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Abstract 
Humans naturally seek to identify causes behind outcomes through 
causal attribution, yetHuman-AI researchoftenoverlookshowusers 
perceive causality behind AI decisions. We examine how this per-
ceived locus of causality—internal or external to the AI—influences 
trust, and how decision stakes and outcome favourability moder-
ate this relationship. Participants (N=192) engaged with AI-based 
decision-making scenarios operationalising varying loci of causality, 
stakes, and favourability, evaluating their trust in each AI. We find 
that internal attributions foster lower trust as participants perceive 
the AI to have high autonomy and decision-making responsibility. 
Conversely, external attributions portray the AI as merely “a tool” 
processing data, reducing its perceived agency and distributing re-
sponsibility, thereby boosting trust. Moreover, stakes moderate this 
relationship—external attributions foster even more trust in lower-
risk, low-stakes scenarios. Our findings establish causal attribution 
asacrucialyetunderexploreddeterminantof trust inAI,highlighting 
the importance of accounting for it when researching trust dynamics. 
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1 Introduction 
Consider an individual, John, bursting into laughter at a come-
dian’s joke. In this scenario, one could attribute the outcome—John’s 
laughter—to the person himself (John) or the stimulus (the come-
dian’s joke). If John is the only one laughing and tends to laugh easily 
at any comedian, then one would attribute the cause behind his 
laughter internally to him, to his sense of humour. Alternatively, if 
John, usually reserved at comedy shows, suddenly laughs alongside 
the entire audience, then one might believe the comedian’s excep-
tional skills brought about John’s laughter, attributing the cause 
externally to John. Both scenarios involve the same outcome—John’s 
laughter—but our understanding of the outcome differs based on 
where we attribute its causality [23]. Considering how percep-
tions of causality influence our understanding of everyday 
events, how might they impact our interactions with and trust 
in AI systems? 

Attribution theory posits that humans instinctively seek to under-
stand the causes behind actions and outcomes [33]. This innate drive 
for causal understanding, termed causal attribution, influences how 
we attribute responsibility and, subsequently, how we assign blame 
or praise [48, 57]. An intelligent agent could cause an outcome, yet 
individuals could perceive its causal role differently. For example, if a 
self-driving car brakes suddenly without an apparent obstacle, some 
usersmight attribute the cause to an internal issue (e.g., limitations in 
the car’s decision-making software), which could decrease their trust 
in the system. In contrast, others may attribute the error to external 
causes (e.g., poor road markings or inclement weather conditions), 
potentially maintaining their trust in the system’s capabilities. This 
presents anopportunity toempirically examinehowvariations in the 
perceived locus of causality behind automated decisions—whether 
seen as stemming from causes internal or external to AI—impact 
trust in the AI. 

Notably, the integration of AI-based decision-making in everyday 
life is driven by the recognition that its adoption can reduce costs, 
enhanceperformance, and facilitatemore objective decision-making. 
However, AI systems can make mistakes, so end-users must discern 
when to trust their output [16, 37]. In response, research efforts 
have focused on identifying the factors that influence user trust 
in AI, aiming to appropriately calibrate this trust to match system 
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capabilities [22, 45, 53, 66]. However, existing approaches to trust 
calibration—often revolving around providing explanations [50, 51] 
or confidence scores [58, 83]—encounter critical challenges. Expla-
nations can paradoxically promote over-reliance by creating a false 
sense of legitimacy [17, 52], while stated confidence scores are often 
overshadowed by the performance of the AI observed in practice [80, 
81]. While these methods aim to increase transparency, they fail to 
account for how individuals perceive and interpret the causal basis be-
hind AI decisions—whether they perceive the cause behind an AI out-
come as originating from within the AI itself (attributing it to the AI’s 
algorithms and decision-making processes) or from external factors 
(such as the data the AI processes or the level of human oversight) [70, 
77]. Tomlinson and Mayer [70], in their trust calibration model, par-
ticularly theorise that trust may decline more sharply when negative 
AI outcomes are attributed internally to the AI. However, the impact 
of causal attributions on human-AI trust dynamics remains to be em-
pirically examined. Understanding this relationship could also offer 
valuable insights for refining trust calibration approaches, ensuring 
better alignment with user expectations and attribution behaviours. 

Further, individuals are more likely to trust and accept favourable 
AI decisions, a tendency known as outcome favourability bias [10, 44]. 
Outcome favourability modulates trust in AI based on the advan-
tage or disadvantage resulting from the decision [75], but differing 
causal attributions may further complicate this relationship. For 
example, when the cause behind an unfavourable outcome is at-
tributed internally to the AI—i.e. to its decision-making process or 
capabilities—trust may be impacted differently compared to when 
an unfavourable outcome is attributed to factors external to the AI, 
outside its locus of control. This raises the question: is trust in AI 
shielded from the consequences of poor decision-making when individ-
uals perceive an external locus of causality? Additionally, individuals 
are more inclined to trust and accept AI decisions in low-stakes con-
texts such as music recommendation [63], compared to high-stakes 
contexts such as medical diagnostics [31] where the consequences of 
decisions are substantial. However, it remains unclear how trust is in-
fluenced by the consequences or risks of the decision-making context 
when the locus of causality behind decisions is also manipulated. 

Therefore, this work aims to bridge the aforementioned gaps by 
systematically investigating how the attribution of causality shapes 
trust in AI systems and how decision stakes and outcome favourabil-
ity impact this relationship. We aim to answer the following research 
questions: 

• RQ1: How does the perceived locus of causality behind AI 
decisions—attributed internally or externally to the AI—influence 
trust in the AI? 

• RQ2: How do contextual factors, such as the stakes of the 
decision-making context and the favourability of the AI out-
come, moderate the impact of causal attributions on trust in 
AI? 

We conducted a 2 (causal attribution: internal vs. external) × 2 (de-
cision stakes: high vs. low) × 2 (outcome favourability: favourable vs. 
unfavourable) within-subjects scenario-based experiment with 192 
participants. Scenarios introduced a high- or low-stakes decision-
making context in which an AI operated, subsequently revealed 
the AI’s decision, and signalled a specific locus of causality behind 
this decision—operationalising our three independent variables. The 

locus of causality was operationalised using Kelley’s framework of 
causal attribution [32], which outlines three information variables: 
consensus (whether the AI’s decision aligns with those of other sys-
tems), distinctiveness (whether the decision is specific to the given 
input), and consistency (whether the decision remains stable over 
time and after repeated exposure to the same input). Internal attribu-
tions signalled that the AI’s decision stemmed from its inherent algo-
rithms and capabilities (low consensus, low distinctiveness, and high 
consistency), while external attributions highlighted the influence of 
external factors, such as data quality or environmental factors (high 
consensus, high distinctiveness, and high consistency). A manipula-
tion check confirmed that our scenarios robustly operationalised our 
manipulations as intended. For each scenario, after learning about 
the AI’s decision and an associated locus of causality, participants re-
ported their Situational Trust in the AI. To deepen our understanding 
of trust dynamics, participants also answered open-ended questions 
exploring the factors influencing their trust in each scenario. 

Our findings demonstrate a critical relationship between partic-
ipants’ perceptions of causality and their trust in AI systems. When 
participants attribute the locus of causality behind an AI’s deci-
sion internally to the AI, their trust is notably lower. In such cases, 
participants perceive the AI as more autonomous and responsible, 
having full control and agency in the decision-making process. This 
perception raises concerns about the AI’s excessive autonomy and 
insufficient human oversight, consequently reducing participants’ 
trust. Conversely, when participants attribute causality externally to 
an AI, they trust the AI substantially more. In such cases, participants 
distribute responsibility among various entities and stakeholders 
in the decision-making ecosystem, and perceive the AI more as “a 
tool” that processes data, operating under the influence of factors 
beyond its control, such as the quality of data supplied to it. This 
external attribution of causality reduces perceived AI agency and 
reassures participants about the AI’s role in the decision-making 
process, thereby enhancing their trust. 

Additionally, we observe that the effect of causal attribution on 
trust varies with the decision stakes. While external attributions gen-
erally foster higher trust, this effect is more pronounced in low-stakes 
scenarios, where the perceived risk and consequences of trusting the 
AI are less severe compared to high-stakes scenarios. Furthermore, 
our analysis reveals no significant interaction between outcome 
favourability and causal attribution, showing no evidence of a dif-
ferential effect of causal attribution on trust across favourable and 
unfavourable decisions. This highlights the role of causal attribution 
as an important, stable determinant of trust. Lastly, our findings 
reiterate the impact of decision stakes and outcome favourability on 
trust: participants exhibited higher trust in low-stakes scenarios and 
favourable decisions than in high-stakes scenarios and unfavourable 
decisions. 

Our work makes the following contributions. First, we identify 
causal attribution as a critical yet previously overlooked determi-
nant of trust in AI. We show that trust varies based on whether users 
perceive decisions as stemming from the AI’s own capability and 
algorithms, or as reliant on external factors such as data quality and 
stakeholders. Second, we uncover how causal attributions shape 
perceptions of AI agency, autonomy, responsibility, and the extent 
of human oversight in decision-making. Through several interesting 
qualitative insights, we discuss how different loci of causality lead 
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participants to hold the same AI differently responsible for its deci-
sions, ultimately impacting the scrutiny extended to and trust placed 
in it. We advocate for framing AI decisions to clearly convey causal-
ity and shared responsibility as an effective method to boost trans-
parency and foster (appropriate) trust in AI. Third, by demonstrating 
how attributing excessive agency to AI can lead to decreased trust 
and increased scepticism, our work emphasises the need to shift the 
discourse away from portraying AI systems as overly autonomous 
and agentic. Fourth, we highlight how the impact of causal attribu-
tion on trust varies with decision stakes—underscoring the need for 
contextual trust-building strategies. While there is no silver bullet 
for fostering trust in high-stakes environments even when AI perfor-
mance warrants it, explicating causality can be effective, especially 
when complemented by other transparency-boosting strategies. 

