect (14 articles), and availability bias (8 articles). Several papers, 
however, do not mention any specific form of cognitive biases; for 
example, 20 articles mention “cognitive bias” or its equivalent terms. 
Figure 4 charts 10 of the most frequently mentioned cognitive biases 

2Despite Human-Robot Interaction overlaps significantly with Human-AI Interaction, 
it deserves a separate category because the physical embodiment of autonomous 
agents [117]. 
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Figure 4: This chart visualises the 10 most frequently men-
tioned forms of cognitive bias with the number of articles in 
each of them. Note that some papers may investigate more 
than one cognitive bias. *The inclusion of “confirmation bias” 
in the search query may make its occurrences in our corpus 
more frequent than usual. 

in our corpus. We provide the full list of unique cognitive biases in 
our bias codebook as part of the supplementary materials. 

We found discrepancies in the usage of terms of cognitive biases. 
First of all, bias, effect, and heuristics are used interchangeably. 
Prominent examples include “anchoring bias” and “anchoring effect” 
or “availability bias” and “availability heuristics”. Goffart et al. [65] 
cross-termed between “default option effect”, “default option bias”, 
and “default bias”. We identified many semantically-equivalent 
terms for “cognitive bias”; for example, “decision bias”, “decision 
heuristics”, and “bias in decision making”. We also found some 
cognitive biases to be closely related. There are cross-usages of 
terms in confirmation bias studies. For example, Liao et al. [123] 
study selective exposure (tendency to focus and seek out information 
that confirms one’s beliefs), which overlaps with confirmation bias. 
Similarly, Aicher et al. [2] touched on self-imposed filter bubbles, a 
related phenomenon with confirmation bias. Some works also coin 
context-specific cognitive biases based on existing cognitive biases; 
for instance, Pafla et al. [151] propose explanation confirmation bias 
based on confirmation bias in explanations provided by AI. We 
present common cognitive bias synonyms in Table 1. 

We discovered some discrepancies in definitions of cognitive 
bias. Two prominent examples are confirmation bias and anchoring 
bias. While the majority of papers reference confirmation bias by 
the definition given in the original work of Nickerson [142], some 
papers refer to later works in psychology [93] or domain-specific 
definitions, such as Information Retrieval [5] or Communication 
Science [106]. Similarly, anchoring bias is mostly defined using the 
definition in the seminal work of Tversky and Kahneman [188]; 
however, some papers refer to the definitions in previous HCI re-
search (e.g., [141, 200]). Among articles that refer to the seminal 
works’ definitions, we found variability in the wording. Specifically, 
many papers frame their cognitive bias definitions as context- or 
domain-specific. For example, Rieger et al. [158] refer to confir-
mation bias as “Users tend to select search results that confirm pre-
existing beliefs or values and ignore competing possibilities.”. Naiseh 
et al. [139] define it as “Humans favour an XAI classification that 
is consistent in its output with their beliefs and initial hypothesis.” 
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Table 1: Common cognitive bias synonyms 

Cognitive Bias Semantically Equivalent Cognitive Biases 

Cognitive Bias Decision Bias, Decision Heuristics, Bias in Decision Making, Human Bias 
Confirmation Bias Selective Exposure, Self-Imposed Filter Bubbles, Explanation Confirmation Bias 
Anchoring Bias Anchoring Effect 
Availability Bias Availability Heuristics 
Decoy Effect Asymmetric Dominated Choice 

Default Bias Default Option Bias, Default Option Effect, 
Forer-Barnum Effect Forer Effect, Barnum Effect 
Positioning Bias Positional Bias, Positioning Heuristics 
Ambiguity Aversion Ambiguity Effect 
Fundamental Attribution Error Attraction Effect 
Bandwagon Effect Herd Instinct Bias 
Automation Bias Automation Complacency 

Furthermore, we identified 22 instances of cognitive biases without 
a clear definition stated in the respective papers. 

4.3 Study Focuses 
We categorised papers in our corpus into five study focuses. Sub-
sequently, these focuses reveal three key narratives of cognitive 
biases in HCI: (A) computing systems can trigger and mitigate cog-
nitive biases; (B) designers capitalise on cognitive biases in users 
to steer their behaviours; and (C) HCI researchers develop tools 
and methods to closer observe cognitive biases. In this section, we 
review the literature in each narrative based on their study focuses. 

A. Computing Systems Can Trigger as well as 
Mitigate Cognitive Biases in People 
4.3.1 Investigating the Effects of Biases. We found 38 papers (29.92%) 
unveiling cognitive biases that people follow when interacting 
with computing systems. These studies often set up experiments to 
demonstrate the effects of cognitive biases, with the goal of under-
standing cognitive biases as a human factor and deriving design 
recommendations. Most of the works (30 articles) employed quan-
titative methods and experimental designs [36, 38, 39, 48, 59, 67, 
70, 71, 73, 80–82, 103, 107, 108, 110, 114, 129, 143, 154, 159, 162, 163, 
169, 177, 178, 183, 184, 186, 208]. For example, Tomé et al. [186] 
study loss aversion bias (tendency to avoid losses over achieving 
equivalent gains) in gameplay and derive design considerations 
for game designers; Nourani et al. [143] explore anchoring bias in 
explainable AI and find that users tend to make more errors if they 
are exposed to system strengths (i.e., they are told that an AI system 
makes accurate predictions) as an anchor; He et al. [82] investigate 
the Dunning-Kruger effect on human reliance on an AI system and 
suggest that people who overestimate their ability tend to rely less 
on AI advice. 

Meanwhile, a limited number of papers study the effects of cog-
nitive biases by using qualitative (2 articles) [61, 173] or mixed 

methods (6 articles) [37, 43, 50, 68, 134, 144]. For instance, Mendez 
et al. [134] conduct a qualitative study and a follow-up quantita-
tive experiment to investigate the framing effect in student course 
selection. Chromik et al. [37] carry out a mixed-method study to 
examine the illusion of explanatory depth (people’s tendency to 
believe they understand a topic better than they actually do) in 
explainable AI. 

4.3.2 Mitigating Biases. We identified 39 papers (30.71%) that seek 
to mitigate the effects of cognitive biases. Researchers in HCI em-
ploy cognitive aid as a strategy to help users reflect and make 
rational decisions. More specifically, research proposes tools and 
user interface designs that serve as cognitive aid [42, 51, 67, 100, 105, 
111, 135, 174, 193, 199, 200, 213–216]; for example, Zheng et al. [216] 
propose an intelligent agent to make the discussion among human 
teachers more objective and reduce errors in decision-making; and 
Wang et al. [200] present guidelines for designing explainable AI 
that encourages its users to avoid amplifying their cognitive biases. 
Studies also explore using pedagogical tools to teach users critical 
thinking skills, avoiding their cognitive biases [116, 191, 204]. For 
instance, Whitaker et al. [204] propose Heuristica, a video game 
that teaches students to recognise and mitigate cognitive biases 
using a set of immersive scenarios. 

Some research suggests that cognitive biases can be mitigated 
through system feedback that helps users to reflect on their existing 
biases [52, 126, 140, 145, 165, 198]. For example, Echterhoff et al. 
[52] propose a machine learning algorithm that identifies anchored 
decisions made by users and modifies the presentation order of 
stimuli to minimise anchoring bias. Narechania et al. [140] develop 
a visual data analytics tool that shows users their interaction history 
and encourages them to reflect on their unconscious biases. 

We also identified several papers proposing nudging [181] to 
shift users away from biased behaviours. Nudges to mitigate cog-
nitive biases come in the forms of indicators and interface de-
signs [123, 125, 158, 159, 192, 209]. For example, Liao et al. [123] 
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introduce aspect indicators to reduce selective exposure in infor-
mation seekers. Rieger et al. [158] employ obfuscation to minimise 
users’ interaction with attitude-confirming search results to miti-
gate confirmation bias. 

Recent works have raised concerns about bias mitigation. Bach 
et al. [8] propose a list of recommendations for how to incorporate 
bias mitigation strategies into practical AI applications. Bias mitiga-
tion could trigger AI aversion among users and backfire. Therefore, 
one should consider subtle design patterns, apply bias mitigation 
periodically rather than constantly, and increase the awareness of 
potential cognitive biases through the user interface. Some research 
points out that user-related factors and interaction context could 
impact the effectiveness of bias mitigation [27, 67, 125, 158, 200]. 
Graells-Garrido et al. [67] argue that there exists no one-size-fits-all 
approach to combat cognitive biases. In other words, one bias miti-
gation strategy does not always work in every individual, context, 
and scenario. Subsequent studies provide supporting empirical evi-
dence. Cao et al. [27] find that user demographics, such as age and 
familiarity with probability and statistics, could influence user in-
teraction and, subsequently, amplify the effects of cognitive biases. 
Rieger et al. [158] point out that situation- and user-related factors 
(e.g., attitude strength, topic interest, and personality traits) could 
impact the effectiveness of confirmation bias mitigation approaches. 

B. Designers of Computing Systems Capitalise on 
Users’ Cognitive Biases to Steer Behaviours 
4.3.3 Utilising Biases. 21 articles (16.53%) leverage cognitive biases 
to nudge users toward certain behavioural outcomes. We identified 
two main applications of cognitive biases in the literature: (1) chang-
ing user behaviours and (2) incorporating cognitive biases in design. 
First of all, a significant portion of studies leverage the effects of 
cognitive biases to shift user behaviours in a predictable way. Lee 
et al. [118] is among the first to investigate how HCI research could 
leverage behavioural science to design persuasive technologies. 
The authors showcase the application of the default bias (tendency 
to accept what is presented), present bias (tendency to settle for 
a smaller present reward over a bigger award in the future), and 
decoy effect (tendency to swap one’s preference between two op-
tions when a third option is presented) in promoting healthy eating 
choices. Subsequent studies (e.g., [28, 158, 159, 211, 212, 218]) take 
the approach of nudging [181] – by altering the environment, i.e., 
the user interface, one can trigger the user’s cognitive biases and 
steer them towards a particular decision or behaviour. For example, 
Zhang et al. [212] propose an interface nudge to encourage people 
to reflect on their views on political issues. Zavolokina et al. [211] 
propose ClarifAI, a tool to nudge users towards more critical news 
consumption. Meanwhile, some papers take advantage of the ef-
fects of cognitive biases to induce behaviour change. Ma et al. [128] 
employ anchoring bias to promote people’s trust in AI. Yamamoto 
and Takehiro [209] use the priming effect to enhance engagement 
in critical thinking in web searches. Some research investigates 
CBM [99, 152], which has been commonly used in psychology to 
modify people’s mental shortcuts towards long-term, habitual be-
haviour change [94]. Pinder et al. [152] suggest that CBM presents 
a use-case where cognitive biases are leveraged to change people’s 
habits. Kakoschke et al. [99] propose a CBM-based intervention to 

reprogram associative links between unhealthy food and automatic 
appetitive responses, making people eat healthier food. 

A notable span of works incorporate cognitive biases in the 
design of computing systems. Loerakker et al. [127] leverage the 
framing effect in the design of personal informatics to support self-
compassion and positive experiences. Mathur et al. [132] discuss 
how dark patterns on shopping websites exploit people’s cognitive 
biases and deceive them. Burda et al. [23] investigate cognitive 
mechanisms of social engineering applications, which manipulate 
people by triggering their cognitive biases. Theocharous et al. [182] 
provide a critique of personalised recommendation systems and 
propose how cognitive biases could be taken into account in these 
systems. 