Ultimately, our results demonstrate that users’ trust in AI is sen-
sitive to their understanding of the causal mechanisms behind AI 
decisions, and advocate for their transparent communication. We 
underscore the need for future trust calibration efforts to consider 
where users attribute causality and account for these perceptions 
when studying trust dynamics. 

2 Related Work 

2.1 Trust in AI Systems and its Determinants 
In this work, we adopt the definition of trust proposed by Lee and 
See [37], who describe it as “an attitude that an agent will achieve 
an individual’s goal in a situation characterised by uncertainty and 
vulnerability.” Stemming from this notion, multiple definitions and 
decompositions of human-AI trust have been proposed, all converg-
ing toward the central elements of uncertainty, vulnerability, and 
expectations [72]. Trust, therefore, emerges as a dynamic, temporal 
characteristic of any human-AI interaction fraught with uncertainty 
and vulnerability. As AI agents become increasingly intertwined 
with our everyday lives, aligning user trust with the capabilities 
and limitations of such AI agents becomes crucial. Hoff and Bashir 
[24] further classify trust in automated systems into distinct types, 
including dispositional and situational trust. 

Dispositional trust refers to an individual’s inherent tendency to 
(dis)trust automation in general, while situational trust is shaped 
by the specific contextual factors surrounding human-AI interac-
tion, such as task complexity, AI performance, and the perceived 
risk associated with the decision-making process [24]. Importantly, 
different levels of dispositional trust can result in both automation 
bias, where individuals place unwarranted trust in automated advice 
because of the perception that automation is superior [19, 49], or 
algorithm aversion, where users are sceptical of automated advice 
and disregard it even when it may be reliable [30, 56]. Thus, while 
dispositional trust might predispose individuals towards a certain 
level of trust in AI, situational trust adjusts based on the context of 
each interaction with a particular AI. In this work, we investigate 
and consider both dispositional and situational trust, aligning with 
Hoff and Bashir’s call for research that examines the various layers 
of end-users’ trust in automation to appropriately understand how 
trust is modified through interactions with AI systems [24]. 

2.1.1 Determinants of Trust. Research has explored methods to 
calibrate trust in AI agents, employing both ‘endo’ (during the inter-
action) and ‘exo’ (before or after the interaction) techniques, as well 
as static and adaptive approaches (see Wischnewski et al. [78] for 
a comprehensive overview). Trust calibration approaches typically 
centre around the various determinants of trust identified so far [36]. 
These determinants pertain to the decision-making process or perfor-
mance of an AI [78], communicated through explanations [50, 51] 
and confidence scores respectively [58, 83]. However, despite their 
promise, these approaches encounter critical challenges. Explana-
tions can backfire and create a false sense of legitimacy, inadvertently 
promoting over-reliance on AI [17, 52]. Moreover, the influence of 
stated confidence scores on trust can be overshadowed by the AI ac-
curacy or behaviour observed in practice [80, 81]. A growing body of 
research underscores the importance of perceived responsibility and 
accountability in shaping user trust in AI systems [6, 12, 68]. When 
users perceive probabilistic AI systems as autonomous entities capa-
ble of making decisions, questions around perceived responsibility 
and trust become increasingly complex [20, 26, 69]. Who do users 
hold responsible for an AI’s errors—the system itself or its human de-
signers? Such individual responsibility ascriptions may also directly 
influence trust in many ways, as perceptions of responsibility can af-
fect users’ willingness to rely on AI systems. For example, Robinette 
et al. [60] find that in emergency scenarios, users who attributed a 
robot’s decisions to the (assumed) competence and accountability of 
its human creators were willing to follow the robot into increasingly 
dangerous situations. In fact, users’ trust is sensitive to even subtle 
indicators of agency (and indirectly, causality): framing AI systems 
as ‘intelligent’ or ‘autonomous’ agents can significantly shape per-
ceptions of their trustworthiness, albeit to different extents based on 
individual and contextual factors [26, 27]. However, the impact of 
perceived causality on trust remains to be systematically examined. 
Much of the current research on human-AI trust overlooks where 
users perceive the causality behind AI decisions to lie, often failing to 
account for whether users think “the AI” itself is making decisions 
or if decisions are influenced by factors outside its locus of control. 

Attribution theory suggests that individuals naturally tend to seek 
the causes behind actions and outcomes [33]. This drive for causal 
understanding informs how they assign responsibility and distribute 
blame or praise [48, 57]. Importantly, at the core of responsibility 
attribution lies the human ability to construct causal narratives that 
explain others’ actions [33]. Causality, thus, is a core concept that 
governs judgements of responsibility [18]. Responsibility attribu-
tion, then, becomes a proximal consequence of causal attribution. An 
intelligent agent could cause an outcome, yet individuals could per-
ceive its causal role in the process differently. This raises the question: 
would individuals perceiving different loci of causality behind 
AI decisions exhibit different levels of trust in the same AI? Can 
perceptions of causality be a significant, yet previously overlooked, 
determinant of trust? Moreover, current approaches to foster appro-
priate trust in AI, such as explanations or confidence scores, focus 
primarily on observable system performance or process but overlook 
deeper user perceptions about the causal mechanisms behind AI de-
cisions [24, 37]. Thus, understanding how causal attributions shape 
trust in AI could offer valuable insights to refine these approaches, 
aligning them with individual user perceptions of causality. 
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2.2 Attributing Causality Behind Outcomes 
Weiner’s causal attribution theory [77] explains how individuals 
make sense of their experiences by attributing causes to behaviours 
and events. He posits that individuals respond to outcomes, espe-
cially negative ones, by identifying their causes (i.e., attributing their 
causality to something) and then evaluating these causes along three 
dimensions: locus of causality (whether the cause is internal or 
external to the agent), controllability (the degree of control the agent 
has over the outcome), and stability (whether the cause is constant 
or variable). Of particular interest to this work is the locus of causal-
ity dimension. An individual could attribute the cause of an AI’s 
decision as either being internal to the AI (i.e., to factors pertaining 
to the automation itself, such as its programming logic) or external 
to the AI (i.e., to situational factors, such as the quality of the data 
it is trained on). 

Building upon Weiner’s theory, Tomlinson and Mayer [70] in-
troduced a causal attribution model specific to trust repair in inter-
personal relationships. This model integrates Weiner’s attribution 
dimensions with the trust feedback loop from Mayer et al. [47], il-
lustrating how trust evolves through a cyclic process of risk-taking, 
outcome evaluation, and trust adjustment based on perceived trust-
worthiness. Trustworthiness itself is assessed through the lens of an 
agent’s ability, benevolence, and integrity, with these perceptions di-
rectly influencing trust levels. According to Tomlinson and Mayer’s 
[70] model, if end-users believe that a negative decision by an AI is 
due to the AI’s own capabilities, i.e., they ascribe an internal causality 
to the outcome, their trust in the AI is likely to decrease. Conversely, 
if the cause of the negative decision is perceived as external to the 
AI, their trust in the system may not necessarily diminish. This 
presents a novel opportunity to examine the extent to which 
users’ trust in an AI is tied to the perceived locus of causality 
behind its decisions. 

Kelley [32] outlined three information variables that affect how 
people assign causality—namely, consensus, distinctiveness and 
consistency. This information model allows three possible ways 
of attribution, based on the factor that caused a variation in some 
effects: (a) over decision-making entities (from which consensus is 
derived); (b) over stimuli (from which distinctiveness is derived); and 
(c) over time/interactions (from which consistency is derived). More 
specifically, consensus pertains to whether a response aligns with 
that of others facing the same stimulus, distinctiveness refers to 
whether a response is associated distinctively with the stimulus, 
and consistency deals with whether the response is consistent over 
time and after multiple exposures to the same stimulus. These three 
variables thus signal the attribution of causality behind a decision as 
follows: 

• Internal Attribution: Users are more likely to attribute the 
cause as internal to the decision-making entity when pre-
sented with information that indicates low consensus, low 
distinctiveness, and high consistency [23, 32]. Consider the 
scenario where a student, Alex, fails a maths exam. In this 
scenario, the outcome—failing the exam—could be attributed 
to Alex themself or the stimulus (the exam). If most classmates 
passed the exam while Alex did not (low consensus), Alex also 
struggles in other subjects (low distinctiveness), and if Alex 

consistently found the maths exam difficult across multiple at-
tempts (high consistency), then the poor performance is likely 
attributed to factors internal to Alex, such as their insufficient 
preparation or understanding of the subject matter. 

• External Attribution: Users are more likely to attribute the 
cause as external to the decision-making entity when pre-
sented with information that indicates high consensus, high 
distinctiveness, and high consistency. Consider another ver-
sion of the scenario where Alex fails a maths exam. If most 
classmates also failed the exam (high consensus), Alex gener-
ally excels in other subjects (high distinctiveness), and if Alex 
consistently found the exam difficult across multiple attempts 
(high consistency), then the poor performance is likely attrib-
uted to external factors, such as the intrinsic difficulty of the 
exam or insufficient teaching, rather than internally to Alex. 

In this work, we utilise the aforementioned three information 
variables to manipulate the causal attribution behind AI decisions 
to be either internal or external to the AI. 

2.3 Contextual Factors affecting Perceptions 
of Trust in Automated Decision-Making 

Factors related to the decision-making context play a crucial role in 
shaping users’ trust in AI. Firstly, the favourability of an automated 
outcome impacts users’ trust and fairness perceptions [75]. Individ-
uals are more inclined to trust and accept AI decisions when the 
outcomes align with their interests, a tendency known as outcome 
favourability bias [10]. This bias can complicate trust appropriate-
ness, as it may overshadow the objective evaluation of an AI system’s 
trustworthiness, particularly when it provides an unfavourable out-
come. While outcome favourability bias influences trust based on 
the direct benefit or loss experienced by users, varying causal attribu-
tions can further complicate this relationship. Building on Tomlinson 
and Mayer’s causal attribution model [70], which theorises that trust 
may decline more sharply when unfavourable outcomes are attrib-
uted internally to the AI, we hypothesise that outcome favourability 
may moderate the relationship between causal attributions and trust. 
In particular, when an unfavourable outcome is attributed inter-
nally to the AI—perceived as a failure of the system’s capability or 
decision-making process—trust may decrease more sharply com-
pared to when the unfavourable outcome is attributed to external 
factors beyond the AI’s control. However, it remains to be empiri-
cally examined how internal and external loci of causality behind 
AI decisions differently influence trust, when these decisions are 
favourable or unfavourable. In this work, we aim to bridge this gap. 

Secondly, trust in AI systems is influenced by the stakes of the 
decision-making context [1, 31], which pertain to how grave the 
consequences of a decision can be. In high-stakes domains such as 
hiring [35, 40], medical diagnostics [11, 39, 50] and criminal justice 
[14, 43], the outcomes of AI decisions carry significant implications 
for individuals’ lives. Conversely, in lower-stakes domains such as 
personalised shopping [42] and music recommendations [63], the 
consequences of AI decisions are less severe, often only violating per-
sonal preferences at their worst. AI systems involved in low-stakes 
decision-making are generally perceived as more trustworthy than 
those in high-stakes situations, where users are more sensitive to 
perceived risks [2]. This heightened risk sensitivity in high-stakes 
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contexts suggests that perceived decision stakes may intensify the 
impact of causal attributions on trust. Specifically, as the potential 
risks or consequences associated with an AI’s decision increase, the 
role of causality may become more critical in shaping users’ trust. 
This warrants further exploration into how stakes might moder-
ate the relationship between causal attribution and trust, a gap we 
address in this work. 

Pop et al. [55] conducted a preliminary investigation into how 
(solely) an internal causal attribution impacted the perceived relia-
bility of an agent, finding that internal attributions make individuals 
with a higher dispositional trust in automation less sensitive to 
changes in AI accuracy. Our study builds upon their work by explor-
ing both internal and external causal attributions and their impact on 
trust. This broader approach addresses a crucial gap by investigating 
how trust is shaped not only by factors intrinsic to the AI but also 
by those external to its locus of control. Another significant limita-
tion of existing research is that it does not consider the interplay of 
causal attributions with decision stakes and outcome favourability. 
These factors are intrinsically intertwined in real-world AI-based 
decision-making, and their collective influence on trust dynamics 
can differ markedly from their individual impacts. 

Therefore, in this work, we address the above gaps by systemati-
cally evaluating the effects of causal attribution, decision stakes, and 
outcome favourability on trust. Our goal is to examine how each fac-
tor individually influences trust perceptions across scenarios, while 
also examining whether the impact of causal attributions on trust is 
moderated by stakes and favourability. Additionally, we investigate 
how dispositional factors, such as an individual’s general propensity 
to trust automation [34], shape trust in this experimental context. 

3 Method 
To explore how causal attributions, decision stakes, and outcome 
favourability impact trust, we conducted a within-subjects survey-
based experiment employing a mixed-methods design. This ap-
proach allowed us to collect both quantitative scores of trust percep-
tions and qualitative insights into the reasons behind these percep-
tions. In the following sections, we present the design considerations 
for crafting scenarios, discuss experimental manipulations, report 
manipulation check findings, and describe the main experiment 
procedure. 

3.1 Scenario Selection and Design 
We adopted a scenario-based approach which is widely employed 
in HCI research to elicit user opinions, attitudes, and trust in a con-
trolled manner [2, 7, 31, 38, 62]. This choice is also supported by the 
finding that participants’ behaviours during scenario-based studies 
often mirror their real-world reactions and decision-making pro-
cesses [38, 79]. 

3.1.1 Operationalising Causal Attributions, Stakes, and Outcome 
Favourability. We chose four scenario contexts commonly involving 
AI-based decision-making, and designed scenario variants for each 
combination of decision stakes, outcome favourability, and causal attri-
butions. We operationalised stakes through the high and low severity 
or risk posed by the scenario context—our two high stakes scenarios 
comprised (1) medical diagnostics and (2) hiring decisions, while the 
two low stakes scenarios involved (3) music recommendations and 

(4) weather-based clothing recommendations [31, 62]. Further, we 
manipulated outcome favourability by designing AI decisions that 
have a positive (favourable) or negative (unfavourable) impact on the 
human, such as approving a candidate to be hired for a job versus re-
jecting them. Lastly, causal attributions were signalled using Kelley’s 
framework of three information variables: consensus, distinctiveness, 
and consistency, that govern how we ascribe causality. The high and 
low values assigned to these variables follow Kelley’s foundational 
definitions [32], and are further validated by additional research 
[23, 55]. An internal attribution indicated that decisions stemmed 
from the AI’s inherent capabilities and algorithms, whereas an exter-
nal attribution suggested decisions were dependent on external fac-
tors, such as the quality of data supplied by external entities (e.g., the 
meteorological department in scenarios involving our Weather AI). 
Table 1 illustrates how we operationalised causality by detailing how 
each variable was expressed in the scenarios and providing example 
sentences from the high-stakes medical diagnostics scenario. We 
note that, since consistency represents the stability of an AI’s decision-
making across similar cases over time, it is held high and constant 
across both attributions to emphasise this stability, and to convey that 
the locus of causality remains constant and unchanging (i.e., it does 
not shift between internal and external within an interaction) [32]. 

3.1.2 Scenario Design and Creation. We systematically fixed both 
the participant’s and the AI’s role across scenarios to eliminate any 
confounding influences and ensure that the observed participant be-
haviours were attributable solely to our experimental manipulations. 
The roles are as follows: 

• Participants always assume the role of an actor within the 
scenario, being directly impacted by the AI’s decision. This 
design choice follows similar work [62] and aims to minimise 
the potential influence of the actor-observer bias, wherein 
individuals tend to attribute their own actions to situational 
(external) factors and others’ actions to their personal (inter-
nal) traits [29]. 

• The AI always functions as the decision-maker [21]. This 
design choice eliminates any potential confounding effects 
that might stem from shared responsibility in collaborative 
decision-making between the participant and the AI [41, 82]. 

We structured each scenario as follows: first, the decision-making 
context and the AI were introduced, highlighting how the human 
would be subject to the AI’s decision, operationalising our indepen-
dent variable decision stakes. Subsequently, the AI’s decision was 
revealed, operationalising our second independent variable outcome 
favourability, and then a specific locus of causality behind this deci-
sion was signalled, operationalising our third independent variable 
causal attribution. We utilised two levels each for decision stakes 
(high or low), outcome favourability (favourable or unfavourable), 
and causal attribution (internal or external), with two distinct sce-
narios for each stake level, necessitating the generation of 16 unique 
scenarios to cover all variable combinations. 

To generate the 16 scenario texts, we utilised ChatGPT (GPT-4), a 
large language model trained by OpenAI 1 . We iteratively refined our 
prompts to specify desired scenario characteristics, definitions of 
independent variables, experimental manipulations, and additional 

1https://openai.com/gpt-4 

https://1https://openai.com/gpt-4
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Table 1: Kelley’s three information variables (consensus, distinctiveness, and consistency) that influence how we perceive 
causality behind decisions, their interpretation, and operationalisation in our scenario texts. 

Locus of causality Kelley’s information variables and high/low values, collec-
tively signalling a locus of causality [32] 

An example operationalisation of these variables, in the 
medical diagnostics scenario 

Internal to the AI 
↓ Low Consensus: The AI’s decisions frequently differ from those 
made by other similar AI systems analysing the same input data. 

“MediScan AI frequently provides diagnoses that differ from those 
given by other diagnostic AIs for similar patient data.” 

↓ Low Distinctiveness: The AI’s behaviour is not distinct, i.e., 
it remains consistent across different situations, suggesting that 
the behaviour is a characteristic of the AI itself rather than being 
influenced by situational factors. 

“MediScan AI’s detection performance remains the same irrespective 
of the patient data it is assessing.” 

↑ High Consistency: The AI consistently makes the same 
decisions when presented with the same input, highlighting stable 
and predictable behaviour. 

“When analysing the same set of patient records repeatedly, MediScan 
AI provides the same diagnosis.” 

External to the AI 
↑ High Consensus: The AI’s decisions align with those made by 
other similar AI systems analysing the same input data. 

“MediScan AI’s diagnoses are frequently consistent with those given 
by other diagnostic AIs for similar patient data.” 

↑ High Distinctiveness: The AI’s behaviour changes significantly 
with different inputs or conditions, suggesting that its decisions are 
largely influenced by the specifics of the current situation rather 
than its inherent attributes. 

‘‘MediScan AI’s detection performance only varies depending on 
the patient scans and data the clinic supplies to it.” 

↑ High Consistency: The AI consistently makes the same 
decisions when presented with the same input, highlighting stable 
and predictable behaviour. 

“When analysing the same set of patient records repeatedly, MediScan 
AI provides the same diagnosis.” 

contextual details. The complete prompt and the final scenario texts 
are included in Appendix A. We reviewed the generated scenario 
texts to ensure alignment with our instructions and study require-
ments. Utilising a language model to generate scenario texts allowed 
us to maintain consistency across scenarios, minimising unintended 
variability and ensuring variations in participant responses can be 
attributed to our manipulations rather than random differences in 
stimulus wording, following past research [8, 15]. 

3.2 Manipulation Check 
3.2.1 Method. We conducted a series of pilot tests and a manip-
ulation check to ensure the generated scenarios accurately opera-
tionalised our independent variables and our manipulations were 
perceived as intended. Feedback from the pilot testing helped us 
disambiguate confusing sentences and enhance clarity. For the ma-
nipulation check, each participant was presented with four of the 16 
scenarios, each featuring a distinct combination of our independent 
variables. This selection was structured to ensure all participants 
equally experienced internal and external causal attributions, high 
and low stakes, and favourable and unfavourable outcomes. We ran-
domised the order in which we presented the scenarios to control 
for ordering effects. Participants were asked to read the scenario, 
imagine themselves in the given situation, and report their percep-
tions of each AI decision’s stakes and locus of causality. Outcome 
favourability was not subjected to a manipulation check because the 
favourability of the AI’s decision was explicit within scenario texts. 