C. HCI Researchers Develop Tools and Methods 
to Closer Observe Cognitive Biases 
4.3.4 Observing Biases. We found 25 articles (19.68%) that con-
sider cognitive biases as a human factor in the interaction with 
computers. Some research observe the manifestation of cognitive 
biases [3, 4, 7, 60, 76, 115, 139, 157, 164]. For example, Rho et al. 
[157] and Mantri et al. [131] demonstrate the framing effect in user 
comments in forums of publishers. Haque et al. [76] show that 
law enforcement agents tended to exhibit anchoring bias when 
interacting with crime maps presented by decision support systems. 
Some papers discuss the unintended consequences of cognitive 
biases arising during the interaction [72, 151, 179]. For instance, 
Pafla et al. [151] point out the risk of saliency maps triggering 
confirmation bias when interacting with AI explanations. Habib 
et al. [72] also suggest that confirm-shaming in cookie consent 
interfaces (i.e., highlighting negative outcomes of not accepting 
optional cookies) could target users’ loss aversion bias. Moreover, 
some papers discuss their results from the perspective of cognitive 
biases and decision-making [32, 164, 185]. Shi et al. [164] study the 
effect of news veracity on cognitive load. They employ cognitive 
load as a surrogate of System 2 thinking activation, which links to 
the manifestation of cognitive biases when processing information. 
Additionally, we identified a number of survey papers documenting 
cognitive biases in human-computer interaction, such as behaviour 
change technology [83], visualisation [44], interactive information 
retrieval [5], and dark patterns [132]. 

4.3.5 Quantifying Biases. 18 papers (14.17%) propose methods to 
detect and quantify cognitive biases. This span of research pre-
dominantly sets up experiments that induce cognitive biases and 
measure cognitive biases using different metrics. A number of stud-
ies utilise machine learning algorithms to infer cognitive biases 
through user interaction data [52, 126, 145, 196, 197]; for example, 
Wall et al. [196] train Markov models to recognise biased behaviours 
through the user interaction with scatter-plot visualisation; and 
Echterhoff et al. [52] use a combination of Support Vector Machines 
(SVM) and Long Short-Term Memory (LSTM) Neural Networks to 
capture anchoring bias from sequential decision data. Some pa-
pers derived statistical and mathematical modelling as measures 
of cognitive biases [2, 49, 114, 125, 155]. For instance, Rastogi et al. 
[155] employ Bayesian modelling for human decision-making in 
human-AI interaction. In their paper, anchoring and confirmation 
biases are modelled as scenarios when certain model weights are 
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high. We also found some papers proposing metrics that are de-
rived directly from the original definition in behavioural science or 
prior literature [25, 33, 45, 88, 129, 186]. Ma et al. [129], for example, 
quantify overconfidence bias (tendency to have more confidence in 
one’s own abilities) as the difference between the user’s expected 
accuracy of the model and their self-reported self-confidence. 

Furthermore, we identified studies that used sensor data to detect 
cognitive biases [17, 77]. Harris [77] evaluate the bandwagon effect 
in relevance judgment by using eye-tracking data. Boonprakong 
et al. [17] employ Functional near-infrared spectroscopy (fNIRS) 
and feature engineering to measure the effects of cognitive biases 
when comprehending different opinions. 

4.4 Application Contexts 
Based on open coding, we identified eight application contexts 
that span the research space of our corpus. We briefly review the 
literature in each application context in the following. 

4.4.1 Information Interaction and Recommender Systems. We found 
the majority of cognitive bias studies to be concerned with the area 
of Information Interaction and Recommender Systems (30 articles, 
23.62%). Interestingly, most studies are around the phenomenon 
of biased information seeking in people, which includes selective 
exposure [15, 123, 163, 174], misinformation [60, 100, 164], echo 
chambers [49], and filter bubbles [2]. Some research investigates 
user attitudes and viewpoints, as people employ them as a prin-
cipal heuristic for processing information [16, 17, 45, 50, 51]. A 
significant portion of papers also work on the issue of recommen-
dation systems as they could amplify and have the potential to 
exploit cognitive biases in users [67, 162, 177, 182]. For example, 
Graells-Garrido et al. [67] suggest that algorithms and user in-
terfaces should be used in a combination that helps users avoid 
cognitive mechanisms that lead to biased behaviours. 

4.4.2 Human-AI Interaction. The second most popular area is Human-
AI Interaction (26 articles, 20.47%). It is a recent and rapidly growing 
area of study, with most articles published in 2023 and 2024, as 
shown in figure 3. These papers discuss the problems of explainable 
AI [37, 71, 73, 143, 151, 200], AI-assisted decision making [8, 25, 27, 
35, 52, 128, 129, 155, 178], and trust-reliance in AI [81, 82, 103, 185]. 
These papers unveiled different cognitive biases that shape the 
user’s mental model when interacting with AI, such as confirma-
tion bias [27, 71, 151, 200], anchoring bias [8, 128, 143, 155], framing 
effect [52, 73, 103], or the Dunning-Kruger effect [81]. The litera-
ture mentions that not only AI systems could trigger and amplify 
existing cognitive biases in people [8], but other factors, such as 
limited time [155, 167] and technological expertise [185], could as 
well influence and facilitate cognitive biases. 

4.4.3 Visualisation. We found 22 articles (17.32%) discussing dif-
ferent aspects of cognitive biases in information visualisation. First 
of all, a number of articles suggest that cognitive biases impact 
how users interact with and make decisions based on the visualised 
information [36, 43, 107, 108, 134, 154, 192]. For example, Kong et al. 
[108] investigate the effects of confirmation bias on how people 
recall the visualisation of titles. Mendez et al. [134] suggest that 
the framing effect in visualisation can induce students to put more 
effort into course selection. Notably, some research proposes that 

cognitive biases can be detected and quantified through the user’s 
behaviours [145, 196, 197]. For instance, a series of works by Wall et 
al. [196, 197] propose computational methods (e.g., Markov models) 
to characterise and predict cognitive biases from the systematic 
deviation in user interaction from a theoretical baseline. Studies 
also discuss how cognitive biases can inform the design of interac-
tive visualisation systems [9, 197, 199] as well as the presentation 
of information [43, 108, 192, 213] to avoid unintended effects from 
visualisation. Moreover, some research discusses the symbiosis of 
cognitive biases and visualisation systems, as we can use either of 
them to improve the other [140, 145, 197]. 