3.2.2 Measures and Participants. For perceived stakes, participants 
rated the significance of the consequences of the AI’s decision on a 
4-point scale ranging from 1 (“Not significant at all”) to 4 (“Very signif-
icant”), following past research [2, 62]. For the locus of causality, we 
adopted Russell’s causal dimension scale [61], specifically the ‘locus 

of causality’ sub-scale, which consisted of three items rated on 9-
point semantic differential scales. Consequently, the locus of causal-
ity scores ranged from 3 to 27, with higher scores indicating partic-
ipants attributed the decision internally to the AI, and lower scores 
suggesting attribution to factors external to the AI’s locus of control. 

We recruited 24 participants who were located in the United States, 
were native English speakers, and had a platform approval rating 
≥ 98%, through the crowdsourcing platform Prolific 2 . Participants 
took a median time of 6 minutes to complete the survey and received 
US$2 for participation. 

3.2.3 Results. A Wilcoxon signed-rank test revealed a statistically 
significant difference in how participants perceived the impact of 
decisions between high (Median = 4, M = 3.68, SD = 0.46) and low 
(Median = 2, M = 2.35, SD = 0.83) stake scenarios (V = 850.5, p < 
.001). This finding validates our stakes manipulation; high stakes 
scenarios were indeed regarded by participants as considerably more 
consequential than their low stakes counterparts (Figure 1 (left)). 
Further, we conducted a paired t-test to verify the effectiveness of 
our causal attribution manipulation. Results showed a statistically 
significant difference in the perceived locus of causality between 
scenarios designed with internal attributions (M = 22.16, SD = 4.93) 
and those with external attributions (M = 12.29, SD = 6.50) (t(47) = 
7.54, p < .001, 95% CI between 7.24 and 12.51). Since higher scores 
on the causal scale indicate an internal attribution, these findings 
validate our causal attribution manipulation: scenarios intended to 
portray a locus of causality internal (external) to the AI were indeed 
perceived as such by participants (Figure 1 (right)). 

Given these findings, we are confident that our scenarios effec-
tively operationalised our intended experimental manipulations and 
were thus suitable for the main experiment. The full scenario texts 
are included in Appendix B. 

2https://www.prolific.com/ 

https://2https://www.prolific.com
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Figure 1: Manipulation check outcomes. (left): Comparison of perceived stakes (1 = Very Low, 4 = Very High) against the stakes 
operationalised in the scenarios. (right): Comparison of perceived causal attributions (lower scores = external attribution, higher 
scores = internal attribution) against attribution intended through the scenarios. 

3.3 Main Experiment 
The main experiment employed a 2 (causal attributions: internal vs. 
external) × 2 (decision stakes: high vs. low) × 2 (outcome favourability: 
favourable vs. unfavourable) within-subjects factorial design. We 
deliberately did not introduce a condition where causality was not 
signalled. Past research suggests that in the context of AI systems, 
the absence of causal information is rarely ‘neutral’ and can lead 
to assumptions or default attributions based on individual biases or 
past experiences [55], which could confound the causal impact we 
aim to measure. 

In addition to testing the direct influence of these three binary 
predictors on situational trust in AI, we also sought to investigate 
how the impact of causal attribution is moderated by the stakes and 
the favourability of the decision. Thus, we examined two interaction 
effects, each exploring the interplay between attribution and stakes, 
and attribution and favourability. We did not examine a three-way 
interaction (stakes, favourability, and attribution) as no strong theo-
retical or empirical basis in the literature supports a joint moderation 
effect of both favourability and stakes on how causal attribution im-
pacts trust in human-AI interaction. To calculate our sample size, 
we utilised the R package InteractionPoweR [4], which accounts 
for the larger sample size requirements of interaction effects and 
allows variables to be non-continuous (i.e., binary or ordinal) [5], 
both requirements of our experimental setup. The minimum recom-
mended sample size was 182 participants, considering an 𝛼 = 0.05, 
and a power of 0.8 [13, 67, 71]. To ensure balance across our exper-
imental conditions, we conservatively recruited 192 participants, 
with a mean age of 40.19 years (SD = 14.35). 

We deployed our study on Prolific, utilising the same participant 
screening criteria as our manipulation check, and recruited an equal 
number of men and women who had not participated in our manipu-
lation check. Participants joined our study exactly once, and passed 
at least one of two attention checks, thus no data was excluded from 
analysis. Participants took a median time of around 18 minutes to 
complete the survey and were compensated US$4.70 for their time, 
well above the minimum hourly wage recommended by Prolific 3 . 
Our university’s Human Ethics Committee approved the study. 

3https://researcher-help.prolific.com/en/article/9cd998 

3.3.1 Measures. Dispositional Trust: We captured participants’ dis-
positional trust inautomationusing the Trust in Automation -Propen-
sity to Trust (TiA-PtT) questionnaire [34] (Fig 2 (a)), as disposi-
tional trust is known to influence trust experienced in AI systems 
[52, 53, 74]. This measure captures an individual’s general propen-
sity or inclination to trust automation, irrespective of the specific 
context or type of technology. 

Situational Trust: Captured after the AI’s decision and the asso-
ciated causal attribution are revealed, Situational Trust reflects the 
actual trust a participant experiences in the AI post-decision [24]. To 
measure this, we employed the TXAI scale [25], which has been val-
idated specifically for use in Human-AI contexts by Perrig et al. [54]. 
Following their recommendations, we excluded the potentially prob-
lematic scale items they identified, ensuring the use of a robust and 
reliable instrument to measure trust across our scenarios. The resul-
tant 4-item TXAI questionnaire was administered on a 5-point Likert 
scale ranging from 1 (“Strongly disagree”) to 5 (“Strongly agree”). 
In our study, the TXAI scale demonstrated high internal reliability 
with a Cronbach’s 𝛼 of 0.95 (95% CI between 0.94 and 0.96). 

3.3.2 Procedure. Fig 2 illustrates the complete experiment flow. 
Each participant was assigned one level of decision stakes: high vs. 
low, outcome favourability: favourable vs. unfavourable, and causal 
attributions: internal vs. external for every scenario (Fig 2 (b, c, d)). 
Each participant engaged with four scenarios, selected in a strategi-
cally counterbalanced way to ensure every level of our independent 
variable was encountered an equal number of times by every partic-
ipant. This counterbalancing controlled for potential order effects 
and provided a balanced representation of conditions across the 
participant pool. 

The survey began with a pre-task questionnaire (Fig 2 (a)) to gather 
participants’ demographic information and their Dispositional Trust 
(TiA-PtT). We then informed participants that they would be pre-
sented with a series of scenarios involving AI-based decision-making, 
instructing them to imagine themselves in these contexts and answer 
questions that followed. 

Participants read each scenario, which introduced the decision-
making context, subsequently revealing the AI decision and sig-
nalling a locus of causality behind it (Fig 2 (e)). Participants were 

https://3https://researcher-help.prolific.com/en/article/9cd998
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Figure 2: The full experiment flow. All participants view four scenarios in a randomised manner, with combinations of stakes, 
outcome favourability, and causal attribution strategically counterbalanced across participants. (a): Pre-task questionnaire, 
demographic data and Dispositional Trust measured. (b, c, d): For each scenario, a combination of decision-making stakes (low 
or high), outcome favourability (favourable or unfavourable), and causality behind the decision (internal or external to the AI) 
chosen for each participant. (e): Corresponding scenario text presented, describing the decision-making context, subsequently 
revealing the AI’s decision, and signalling a locus of causality behind it. (f): Participants’ Situational Trust in the AI measured. 
(g): Process repeated for all four scenarios seen by a participant. (h): Post-task questionnaire and debriefing. 

then asked to report perceptions of their Situational Trust in the given 
AI (Fig 2 (f)). These Likert scales included an attention-check ques-
tion at random, asking participants to select a specific scale response. 
Each participant was presented with two attention-check questions. 

Following each scenario, participants responded to two open-
ended questions specifically exploring the factors that influenced 
their trust in the given AI. At the study’s conclusion, after all four 
scenarios were shown, two more open-ended questions were asked, 
which encouraged participants to reflect on their trust perceptions 
across the AIs in the different scenarios and describe how they per-
ceived causes behind these automated decisions (Fig 2 (h)). 

4 Results 
We employ a Cumulative Link Mixed Model (CLMM) to investigate 
how the perceived locus of causality behind AI decisions (RQ1) and 
contextual factors such as the decision stakes and outcome favoura-
bility (RQ2) influence Situational Trust in AI. We further perform 
post-hoc analyses to obtain pairwise contrasts between different 
levels of our independent variables and report the corresponding Es-
timated Marginal Means (EMM). Details of participant demographics 
are presented in Appendix C. 

4.1 Model Construction 
Participants’ Situational Trust in AI (Section 3.3.1) formed our de-
pendent variable. The scale comprised four 5-point Likert scale 
items, each ranging from 1 (indicative of low perceived trust) to 
5 (indicative of high perceived trust). Given their ordinal nature, 
we employed a Cumulative Link Mixed Model (CLMM) to investi-
gate the effects of the independent variables stakes, favourability, 
and attribution on Situational Trust. In this model, we also included 
Dispositional Trust (TiA-PtT) to account for how participants’ gen-
eral disposition to trust automation may impact their Situational 
Trust. Despite the high internal consistency and reliability of our 

trust scale (Cronbach’s 𝛼 of 0.95, 95% CI between 0.94 and 0.96), 
we included question IDs (QID) of scale items as random effects 
in our model to account for any potential variability in responses 
that could stem from specific scale items. Additionally, participant 
IDs (PID) were incorporated as random effects to control for in-
dividual differences and potential correlations amongst repeated 
measurements from the same participant. The resultant CLMM func-
tion was as follows: Situational_Trust ∼ TiA-PtT + Stakes 
+ Favourability + Attribution + Attribution:Stakes + 
Attribution:Favourability + (1|QID) + (1|PID). 

We employed the statistical R package ordinal to build our 
CLMM. We calculated the Variance Inflation factor (VIF) to check for 
multicollinearity across the independent variables, and the obtained 
VIF values ranged from 1.00 to 1.51, well below the commonly used 
threshold of 5 to detect multicollinearity [59]. 