4.4.4 Behaviour Change. We identified 16 articles (12.60%) that 
focused on behaviour change. These papers highly overlap with 
papers that utilise cognitive biases (12 articles, see Table 2), as they 
seek to shift user behaviour by tapping into users’ cognitive biases. 
Notably, works by Lee et al. [118] and Hekler et al. [83] pioneer how 
cognitive biases can be used to induce behaviour change in HCI, 
for example, to encourage healthy habits, Lee et al. [118] design 
a webpage for snack buying that shows two healthy food choices 
on the first page, requiring users to click next to see other food 
options. This taps into users’ default bias and steers their food 
selection behaviour. Later research discusses cognitive biases in 
nudges and persuasive technologies [28, 29, 65, 109, 156, 158, 212, 
218]. Some research expands the discussion on CBM to induce 
long-term behaviour change in health-related behaviours [99, 152]. 
Moreover, some papers discuss the potential of cognitive assistants 
in boosting reasoning and critical thinking skills in people [116, 
211]. 

4.4.5 Usability. Eleven articles (8.66%) investigate cognitive biases 
from the angle of usability. We found a significant portion of re-
search discussing how cognitive biases can influence the usability 
of interactive systems. For example, Veytizou et al. [193] suggest 
that the halo effect can influence user opinions on usability. A series 
of works by Mathur and colleagues [132, 133] discuss several cogni-
tive biases (e.g., anchoring bias, bandwagon effect, or default bias) 
that could be exploited by dark pattern user interfaces. Alqahtani 
et al. [4] study uncertainties in the interaction with self-tracking 
systems. They argue that users may rely on heuristics and cognitive 
biases (e.g., confirmation and availability bias) as strategies to avoid 
uncertainties in the interaction. Chen et al. [33] investigate the 
Weber-Fechner law as a cognitive bias that influences the perceived 
visual consistency when users view visual icons across different 
devices caused by adaptive scaling. 

4.4.6 Computer-Supported Cooperative Work (CSCW) and Social 
Computing. Eleven articles (8.66%) focus on the interactions be-
yond an individual. We found a notable portion of papers discuss 
the impact of cognitive biases in crowdsourcing and collective rat-
ings [3, 34, 75, 88, 184], suggesting that humans (i.e., annotators) 
have a potential to introduce biases into data and algorithms. For 
example, Hube et al. [88] and Thomas et al. [184] suggest that dif-
ferent cognitive biases can impact and introduce errors to data 
annotations. Haq et al. [75] propose a method to mitigate errors 
from cognitive biases in data workers. In addition, some papers 
investigate cognitive biases in the context of human collaborative 
technologies. For instance, Shi et al. [165] suggest that activity 
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Table 2: Categorisation of cognitive bias papers by study focus and application context with their respective count and references. 
Note that some papers have more than one study focus, therefore, they can have multiple entries in a row. Meanwhile, papers 
categorised by application context are mutually exclusive. (n/a means no paper examining in that category) 

Study Focus × Mitigation Effect Study Observation Utilisation Quantification 
Application Context (N=39) (N=38) (N=25) (N=21) (N=18) 

10 articles 10 articles 4 articles 3 articles 6 articles 
Information 
Interaction 
and Recommender 
Systems (N=30) 

[51, 67, 100, 123, 
125, 153, 158, 
174, 209, 214] 

[50, 61, 67, 70, 
144, 162, 163, 
169, 177, 208] 

[5, 60, 164, 179] [15, 182, 209] [2, 17, 45, 49, 77, 
125] 

7 articles 11 articles 6 articles 1 article 4 articles 
Human-AI 
Interaction (N=26) 

[8, 27, 35, 52, 
155, 190, 200] 

[37, 71, 73, 81, 
82, 103, 110, 
129, 143, 178, 
183] 

[26, 76, 139, 151, 
167, 185] 

[128] [25, 52, 129, 
155] 

10 articles 6 articles 3 articles 3 articles 4 articles 
Visualisation (N=22) [11, 42, 111, 126, 

140, 145, 192, 
198, 199, 213] 

[36, 43, 107, 108, 
134, 154] 

[9, 44, 131] [127, 134, 192] [126, 145, 196, 
197] 

2 articles 2 articles 1 article 12 articles n/a 
Behaviour 
Change (N=16) 

[116, 159] [68, 159] [83] [28, 29, 65, 99, 
109, 118, 146, 
152, 156, 211, 
212, 218] 

3 articles n/a 5 articles 2 articles 1 article 
Usability (N=11) [105, 193, 215] [4, 32, 72, 121, 

133] 
[23, 132] [33] 

5 articles 3 articles 3 articles n/a 1 article 
CSCW and Social 
Computing (N=11) 

[75, 88, 135, 165, 
216] 

[59, 173, 184] [3, 115, 157] [88] 

n/a 4 articles 3 articles n/a 1 article 
Human-Robot 
Interaction (N=7) 

[38, 48, 80, 114] [7, 84, 150] [114] 

2 articles 2 articles n/a n/a 1 article 
Games (N=4) [191, 204] [39, 186] [186] 

traces can help mitigate cognitive biases in peer evaluations. Zheng 
et al. [216] point out that incorporating AI in group decision-making 
can stimulate human members to reflect on their logic and reduce 
cognitive biases in flawed decision-making. 

4.4.7 Human-Robot Interaction and Autonomous Systems. Seven ar-
ticles (5.51%) discuss cognitive biases in the interaction with robots 
and/or physical autonomous systems [7, 38, 48, 80, 84, 114, 150]. For 
example, Paepcke and Takayama [150] find that confirmation bias 
affects how users set expectations about the robot’s ability. Hayashi 
et al. [80] show that anchoring bias makes people stick with human 
experts’ suggestions for decision-making over those suggested by 
robots. Some research also investigates cognitive biases when act-
ing with autonomous vehicles [38, 48]. Colley et al. [38] suggest 
that the presence of autonomous vehicles could trigger the halo 
effect in pedestrians who signal with the vehicle. Interestingly, we 
found no work that seeks to mitigate cognitive biases in the domain 
of human-robot interaction. 

4.4.8 Games. Four articles (3.14%) discuss the impact of cognitive 
biases in gameplay. Constant and Levieux [39] find that dynamic 
game difficulty adjustment could trigger players’ overconfidence 
bias and illusion of control. Tomé et al. [186] study how lost aversion 
bias impacts how players make decisions in games. Interestingly, 
some research suggests games could be incorporated into learning 
systems to mitigate cognitive biases [191, 204]. Veinott et al. [191] 
examine how serious video games can improve people’s ability to 
be aware of and, therefore, overcome their own cognitive biases. 

5 Discussion 
In this section, we reflect on higher-level insights obtained from 
our analysis of the articles in our corpus. We address the main 
research question of how HCI researchers study cognitive biases, 
explain the role of cognitive biases as a double-edged sword in the 
interaction with computers, and discuss the ethical implications of 
the exploitation of cognitive biases in users of computing systems. 
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5.1 How Do HCI Researchers Study Cognitive 
Biases? 

The literature clearly indicates that cognitive biases are pervasive in 
HCI. Humans are not always rational. They are susceptible to mak-
ing flawed decisions. When interacting with computing systems, 
user interfaces have the potential to trigger users’ cognitive biases. 
Subsequently, cognitive biases systematically affect users’ men-
tal models and, subsequently, their real-world behaviours when 
interacting with computing systems. According to our findings 
in section 4.3, the manifestation of cognitive biases in HCI can 
be explained in three layers: (A) systems could trigger or rem-
edy existing cognitive biases in users; (B) interface designers 
capitalise users’ cognitive biases to (either intentionally or 
not) steer and manipulate their behaviours; and (C) HCI re-
searchers observe cognitive biases in the interaction with 
computers and develop tools and methods to closer study 
them. Although these scenarios do not always happen simultane-
ously, they all highlight that cognitive biases are a crucial human 
factor in designing computing systems and user interfaces. 

HCI researchers study cognitive biases in the interaction be-
tween humans and computers, not only to understand them as a 
human factor, but also to inform the design of computing systems 
to better adapt to the user’s mental models. By deriving insights 
from behavioural economics and psychology, HCI research devel-
ops tools and metrics to detect, quantify, and study cognitive biases 
in human-computer interaction more closely. Moreover, many HCI 
papers employ cognitive biases as a tool to study human behaviours 
and decision-making. In line with the recent literature in psychol-
ogy, HCI researchers treat cognitive biases as features of the human 
mind [78, 79] and, therefore, incorporate them as a human factor. 
In sum, insights from cognitive bias studies help the HCI com-
munity derive recommendations and practicality for designs that 
take biases in people into account. Recent research [17, 126, 217] 
has introduced the notion of bias-awareness, which refers to the 
ability to detect, understand, and take into account cognitive bi-
ases in people and computing systems. HCI researchers leverage 
bias-aware systems to address human behaviour and its associ-
ated real-world concerns, such as helping humans make objective 
decisions [155, 165], calibrating their trust in AI [103, 185], or guid-
ing them how to discern online propaganda [20, 211]. Figure 1 
summarises how HCI researchers work with cognitive biases to 
(1) develop tools and methods, (2) better understand people and 
their biases, (3) inform the design of computing systems and user 
interfaces, and (4) address real-world human behaviours. 

5.2 Cognitive Biases as a Double-edged Sword in 
HCI 

The prevalence of cognitive biases in HCI is a double-edged sword; 
there are negative and positive effects arising from cognitive biases. 
A significant number of articles in our corpus outline how cognitive 
biases could result in negative consequences, such as undermining 
the collaboration between human and AI systems [81, 82, 103, 185, 
200], facilitating the spread of misinformation [60, 100, 164] and un-
healthy information behaviours [15, 123, 163, 174], inducing errors 
when navigating through information [36, 43, 107, 108, 134, 154, 
192], or affecting the quality of crowdsourced data [3, 34, 75, 88, 184]. 

Subsequently, our review identifies different methods proposed to 
mitigate the adverse effects of cognitive biases. HCI researchers 
study and employ cognitive aid, as introduced in psychology, to help 
users reflect on themselves and make informed decisions. Based on 
the dual-system theory, these systems shift people towards using 
the slower and more deliberative System 2 thinking rather than the 
fast and error-prone System 1 thinking to make decisions. We found 
such cognitive aid comes in the form of either nudging or boosting. 
While nudging guides people to shift their behaviour, boosting em-
powers their cognitive and motivational compentencies [85, 112]. 
The latter approach, boosting, appears in our review as, for instance, 
tools to teach users critical thinking skills and how to spot their 
cognitive biases [116, 191, 204]. 

On the other hand, cognitive biases can benefit the interaction. 
Our review identifies different studies and research leveraging cog-
nitive biases for the greater good. One prominent example, which 
is mentioned above, is nudging. Nudging capitalises on the users’ 
cognitive biases to steer them towards a certain behavioural out-
come [28]. At the same time, nudges present a use-case where 
different cognitive biases can cancel each other out. Rieger 
et al. [158] employ nudges as targeted obfuscation in search re-
sults to decrease user interaction with attitude-confirming informa-
tion. Explained by [28], this nudge triggers status-quo bias, which 
prevents users from interacting with the obfuscated items, and, 
therefore, mitigates confirmation bias. Furthermore, cognitive bi-
ases can be leveraged to induce long-term behaviour change in the 
form of CBM [99, 152], which has been largely used in healthcare 
and intervention-focused approaches (e.g., helping individuals quit 
smoking, eat healthier, or alleviate anxiety symptoms). 