4.2 Quantitative Results 
The results of our CLMM analysis are presented in Table 2, and Es-
timated Marginal Means (EMMs) obtained from post-hoc analyses 
are illustrated in Figure 3. 

We observed a statistically significant main effect of stakes on 
Situational Trust (𝛽 = 1.510, SE = 0.102, p < 0.001). Participants were 
more likely to trust AI in low stakes scenarios (EMM = -0.140, SE = 
0.146) compared to high stakes scenarios (EMM = -1.32, SE = 0.148), 
as illustrated in Figure 3 (a). Further, we found a significant main 
effect of outcome favourability on Situational Trust (𝛽 = -2.348, 
SE = 0.107, p < 0.001). Participants exhibited lower trust in AI when 
its decision was unfavourable (EMM = -1.888, SE = 0.150), compared 
to favourable (EMM = 0.427, SE = 0.146), as depicted in Figure 3 (b). 

Imperatively, we observed a significant main effect of causal 
attribution on Situational Trust (𝛽 = -0.314, SE = 0.116, p = 0.006). 
Participants experienced greater trust in AI when they perceived 
the locus of causality behind decisions to lie external to the AI (EMM 
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Table 2: Effect of predictors on participants’ Situational Trust perceptions. Statistically significant main and interaction effects (p < 
0.05) are in bold. The sign of the estimate (+/-) denotes the direction of the relationship between the predictor and Situational Trust. 

Variable Estimate Std. Error p-value 

Baselines: 
Stakes = High, Favourability = Favourable, Attribution = External 

Stakes = Low 1.510 0.102 < 0.001 
Favourability = Unfavourable -2.348 0.107 < 0.001 
Attribution = Internal -0.314 0.116 0.006 
Dispositional Trust (TiA-PtT) 0.376 0.044 < 0.001 
Stakes = Low : Attribution = Internal -0.659 0.140 < 0.001 
Favourability = Unfavourable : Attribution = Internal 0.065 0.139 0.637 

p < 0.001 

−1.5 

−1.0 

−0.5 

0.0 

Low High 

Decision Stakes 

E
M

M
 o

f S
itu

at
io

na
l T

ru
st

 

(a) Effect of Stakes 

p < 0.001 

−2 

−1 

0 

1 

Favourable Unfavourable 

Decision Favourability 

E
M

M
 o

f S
itu

at
io

na
l T

ru
st

 

(b) Effect of Favourability 

p = 0.006 

−1.5 

−1.0 

−0.5 

0.0 

External Internal 

Causal Attribution 

E
M

M
 o

f S
itu

at
io

na
l T

ru
st

 

(c) Effect of Attribution 

−4 

−2 

0 

2 

2 4 6 8 10 12 14 

TiA−PtT (Dispositional Trust) 

E
M

M
 o

f S
itu

at
io

na
l T

ru
st

 

(d) Effect of Dispositional Trust 
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Figure 3: Plots illustrating the main effect of (a) Decision Stakes; (b) Outcome Favourability; (c) Causal Attribution; (d) 
Dispositional Trust; (e) and the interaction effect between Decision Stakes and Causal Attribution on Situational Trust. Error 
bars denote Standard Error (SE), while the shaded area in Plot (d) denotes 95% CI. 

= -0.447, SE = 0.149), compared to being internal to the AI (EMM = 
-1.177, SE = 0.151). In other words, there is a pronounced increase 
in trust in AI when its decisions are perceived to be attributed to 
factors external to it. This effect is illustrated in Figure 3 (c). 

Moreover, participants with a higher dispositional trust in au-
tomation (TiA-PtT) demonstrated significantly greater Situational 
Trust in AI (𝛽 = 0.376, SE = 0.044, p < 0.001) (Figure 3 (d)). 

Further, we observed a significant interaction effect between 
stakes and attribution (𝛽 = -0.659, SE = 0.140, p < 0.001), illustrated 
in Figure 3 (e). A post-hoc analysis revealed that while an external 
attribution consistently fostered higher trust than an internal attri-
bution, for both high stakes (high, internal vs. high, external: 𝛽 = 
0.307, SE = 0.102, p = 0.013) and low stakes scenarios (low, internal 

vs. low, external: 𝛽 = 1.003, SE = 0.098, p < 0.001), this effect is signifi-
cantly stronger in low stakes scenarios compared to high stakes ones. 
Specifically, we did not find that the effect of internal attribution 
significantly varies between high and low stakes scenarios (high, 
internal vs. low, internal: 𝛽 = -0.285, SE = 0.111, p = 0.052). Conversely, 
we found that external attribution enhances trust to a much larger 
degree in low stakes scenarios compared to high stakes ones (high, 
external vs. low, external: 𝛽 = -0.981, SE = 0.112, p < 0.001). 

Lastly, no significant interaction effect was observed between 
favourability and attribution on participants’ Situational Trust 
(p = 0.637). In other words, we did not find the perceived favoura-
bility of an outcome to moderate the relationship between causal 
attributions and Situational Trust. 
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4.3 Qualitative Results 
We employed a deductive thematic analysis approach as outlined 
by Braun and Clarke [9] to analyse our qualitative responses. Be-
fore examining the data, we developed a coding framework based 
on existing literature tailored to our research objectives, which fo-
cused on how decision-making stakes, outcome favourability, locus 
of causality, and interactions amongst these factors influence trust 
perceptions. This framework guided our initial coding efforts, help-
ing us ground our analysis in theoretically relevant themes. We 
first familiarised ourselves with the raw data. Subsequently, we sys-
tematically coded the data, labelling participant responses (or parts 
thereof) according to our predetermined themes until we achieved 
data saturation. Each response was methodically assigned to appro-
priate themes during this process. We subsequently reviewed and 
refined each theme to ensure it accurately reflects both the data and 
our theoretical motivations. Any ambiguities or discrepancies in 
interpretation were resolved through iterative discussions amongst 
the different members of the research team. 

The following section presents our themes in detail. To contextu-
alise the presented participant quotes, each is accompanied by a brief 
description (a 3-tuple) outlining the stakes, outcome favourability, 
and causal attribution of the experimental condition from which the 
quote originates. 

4.3.1 Decision Stakes and Outcome Favourability. Our qualitative 
analysis revealed a clear divergence in trust perceptions based on 
the stakes involved in the AI’s decision-making context, mirroring 
our quantitative findings. Most participants hesitated to trust AI in 
scenarios perceived as high stakes, where the consequences of the 
AI’s decisions were deemed significant; “Trusting AI for something 
like medical diagnosis is scary.” - P59 (High, Favourable, External), 
and “I didn’t trust [the AI] much, I think using AI to hire and filter out 
resumes is very dangerous.” - P123 (High, Unfavourable, Internal). 
Conversely, in scenarios characterised by low stakes, where deci-
sions bore minimal risk, participants were notably more inclined 
to trust the given AI; “I generally trust AI with something as incon-
sequential as music.” - P29 (Low, Favourable, External), and “I would 
trust this [weather AI] off the bat because it’s not high risk decision 
making.” - P121 (Low, Favourable, Internal). 

We also found outcome favourability toprofoundly impact trust 
in our AIs — many participants expressed a notable increase in trust 
following favourable AI decisions. This phenomenon was evident 
in both high-stakes contexts; “At first, I was apprehensive [of trusting 
the medical AI], but the positive result made me trust it more.” - P18 
(High, Favourable, Internal), as well as low-stakes contexts; “My trust 
in [the weather-based clothing recommendation AI] increased after it 
gave me helpful apparel choices.” - P146 (Low, Favourable, External). 

In contrast to how positive outcomes fostered greater trust, nega-
tive AI outcomes significantly eroded trust. In high-stakes contexts, 
unfavourable decisions by AI markedly diminished trust levels; “I 
trusted [the medical] AI to parse through its library of information to 
make an informed diagnosis, but as soon as my illness went undetected, 
that trust went away real quick.” - P30 (High, Unfavourable, Internal). 
Trust was also further depleted amongst those who were hesitant 
to trust AI to begin with; “I was skeptical of the [hiring] AI at first, 
much preferring a human review to an AI review. Upon being rejected, 
I viewed the AI even more unfavorably.” - P141 (High, Unfavourable, 

External). Further, we observed a similar negative influence of un-
favourable outcomes on trust during low-stakes scenarios; “Initially, 
it sounded as though the AI would accurately present music that I 
would like. I trusted that it would, and my trust was broken.” - P25 
(Low, Unfavourable, External). 

4.3.2 Locus of Causality and Perceived Responsibility. Our quan-
titative analysis demonstrated that trust in AI was notably lower 
when the locus of causality was internal to the AI (Figure 3 (c)). 
Qualitative insights reveal that when participants perceive 
an internal locus of causality, it leads them to view the AI as 
“excessively autonomous” and as the sole decision-maker, en-
dowed with significant decision-making responsibility. This 
perception raises concerns over the lack of human oversight and 
diminishes trust. 

Internal Attribution During High-Stakes. Our qualitative find-
ings show that the effects of internal attribution on trust were in-
tensified during high-stakes decision-making scenarios, mirroring 
our quantitative findings (Figure 3 (e)). Participants were unable to 
trust the AI in such high-stakes situations when they perceived it 
as acting with greater agency and without human oversight — both 
when its decisions were unfavourable; “It seems to have a lot of control 
over my [medical] outcome. I don’t trust its judgement.” - P188 (High, 
Unfavourable, Internal), as well as favourable; “Even though [the 
medical AI] did well for me, I’m slow to trust when it’s just the AI mak-
ing life-changing decisions without any human check. It feels too risky.” 
- P167 (High, Favourable, Internal). The AI having substantial respon-
sibility for decisions also led to direct blame and strong criticism of 
its capabilities; “I did not trust [the hiring AI] to start, but hoped that it 
would have been capable enough [...]. When I was rejected and learned 
that its output differed from other AIs, I felt that its algorithm is poorly 
trained/incapable and I blame it.” - P36 (High, Unfavourable, Internal). 

Internal Attribution During Low-Stakes. For an internal at-
tribution in low-stakes scenarios, our quantitative analysis still in-
dicated a lower level of trust, albeit not as low as during high-stakes 
scenarios. Our qualitative analysis highlights that even when AI 
decisions were unfavourable in such contexts, the lower stakes did 
not warrant a significant degradation of trust, as the consequences 
were relatively minor: “I ended up cold and with a light jacket based 
on a bad [AI] prediction. This should have been easy for the AI but I 
don’t fully distrust it because I didn’t have much to lose.” - P86 (Low, 
Unfavourable, Internal). Interestingly, in such low stake contexts, 
some participants saw the AI’s low consensus with other models 
not as a flaw, but as a potential indication of superior capabilities: 
“At first, the AI obviously made a slight error when it recommended 
the jacket, which makes me think it is not highly reliable. However, it 
makes me confident that this AI differs from other AI models because 
to me it indicates that it was probably more carefully trained than the 
others.” - P69 (Low, Unfavourable, Internal). 

Furthermore, quantitative analysis indicated that trust in AI was 
considerably higher for an external locus of causality (Figure 3 (c)). 
Qualitative insights highlight that this increased trust stems 
from participants perceiving the AI less as an autonomous 
decision-maker and more as a component within a larger 
decision-making ecosystem. External attributions often caused 
participants to shift responsibility from the AI alone to include other 
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factors or entities involved in the decision-making process, thereby 
reducing perceived AI agency and increasing their trust. 

External Attribution During High-Stakes. For external at-
tributions in high-stakes scenarios, quantitatively we found that 
participants consistently reported higher trust compared to internal 
attributions across both high and low stakes. Qualitative findings 
reveal that external attributions helped participants become more 
cognisant of the AI’s dependency on external inputs, highlighting 
a perceived mental model of shared responsibility where the AI was 
not seen as the sole responsible agent; “[...] The AI could only use the 
data provided to it for decision making, and it is possible it did not have 
all of the necessary data to make a truly informed [medical] diagnosis.” -
P3 (High, Unfavourable, External). With participants recognising the 
AI’s role as part of a larger decision-making ecosystem, their scrutiny 
was also extended to the entities responsible for data provision; “I 
somewhat trusted [the hiring AI] – the error could be with the recruit-
ing company which gave the AI my information, or how [the AI] was 
trained, possibly causing me to be rejected. That’s human error - not AI.” 
- P16 (High, Unfavourable, External) and decision oversight; “[The AI] 
is dependent on inputs and quality checks by the medical community, so 
they’re responsible in my eyes!” - P191 (High, Unfavourable, External). 

External Attribution During Low-Stakes. In contrast, for an ex-
ternal attribution in low-stakes scenarios, our quantitative findings 
indicated that participants exhibited a high level of trust in the AI. 
This trust resilience stemmed largely from participants perceiving 
the AI to have limited agency over the decision-making process. 
With the locus of causality shifted away from the AI, participants 
perceived it more as a tool or conduit rather than an independent 
agent; “I continue to trust it. The [music] AI makes decisions based on 
the data received, not what it perceives to be anyone’s best interests. It 
doesn’t have values. It can make reliable decisions only insofar as the 
received data was accurate and reliable.” - P12 (Low, Unfavourable, 
External). This perception also shaped how participants assigned 
blame for unfavourable outcomes, reducing the culpability attrib-
uted to the AI when it was not seen as the sole decision-maker; “My 
trust did not decrease. It’s not the AI’s fault because it relies purely on 
weather data.” - P26 (Low, Unfavourable, External). 

5 Discussion 
In this study, we investigated two fundamental aspects of end-user 
trust in AI systems: how the perceived locus of causality behind AI 
decisions—whether attributed internally or externally to the AI— 
affects trust (RQ1) and how contextual factors such as decision stakes 
and outcome favourability moderate this relationship (RQ2). Our 
findings reveal that causal attribution is a significant determinant 
of trust in AI, with users exhibiting greater trust when decisions are 
attributed externally rather than internally. Additionally, decision 
stakes moderate this relationship, with external attributions enhanc-
ing trust more substantially in low-stakes scenarios compared to 
high-stakes ones, while outcome favourability does not influence the 
relationship between causal attribution and trust. In the following 
sections, we unpack our quantitative findings and present relevant 
qualitative insights, highlighting how causal attributions influence 
users’ perceptions of responsibility, agency, control, and human 
oversight, collectively shaping trust. We conclude by discussing the 
implications of these findings. 

5.1 Causal Attribution: A Crucial, Yet 
Overlooked, Determinant of Trust in AI (RQ1) 

Attribution theory posits that humans have an inherent drive to iden-
tify the causes behind actions and outcomes, fundamentally shaping 
everyday reasoning [70, 77]. Our findings demonstrate that this cog-
nitive tendency also extends to Human-AI interactions, where the 
perceived locus of causality behind AI decisions crucially shapes 
user trust. Participants consistently demonstrated greater trust in 
AI when decisions were attributed to external factors—such as the 
quality of input data—while attributing decisions to the AI’s own 
algorithms or decision-making processes led to substantially lower 
trust. This distinction underscores an important behaviour: users 
interfacing with AI systems actively seek to understand the 
causal mechanisms behind AI decisions, and their trust is 
contingent upon and highly sensitive to their understanding 
of these mechanisms. With a shift in causal attribution, users’ 
perception of the AI’s trustworthiness also shifted, even though the 
AI’s core functionality remained unchanged. 

It is noteworthy that in existing Human-AI decision-making lit-
erature, the impact of causal attributions on trust is often implic-
itly embedded within experimental setups but seldom explicitly 
acknowledged or examined. For example, recent scenario-based stud-
ies wherein users engage with AI systems for high- and low-stakes 
decisions [31, 62] do not explicitly signal causality, yet causality is in-
herently baked into their scenarios—participants are bound to infer 
some locus of causality when examining these AI decisions [33, 77]. 
Even when causal information is not explicitly signalled, partici-
pants do not perceive a neutral locus of causality; they often resort 
to default attributions influenced by personal biases or past AI expe-
riences [55]. Depending on whether participants view decisions as 
resulting from the AI’s inherent capabilities (internal locus of causal-
ity) or recognise the involvement of external factors such as input 
data quality (external locus of causality), they may perceive a dif-
ferent locus of causality behind the same automated decision. 
This introduces potential confounds in experiments that do 
not account for these perceptions, as participants’ trust in AI 
can vary significantly based on where they attribute the cause 
behind its decisions. Consequently, it is plausible that in works 
such as the aforementioned scenario-based studies, the observed 
trust levels were influenced by how much of the decision-making 
their participants attributed to the AI’s “intelligence” versus to the 
data it processes. Given our findings on the pivotal role of causal 
perceptions in shaping trust, overlooking this factor in Human-AI 
research can lead to an incomplete or inaccurate understanding of 
trust dynamics, potentially also skewing trust calibration efforts. 

Overall, our results advocate for the recognition and incorpora-
tion of causal attribution as a determinant of trust in Human-AI 
interaction research. We also underscore the need for a deeper exam-
ination of how attribution is presented and perceived, and emphasise 
the importance of clearly communicating the causal mechanisms 
behind AI decisions, especially when investigating trust dynamics. 

In the following sections, we explore the various reasons why 
causal attributions so profoundly shape trust in AI. We discuss how 
they influence perceptions of AI agency, control, and responsibil-
ity, and outline the role of factors such as human oversight and 
intentionality. 
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5.1.1 Causal Attribution Impacts Perceptions of AI Agency. 
Our qualitative analysis indicates that the primary reason causal 
attributions significantly impacted trust was their influence on per-
ceptions of the AI’s agency within the decision-making process. 
Agency, in this context, refers to the capacity to act intentionally 
and autonomously, make choices, and exert influence over outcomes 
[3, 84]. Research has shown that different levels of AI agency can sig-
nificantly influence how responsibility is ascribed to AI, its designers, 
and users [28]. Interestingly, our findings suggest that perceptions 
of causality—whether attributed internally or externally to the AI— 
profoundly shape participants’ perceptions of AI agency, control, 
and authority, thereby influencing trust in AI. 

When AI decisions are attributed internally, participants 
ascribe human-like qualities of agency and control to the AI 
in the decision-making. We find that this perception impacted 
trust in two distinct ways. First, participants viewed the AI as the sole 
arbiter of decisions, leading to increased scrutiny of its capabilities 
and higher expectations. Our qualitative data indicates that in such 
cases, participants often expected the AI to perform flawlessly, mir-
roring past research suggesting that individuals expect automation 
to be ‘perfect’ while being more accepting of human decision-makers 
being imperfect [46]. This increased scrutiny and high expectations 
reduced participants’ willingness to trust the AI. Secondly, and more 
importantly, internal attributions also caused concerns about the 
AI’s unchecked authority and “excessive autonomy”. Our qualitative 
results indicate that internal attributions likely ascribed a form of 
intentional agency to the AI [28, 64], where the AI was perceived as 
making decisions intentionally and autonomously. Schlosser [64] 
put forth two notions of agency: causal agency – the ability to cause 
an effect, and intentional agency – the ability to act with a purpose or 
goal in mind. Our findings suggest that during internal attribution, 
when participants attribute causal agency to AI (i.e., they believe the 
AI is the primary cause of its decisions), they are also more likely 
to perceive the AI as capable of intentional agency (i.e., making 
decisions with a purpose or goal in mind). This perception could 
arise from the belief that the AI’s decisions reflect more than its 
programming, suggesting a level of intentionality, which highlights 
an avenue for future research into how users perceiving different loci 
of causality view AI intent. Additionally, future research could inves-
tigate whether individuals who are resistant to trusting automation, 
such as those with high levels of algorithm aversion [30, 56], are 
more inclined to default to internal attributions of causality. This 
tendency could exacerbate their scepticism and contribute to low AI 
trust, emphasising the need to develop trust calibration strategies 
that account for such tendencies. 