Our findings, therefore, suggest that humans are cognitive mis-
ers. Some forms of cognitive bias can present in users and their 
interaction with computing systems. We recommend that the HCI 
community designs systems aiming to mitigate the negative effects 
of biases while considering what benefits we can leverage from the 
users’ existing cognitive biases. 

5.3 Ethical Considerations from the 
Exploitation of Cognitive Biases in People 

We must, however, acknowledge the ethical implications arising 
from exploiting inherent human biases. Humans often exhibit cogni-
tive biases without explicit awareness. Therefore, designs and tech-
nologies that harness these cognitive biases could risk manipulating 
their behaviours. Richard Thaler, who first coined the term nudges, 
discussed that the same techniques used to nudge people could be 
used for negative intentions – the so-called sludges [180]. Nudges, 
on the other hand, could harm user autonomy by steering their 
behaviours without their awareness and consent [21, 156, 175, 176]. 
Daniel Kahneman himself and other psychologists also criticised 
nudges as potential benevolent paternalism: governments or ruling 
institutions can employ nudges to manipulate individuals’ choices 
by assuming the “best interest” of the people [92, 95, 176]. Dark 
patterns [132] and social engineering [23, 57] are well-researched 
practical examples where cognitive biases are misused to influence 
people’s decision-making. Boonprakong et al. [17, 19] argue that 
the same techniques to detect and mitigate cognitive biases could 
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be used to reaffirm and steer people’s beliefs. The Cambridge An-
alytica scandal [13] demonstrate that people’s attitudes could be 
derived from social media interaction data and, in turn, used to 
target and sway their opinion-making. 

Designers and HCI practitioners shape user experiences and 
build systems that steer user behaviour. Therefore, they should 
be held accountable for the ethical implications arising from their 
design choices. Designers should be well aware that users are in-
herently susceptible to cognitive biases and of what harm they 
potentially cause [19] (e.g., people who can fall victim to misin-
formation are less likely to be debunked [120]). One solution to 
address ethical concerns could be promoting transparency, which 
gives users the awareness of their cognitive biases being used. Bias-
exploiting interfaces can practically ask for informed consent from 
users that their behaviour may be subconsciously steered. Zhu et al. 
[217] suggest that, by giving the awareness of how systems collect 
and process data, users can make informed decisions. Moreover, 
legal restrictions, such as the European Union’s General Data Pro-
tection Regulation (GDPR)3 , could also limit how much (sensitive) 
data systems can collect for bias detection and quantification. 

6 Recommendations to the HCI Community 
HCI is uniquely at the intersection of multiple disciplines. Our 
review suggests that the HCI community derives definitions and 
theories from psychological and behavioural sciences. However, 
there exists a gap between HCI and these fields. In this section, we 
discuss the need for the community to establish a standard for bias 
terminologies and to closer engage with behavioural science and 
psychology. 

6.1 The Use of Cognitive Bias Terminologies 
Our review maps out a series of discrepancies in the use of cognitive 
bias terminologies and definitions. Variations from the standard 
terminology, including the use of self-defined terms, could cause 
confusion among the readers and those who search literature us-
ing certain keywords. We originally derived only a few records 
(for example, N = 31 on the ACM Digital Library) when perform-
ing a keyword search based on title or abstract. For this reason, 
we extended our search to records from full-text searches, which 
returned significantly more results. This implies that (terms for) 
cognitive biases are varied and often only mentioned in the full-text 
paper. We suggest that authors in the HCI community should (1) 
clearly mention the cognitive biases they study, (2) give explicit 
definitions, and (3) provide a connection to the notion of cogni-
tive biases. By providing clarity and connection to psychology and 
behavioural science, HCI researchers can improve the internal va-
lidity of their studies. Nonetheless, some psychologists argue that 
the field of psychology itself is experiencing a similar problem, as 
new constructs are redundantly invented for existing psychological 
constructs [53, 74]. 

The lack of a clear definition and reference to cognitive biases 
also poses a problem. While cognitive biases are relatively well-
known phenomena, we recommend authors in the HCI community 
clearly define cognitive biases and provide definitions and refer-
ences to make sure that their studies are theoretically grounded. We 

3https://gdpr-info.eu/issues/personal-data/ 

suggest that, if possible, definitions could link to the seminal works 
in behavioural economics and psychology; for example, linking 
anchoring bias with the seminal work of Tversky and Kahneman 
[188] or confirmation bias with the work of Nickerson [142]. Fur-
thermore, with some cognitive biases being made context-specific 
(e.g., confirmation bias as “Selective Exposure” or “Self-Imposed 
Filter Bubbles”, and the Dunning-Kruger effect as “Illusion of Ex-
planatory Depth”), we suggest that authors should make clear that 
they study such cognitive biases in a specific context. 

We argue that it is necessary to establish a community stan-
dard for terminologies and definitions. For example, what is the 
distinction between heuristics and cognitive biases? Should we use 
“Ambiguity Effect” or “Ambiguity Aversion”? More importantly, our 
findings show that there is a discrepancy in understanding whether 
cognitive biases, as a human factor, are heuristics people use to 
make faster decisions or consequences from the use of such heuris-
tics. Most papers say “mitigate cognitive biases”: does it mean we 
mitigate the cognitive bias itself or its effects? As the notion of 
cognitive biases is increasingly discussed in the HCI community, 
we envision that the community could find a consensus on the best 
practices to report research regarding cognitive biases. 