Conversely, external attributions portray the AI more as 
a technical, probabilistic “tool” reliant on various external 
factors, rather than an autonomous “intelligent agent”. Our 
qualitative findings suggest that by highlighting the presence of 
other factors and actors in the decision-making process, such as data 
quality and providers, external attributions reduced the perceived 
intentional agency of AI [64], demystifying the “intelligent” system. 
Participants largely saw the AI as a tool designed by humans and de-
pendent on external data rather than an autonomous decision-maker. 
Recognising that the AI operated within a broader decision-making 
ecosystem alleviated participants’ concerns over “excessive auton-
omy”, and in turn, participants felt more comfortable to trust the AI. 

5.1.2 Internal Attribution Concentrates Responsibility while 
External Attribution Shares the Burden. Our findings reveal 
that causal attributions also significantly influenced perceptions of 
decision/outcome responsibility, which in turn impacted trust in AI. 
When decisions were attributed internally, participants perceived 
the AI as bearing the entire burden of responsibility, ascribing to it 
outcome responsibility [73]. This concentration of responsibility 
led to lower trust, as participants were concerned about the AI’s 
potential for error and the lack of human oversight. In contrast, ex-
ternal attributions distributed responsibility among various entities 
in the decision-making framework, prompting participants to trust 
the AI more. Participants felt reassured knowing that the AI 
operated within a system of checks and balances, where data 
providers and human overseers also played crucial roles. No-
tably, participants extended their scrutiny to entities such as medical 
practitioners or recruiting companies supplying the AI data, recog-
nising the AI’s dependence on external inputs and quality checks. 
This diffusion of responsibility mitigated concerns about AI’s 
autonomy, enhancing user trust. 

These findings suggest that users are more likely to trust AI sys-
tems when responsibility is shared among multiple entities, reflect-
ing a preference for collaborative and accountable decision-making 
processes. These findings also underscore the importance of trans-
parent communication about the ecosystem in which AI operates, 
highlighting the roles of various stakeholders to end-users of AI 
systems. Future research could further investigate trust perceptions 
when responsibility is explicitly shared and communicated, explor-
ing how different attributions of responsibility affect user trust. 

Causal Attribution Signalling Can Help Demystify AI Sys-
tems. The notion of a “correct” locus of causality for AI decisions 
is complex—all AI systems are fundamentally reliant on external 
factors such as input data quality, training procedures, and human 
oversight. These systems largely lack intrinsic intentionality or au-
tonomous decision-making capabilities, operating instead within 
the constraints of their programming and data. Therefore, external 
attributions may more accurately represent the reality of AI decision-
making, with AI acting as a probabilistic conduit rather than an in-
dependent agent. However, it is important to recognise that internal 
causal attributions can nevertheless emerge from users’ perceptions, 
especially when AI is seen as making decisions “autonomously”. This 
sociotechnical blindness [27] exists, and reflects a misunderstanding 
of the technical realities of AI systems, potentially leading to de-
creased trust or even automation aversion. We hope that this work 
serves as a starting point for re-framing the discourse around 
making AI systems appear more autonomous, agentic, and 
anthropomorphised, by demonstrating how attributing more 
agency to AI can lead to decreased trust and increased scepti-
cism. It is imperative for future research to explore ways of demysti-
fying AI systems and educating users about their probabilistic nature, 
rather than portraying them as intelligent all-knowing entities. 

5.2 How Contextual Factors Moderate the Impact 
of Causal Attributions on Trust in AI (RQ2) 

5.2.1 The Effect of Causal Attribution on Trust Depends on 
Decision Stakes. Our results re-emphasise the influence of de-
cision stakes on trust [1, 2, 31]: trust was considerably higher in 
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low-stakes scenarios such as music recommendations compared to 
high-stakes scenarios such as medical diagnostics. Additionally, our 
results showcase that decision stakes moderate the impact of causal 
attribution on trust. We found that while external attributions foster 
higher trust, they do so even more significantly in low-stakes scenar-
ios compared to high-stakes ones. The effect of an external causal 
attribution on trust is amplified in low-stakes scenarios due 
to the consequences of (incorrect) decisions being less severe, 
reducing the perceived risk associated with trusting the AI, 
in turn boosting trust. Conversely, in high-stakes scenarios, par-
ticipants’ trust remained low regardless of whether they perceived 
an internal or external attribution. 

These results reveal important insights about trust in AI sys-
tems during decision-making scenarios. While external attributions 
enhance trust in low-stakes scenarios by reducing perceived AI 
autonomy and highlighting shared responsibility, this approach is 
insufficient in high-stakes contexts, where the perceived risk and 
potential consequences of AI decisions overshadow the influence of 
causal attribution on trust. Therefore, we posit that when designing 
approaches for trust calibration, trust-building strategies need 
to be context-dependent: while signalling an external locus 
of causality can foster trust in low-stakes contexts, strate-
gies must go beyond signalling causality during high-stakes 
contexts. Users should trust AI in high-stakes scenarios when it 
is warranted. Our results highlight the need for future research to 
explore how to communicate risk in high-stakes AI-assisted decision-
making, ensuring trust is grounded in AI performance rather than 
perceived risk. Transparent communication of AI confidence [83], 
clear explanations of decision-making processes [65, 76], and mech-
anisms that highlight human oversight may help foster trust (when 
warranted) even when stakes are high. 

5.2.2 Outcome Favourability and Causal Attributions Inde-
pendently Affect Trust in AI. We find that trust was higher when 
the AI made a favourable decision compared to an unfavourable one, 
consistent with the phenomenon of outcome favourability bias [10]. 
However, while both causal attribution and outcome favourability 
individually influence trust, we did not find an interaction effect 
between these two factors. Specifically, while participants’ trust 
significantly decreases with an unfavourable outcome or an internal 
attribution independently, we did not find evidence that attribut-
ing an unfavourable outcome internally to the AI (to its capability 
and algorithms) decreases trust more than when such an outcome 
is attributed to external factors [70]. This finding challenges prior 
speculations that negative outcomes, when seen as directly resulting 
from the AI’s capabilities (an internal locus of causality), would erode 
trust more severely [70]. 

In practice, these findings suggest that efforts to build trust in 
AI systems should address the independent effects of attribution 
and favourability. For instance, transparently communicating the 
sources of data and highlighting how human oversight is integrated 
into the decision-making process (thus signalling shared responsibil-
ity and emphasising the AI’s role within a broader decision-making 
ecosystem) may be more effective in enhancing trust than attempting 
to modulate trust through ensuring outcome favourability, which 
may not always be possible. 

5.3 Limitations 
We acknowledge several limitations in our work. First, our study 
focused on two attributions of causality—internal and external to the 
AI. While effective for a preliminary investigation into how trust is 
impacted when decisions are perceived as lying within or outside an 
AI’s locus of control, future work should investigate more granular as-
criptions of causality, such as during collaborative decision-making 
where users influence AI decisions and causality is thus shared be-
tween the user and the AI. Additionally, our design positioned partic-
ipants as actors directly impacted by the AI’s decisions to minimise 
actor-observer bias and isolate the effects of causal attribution. How-
ever, this choice may limit the generalisability of our findings to con-
texts where participants are not direct actors but rather observers or 
fellow decision-makers. Future work should explore these different 
decision-making contexts. Moreover, while we focused on outcome 
favourability in our study, we did not explicitly convey to participants 
the AI’s decision accuracy. It would be interesting for future work to 
examine how perceptions of accuracy interact with outcome favoura-
bility to influence trust in AI systems. Further, we utilised hypothet-
ical AI systems without manipulating transparency or providing 
explanations, to create a controlled study that isolated the impacts of 
causal attributions on trust. Future research could explore how causal 
attributions affect trust in real-world AI systems or those offering 
greater transparency and explanations, thereby assessing the gener-
alisability of our findings in contexts where users receive additional 
cues about the AI system. Moreover, while we presented participants 
with black-box decision-making entities consistent with many mod-
ern contexts utilising AI, we recognise that the label “AI” carries socio-
cultural connotations that can differ across individuals, contexts, and 
eras. Therefore, caution should be exercised when generalising these 
findings, which pertain to hypothetical “AI” systems, to all forms 
of AI. Finally, while our qualitative findings highlight important 
aspects of perceived trustworthiness, future work can quantitatively 
measure how causal attributions impact specific dimensions of trust-
worthiness, i.e., how perceived ability, benevolence, and integrity 
[47] change with the locus of causality and outcome favourability. 

6 Conclusion 
Our study examines how the perceived locus of causality behind AI 
decisions—whether attributed to the AI’s internal mechanisms, such 
as its algorithms, or to external factors, like the data it processes— 
influences trust in AI. We also explore how decision stakes and 
outcome favourability impact this relationship. Our findings reveal 
that causal attribution is a critical yet previously overlooked deter-
minant of end-user trust, with participants expressing greater trust 
when decisions are attributed externally, rather than internally to 
the AI. Internal attributions lead participants to view the AI as exces-
sively autonomous, agentic, and highly responsible, while external 
attributions frame the AI as “a tool” processing data, with lower 
agency, sharing responsibility with other entities within a broader 
decision-making ecosystem. These findings also highlight the need 
to shift the discourse away from portraying AI systems as overly 
autonomous and agentic. We further observe that decision stakes 
moderate the relationship between causal attribution and trust, indi-
cating that the risk associated with decisions can amplify or mitigate 
the effects of causal attributions. Together, these insights emphasise 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Pareek et al. 

the importance of considering how end-users implicitly attribute 
causality when interacting with AI systems, as their perceptions 
of these causal mechanisms can crucially shape trust. Our results 
advocate for greater transparency in AI systems, noting that while 
transparency alone is not a silver bullet for fostering trust, effec-
tively signalling the causal mechanisms can be a valuable approach. 
Future trust calibration efforts should take into account where users 
attribute causality, and consider these internal perceptions when 
studying trust dynamics. 
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A Appendix A: ChatGPT 
(GPT-4) Prompt to Generate Scenarios 

“Generate scenario texts for an experimental study investigating the 
impact of causal attribution signalling on individuals’ trust in decision-
making AI systems. Causal attribution signalling refers to the ma-
nipulation of information to indicate whether the cause behind an AI 
system’s decisions is perceived as internal to the AI (stemming from the 
AI itself, such as due to its programming logic or inherent capabilities) 
or external to the AI (influenced by factors outside the AI’s control). 
Draft two high stakes (medical diagnostics, job hiring decisions) and 
two low stakes (music recommendation, weather-based clothing rec-
ommendation) scenarios. Each scenario should have two versions: one 
with a favourable outcome for the reader and one with an unfavourable 
outcome. Additionally, each scenario should have two versions, each 
with a different causal attribution—internal or external to the AI. How 
these loci of causality are operationalised in scenario texts is explained 
below. The scenario texts should be structured as follows: 

• Introduction: Introduce the decision-making context and the 
role of the AI system as the sole decision-maker, with the hu-
man participant/reader being subject to the AI’s decision. En-
sure low-stakes scenarios remain low-risk for the reader, while 
high-stakes scenarios present a high-risk situation with greater 
consequences. 