6.2 Closer Engagement with Behavioural 
Science and Psychology 

Cognitive biases are grounded in the fields of behavioural, psy-
chological, and cognitive sciences. Therefore, our review voices a 
need for the HCI community to connect with the literature and 
scholars in these domains. Prior research suggests that insights in 
behavioural and cognitive sciences can inform and integrate with 
the HCI field to conduct studies that are grounded in theory rather 
than relying on intuition [83, 155, 213]. Because our understanding 
of human decision-making has been limited, we envision that HCI 
research can complement behavioural science. With the ability to 
fast prototyping and running user studies (such as A/B testing), HCI 
researchers can quickly verify behavioural science theories [83]. 
The field of HCI also offers multidisciplinary perspectives that aug-
ment the traditional understanding of cognitive biases. Tomé et al. 
[186] discuss that, while loss aversion bias has been studied in be-
havioural science, we have little understanding of how it affects 
gameplay. 

Recent research in psychology has signalled a shift away from 
Kahneman and Tversky’s original interpretation of cognitive bi-
ases [63, 79, 203]. Different schools of psychologists (e.g., Kahne-
man & Tversky [188] vs. Gigerenzer [62]) may view the issue of how 
humans satisfy their cognitive constraints differently. The notion of 
cognitive bias, therefore, may not offer the most robust explanation 
that fits human behavioural effects/phenomena [161, 202]. While 
the HCI community has widely adopted the traditional notion of 
cognitive biases as an explainer of HCI-related effects (e.g., selective 
exposure, information framing, or dark patterns), the field could 
also consider and keep up with the more recent or inclusive def-
initions, such as Gigerenzer’s fast and frugal heuristics [62], the 
challenge of humans’ cognitive limitations [166], or noise in human 
decision-making [96]. 

https://gdpr-info.eu/issues/personal-data/
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7 Avenues for Future Research 
Our review signals multiple paths for future research on cogni-
tive biases in HCI. In this section, we discuss the potential for 
establishing frameworks to study cognitive biases, considerations 
of effectively leveraging and mitigating cognitive biases, under-
explored application contexts, and improving the external validity 
of cognitive bias studies in HCI. 

7.1 Methodological and Theoretical Framework 
for Studying Cognitive Biases in HCI 

Limited research (18 papers, 14.17% of corpus) explores methods, 
tools, and frameworks to quantify cognitive biases in the interaction 
with computers. Our findings show that different papers pursue dif-
ferent approaches to quantifying cognitive biases through metrics, 
statistical modelling, and physiological sensors. Yet, these meth-
ods tend to be catered specifically to particular cognitive biases 
(e.g., anchoring bias) or application contexts (e.g., interaction with 
information visualisation or AI-assisted decision-making). We sug-
gest that there could be quantification tools that are agnostic to 
particular cognitive biases or scenarios. Future research could also 
explore tools to indicate cognitive biases as simply a deviation from 
the norm of rationality. Similarly, Liu [125] proposes a probabilistic 
framework for human fairness in decision-making. Boonprakong 
et al. [17] investigate physiological expressions of any cognitive 
biases in opinion comprehension. 

7.2 Considerations of Effectively Leveraging 
and Mitigating Cognitive Biases in HCI 

7.2.1 Leveraging Cognitive Biases. Limited works have explored 
how cognitive biases can be harnessed for the greater good. Our 
understanding of cognitive biases in HCI is emerging; therefore, 
we envision the HCI community could avoid the harm of cognitive 
biases and leverage their benefits. From the literature, we identify 
two ways that cognitive biases can be leveraged. Firstly, by un-
derstanding how cognitive biases affect human behaviours, HCI 
researchers can take cognitive biases into account when design-
ing interactive systems. Cognitive biases can be applied to induce 
systematic behaviour changes for the greater good, such as critical 
thinking engagements [209, 211, 212], healthy food diet [99], or 
support self-compassion [127]. Secondly, cognitive biases are used 
to steer users’ behaviour in the form of nudges. Caraban et al. [28] 
document 23 different mechanisms of nudging and discuss cogni-
tive biases associated with each type of nudge. However, research 
in behavioural science suggests several shortcomings of nudges. 
Specifically, the effectiveness of nudges may be limited and not 
sustained over time [10, 21]. At the same time, a plethora of individ-
ual and contextual factors may positively or negatively influence 
the occurrences of cognitive biases [19, 27, 158] and, subsequently, 
compromise the success of nudges. We, therefore, argue that future 
research could (1) conduct longitudinal studies to evaluate the ef-
fectiveness of nudges and (2) investigate how we could consider 
individual and contextual factors in utilising cognitive biases effec-
tively. Ultimately, by leveraging the effects of cognitive biases and 
avoiding their harm, we could enhance the capability of humans 
and optimise the symbiosis between humans and machines. 

7.2.2 Mitigating Cognitive Biases. Research in HCI has pointed 
out how cognitive biases can negatively affect the interaction with 
computers. In response, various studies also propose methods to 
alleviate these effects. However, our findings suggest many research 
gaps, which echo the discussions in psychology and behavioural 
science regarding barriers to effective debiasing [124, 205]. First 
of all, some bias mitigation techniques, such as providing system 
feedback or pedagogical tools, have been evaluated in only certain 
contexts like visualisation and human-AI interaction. Future re-
search could assess the effectiveness of the same set of techniques 
across different application contexts like information interaction or 
gameplay. For example, Narechania et al. [140] suggest that point-
ing users to their interaction history in a visual analytics tool could 
help users reflect on their existing cognitive biases. However, the 
question remains whether the same approach works if social media 
users are presented with browsing history. 

Secondly, limited research has investigated whether bias mit-
igation works in practice. Bach et al. [8] suggest a set of recom-
mendations when incorporating bias mitigation into real-world 
applications. Recent research in behavioural science has also dis-
cussed the danger of the backfire effect, which could unexpectedly 
overturn the effectiveness of an intervention [1, 24]. Future research 
could investigate when and how the backfire effect occurs when 
mitigating cognitive biases. 

7.3 Understudied Application Contexts 
Our findings indicate a number of areas with limited research. Ta-
ble 2 suggests research fixation and gaps. Based on application con-
text, we found that limited research has investigated the contexts 
of behaviour change, usability, CSCW, human-robot interaction, 
and games. Research around behaviour change has predominantly 
focused on utilising cognitive biases. Meanwhile, limited research 
seeks to quantify the effects of cognitive biases when steering user 
behaviour. Most research in our corpus considers one side of the 
picture – either quantifying either the effects of cognitive biases 
or the effectiveness of behaviour-change interventions – assuming 
that cognitive biases take effect regardless of the individual and 
interaction contexts. With the ability to quantify the effects of cog-
nitive biases, one can empirically measure to what extent people’s 
behaviour has changed and how strong the effect is. Similarly, some 
papers in our corpus showcase how the angles of bias mitigation 
and quantification can be harmonised [52, 88, 125, 126, 145, 155]. 
We envision that future research could consider multiple angles to 
closer study cognitive biases. 

We found limited research in the realm of usability that considers 
cognitive biases, although this issue is central in HCI research. We 
suggest more research could explore interface design elements 
that trigger and reinforce cognitive biases (e.g., [132, 136] discuss 
how dark patterns are connected with certain cognitive biases). 
Also, no research in our corpus discusses creativity in conjunction 
with cognitive biases, such as the issue of design fixation [90] – a 
cognitive bias that makes people stick to a set of pre-conceived ideas 
and restrict the choices of design. Some HCI scholars [102, 195] 
have empirically investigated design fixation, however, they make 
minimal connection with the discourse around cognitive biases. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan N. Boonprakong et al. 

Additionally, future research could consider cognitive biases 
beyond just humans and systems, specifically in the domains of 
CSCW and human-robot interaction. While some works employ 
bias mitigation strategies in human collaborative work [165, 216], 
limited research has explored where these biases come from and the 
potential to leverage them. Future research may address the ques-
tion of how do computing systems systematically trigger cognitive 
biases in a crowd of users (e.g., human teams or social network 
users), and how cognitive biases can be leveraged in coorperative 
tasks. 

7.4 Expanding External Validity 
There are a number of threats to the external validity of existing 
cognitive bias studies in HCI. First, most studies are conducted in 
a controlled environment. Outside of the laboratory, a plethora of 
external factors could affect the way people exhibit cognitive biases. 
We suggest future research consider running in-the-wild studies to 
reflect how cognitive biases manifest in real-world interactions. In 
addition, only a few papers consider multiple forms of cognitive 
bias in conjunction. Humans could exhibit more than one cogni-
tive bias at the same time (e.g., [213]), while multiple cognitive 
biases can interact, reinforce, or cancel each other [28, 213]. Future 
research could conduct studies that consider possible cognitive 
biases that could occur and confound the study variables. For ex-
ample, studying confirmation bias in social media browsing might 
introduce anchoring bias when viewing the contents in a sequence 
and overconfidence bias when the user has more expertise in the 
content topic. With the awareness of potential cognitive biases in 
an experiment, researchers could consider ways to minimise these 
confounds, such as counterbalancing (anchoring bias) and taking 
topic expertise as a control variable (overconfidence bias). 

8 Limitations 
This paper has several limitations. First of all, our corpus does 
not exclusively cover all cognitive bias studies in HCI. We believe, 
however, that the inclusion of SIGCHI-sponsored venues (such 
as CHI, CSCW, IUI, or CHIIR) gives a representative view of the 
HCI community’s discourse around cognitive biases. Moreover, the 
choice of search keywords may not cover all cognitive biases. The 
literature refers to cognitive biases in many different ways [14]. It 
is possible that some papers investigate a relevant issue around 
cognitive biases but do not explicitly mention the term cognitive 
biases, for example, bounded rationality [101, 130, 148], decision-
making fairness [66, 210], systematic bias [89], design fixation [195], 
self-selection bias [217], or selective exposure [122]. We share the 
same sentiment with Kliegr et al. [104], who argue there is an abun-
dance of cognitive phenomena that are not regarded as cognitive 
biases. We also acknowledge that, since the definition of cogni-
tive biases and heuristics (according to Tversky and Kahneman’s 
original school of thought [188]) has been challenged by many psy-
chologists (e.g., [62, 79, 96]), HCI studies may move away from such 
concepts and use other terms. While our scoping review mainly 
investigates the use of cognitive biases in HCI research, we reflect 
that the actual literature around cognitive biases utilises a diverse 
range of terms that may not be included in our review. 

The list of cognitive biases studied and their figures (Figure 4) 
may be subject to discussion and change as the research landscape 
is evolving and some cognitive biases could be considered as a 
specialised form of another cognitive bias. For example, recency 
bias (the tendency to more easily remember what happened re-
cently) is considered a form of the peak-end rule. To the best of 
our knowledge, there has been no commonly agreed-upon tax-
onomy for cognitive biases, with the taxonomy of the Cognitive 
Bias Foundation [58] providing extensive coverage of more than 
180 cognitive biases. Additionally, we acknowledge that the results 
could be subject to screening biases and personal views as only one 
researcher performed article screening and coding. 

9 Conclusion 
Humans employ heuristics and mental shortcuts to effectively make 
decisions under their inherent limited cognitive capacity. These 
shortcuts result in cognitive biases, which systematically influence 
how humans interact with computers. The HCI community has 
increasingly discussed this issue in the recent decade. This scoping 
review charts how HCI researchers study cognitive biases. From 127 
articles identified, we found that the prevalence of cognitive biases 
in HCI gives opportunities for researchers to study, mitigate, and 
leverage their effects to inform designs, optimise the interaction, 
and address real-world human behaviour. The literature suggests 
that cognitive biases are a two-edged sword. While we can leverage 
their effects to induce behaviour change, the same mechanism can 
be used to manipulate people’s decision-making and harm their 
autonomy. Our results reveal various terminologies and definitions 
for cognitive biases, suggesting a lack of standards for terming 
and defining cognitive biases in HCI. To this end, our findings 
promise several avenues for future research to better understand 
cognitive biases in the interaction between humans and computers 
and the need to connect with the literature in behavioural science 
and psychology. 
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