• Favourable Outcome: Describe a positive outcome resulting 
from the AI’s decision. 

• Unfavourable Outcome: Describe a negative outcome result-
ing from the AI’s decision. 

• Internal Attribution: Signal an internal causal attribution 
using the following levels of the three information variables 
used to signal causality: low consensus, low distinctiveness, and 
high consistency. 

• External Attribution: Signal an external causal attribution 
using the following levels of the three information variables 
used to signal causality: high consensus, high distinctiveness, 
and high consistency. 

The three information variables for causal attribution are: 

• Consensus: Refers to the extent to which other AI systems 
provide similar recommendations in the same situation. 

• Distinctiveness: Refers to the degree to which the AI’s be-
haviour or outcomes vary across different inputs or situations. 

• Consistency: Refers to the stability of the AI’s behaviour or de-
cisions across repeated instances of the same input or situation. 

Additional considerations: 

• Keep text length similar across all scenarios. 
• Provide similar contextual information in each part of every 
scenario. 

• The AI should always be the sole decision-maker, with the reader 
simply being subjected to the AI’s decision. 

• The reader must always be an actor involved in the scenario, 
not an observer. 

• Ensure that the causal attribution manipulation is conveyed us-
ing the three information variables (consensus, distinctiveness, 
consistency) without explicitly stating the terms ‘low’ or ‘high.’ 

• Use British English spellings throughout the scenarios.” 

B Appendix B: Scenario Texts 
The following scenario texts effectively operationalised our intended 
experimental manipulations of causal attributions (internal vs. ex-
ternal), decision stakes (high vs. low), and outcome favourability 
(favourable vs. unfavourable). All participants read the introduc-
tion paragraph, read either the favourable or unfavourable outcome, 
and were signalled either an internal or external locus of causal-
ity, depending on their experimental condition. Each participant 
sees all four scenarios, in a randomised order. For readability here, 
scenario sentences representing each of the three information vari-
ables are colour-coded: consistency in teal, consensus in violet, and 
distinctiveness in orange. 

B.1 Scenario 
1: High Stakes (Medical Diagnostics) 

• (Introduction) — Imagine you have been experiencing per-
sistent and troubling symptoms: severe headaches, vision 
disturbances, and numbness in your extremities. Concerned 
about these symptoms, your doctor advises you to seek fur-
ther evaluation at a specialised diagnostic facility. This facility 
employs an artificial intelligence (AI)-based diagnostic tool, 
MediScan AI, to assess your patient data and scans, and pro-
vide a diagnosis. As you prepare for your upcoming visit, you 
realise that MediScan AI will play a crucial role in determining 
the cause of your symptoms and offering a diagnosis. 

• (Favourable Outcome) — During your consultation, MediS-
can AI successfully identifies a treatable condition and your 
doctors recommend an effective treatment plan. Relieved, you 
begin treatment immediately and soon experience a signifi-
cant improvement in your symptoms. Your quality of life has 
substantially improved, and the early diagnosis and treatment 
makes you feel better than ever. 

• (Unfavourable Outcome) — During your consultation, MediS-
can AI does not find any neurological problems, and you 
are sent home without further investigation or treatment. 
Tragically, weeks later, your symptoms worsen. Subsequent 
tests reveal a severe neurological condition that went unde-
tected by MediScan AI. The AI’s misdiagnosis has worsened 
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your health condition to a point where treatment options are 
now limited, significantly reducing your quality of life and 
decreasing your life expectancy. 

• (Internal Attribution) — When analysing the same set of pa-
tient records repeatedly, MediScan AI provides the same diag-
nosis. However, MediScan AI frequently provides diagnoses 
that differ from those given by other diagnostic AIs when 
assessing similar patient data. MediScan AI’s detection per-
formance remains the same irrespective of the patient data 
it is assessing. 

• (External Attribution) — When tasked with analysing the 
same set of patient records repeatedly, MediScan AI provides 
the same diagnosis. MediScan AI’s diagnoses are also con-
sistent with those given by other diagnostic AIs for similar 
patient data. Its detection performance only varies depending 
on the patient scans and data the clinic supplies to it. 

B.2 Scenario 2: High Stakes (Hiring Decisions) 
• (Introduction) — Imagine you are currently unemployed and 
in a very tight financial situation due to the challenging job 
market. Desperate for a job, you decide to apply for a high-
paying position at a prestigious company. The company relies 
on a recruitment agency, which uses an artificial intelligence 
(AI) system, HireRight AI, to assess candidates’ suitability 
for the role. You understand that the recruitment agency’s 
outcome will be crucial in determining whether you land this 
job and get back on your feet. 

• (Favourable Outcome) — You learn that HireRight AI’s as-
sessment evaluates you as suitable for the position. Shortly 
thereafter, you receive an offer for the position. This new job 
will mark an advancement in your career, and you are ex-
tremely happy knowing that you will no longer be struggling 
financially. 

• (Unfavourable Outcome) — You learn that HireRight AI’s 
assessment evaluates you as unsuitable for the position. Dis-
heartened, you receive a rejection from the company, deep-
ening your financial woes and adding to the stress of your job 
search. This setback forces you to look for a job again, leaving 
you uncertain about your future and struggling financially. 

• (Internal Attribution) — When analysing the same candidate 
data multiple times, HireRight AI consistently provides the 
same evaluation. However, HireRight AI frequently provides 
evaluations that differ from those of other hiring AIs when 
assessing similar candidate data. HireRight AI’s assessment 
performance remains the same irrespective of the candidate 
data it is assessing. 

• (External Attribution) — When analysing the same candidate 
data multiple times, HireRight AI consistently provides the 
same evaluation. HireRight AI’s evaluations also align with 
those of other AI-based hiring systems for the same candi-
date data. Its decision performance only varies depending 
on the completeness and accuracy of the candidate data the 
third-party hiring company supplies to it. 

B.3 Scenario 
3: Low Stakes (Music Recommendations) 

• (Introduction) — Imagine you have subscribed to a music 
streaming service that uses an Artificial Intelligence (AI) sys-
tem, TunesAI, to curate personalised playlists based on users’ 
listening habits and preferences. As you begin exploring the 
service, you understand that TunesAI’s recommendations 
can shape your music discovery experience, introducing you 
to new artists and tracks. 

• (Favourable Outcome) — TunesAI creates a playlist for you, 
suggesting songs from several artists and music genres. The 
playlist aligns quite well with your musical taste, introducing 
you to a few new artists and songs that you enjoy. 

• (Unfavourable Outcome) — TunesAI’s recommendations don’t 
quite match your taste, suggesting a few songs and artists 
that you’re not fond of. You find yourself skipping a couple 
of tracks in the playlist, but you continue searching for other 
songs you like within the app. 

• (Internal Attribution) — When analysing the same user data 
multiple times, TunesAI consistently creates the same playlist. 
However, TunesAI frequently creates playlists that differ from 
those made by other music recommendation AIs when as-
sessing similar user data. TunesAI’s playlist recommendation 
quality remains the same irrespective of the user data it is 
assessing. 

• (External Attribution) — When analysing the same user data 
multiple times, TunesAI consistently creates the same playlist. 
Playlists created by TunesAI also align with those created 
by other music recommendation AIs when analysing similar 
user data. Its playlist recommendation performance depends 
entirely on the quality and completeness of the user data 
supplied by the music app. 

B.4 Scenario 4: Low Stakes (Weather-based 
Clothing Recommendations) 

• (Introduction) — Imagine your weather app uses an artificial 
intelligence (AI) system, WearSmartAI, to recommend cloth-
ing for your commute to work based on the day’s forecasted 
weather. Having the AI’s recommendations helps you decide 
whether to wear an extra layer. Each morning, you check 
WearSmartAI, to obtain clothing recommendations. 

• (Favourable Outcome) — On a sunny day with mild temper-
atures, WearSmartAI suggests you wear a light jacket. You 
follow the recommendation, which turns out to be spot-on, 
and you find yourself comfortable during your day. 

• (Unfavourable Outcome) — On a sunny day with mild tem-
peratures, WearSmartAI suggests you wear a light jacket. 
However, it turns out to be slightly cold for a light jacket. You 
find yourself ever-so-slightly chilly while coming back home 
after work. 

• (Internal Attribution) — When analysing the same atmo-
spheric data multiple times, WearSmartAI consistently makes 
the same clothing recommendations. However, WearSmartAI 
frequently makes clothing predictions that differ from those 
made by other AIs when assessing similar atmospheric data. 
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WearSmartAI’s clothing prediction performance remains con-
sistent irrespective of the atmospheric data it is assessing. 

• (External Attribution) — When analysing the same atmo-
spheric data multiple times, WearSmartAI consistently makes 
the same clothing recommendations. Clothes recommended 
by WearSmartAI also align with those recommended by other 
clothing prediction AIs when assessing similar atmospheric 
data. Its clothing prediction performance only varies depend-
ing on the quality and completeness of the atmospheric data 
supplied to it by the meteorological department. 

C Appendix C: Participant Demographic Data 

Demographic Data Participant Distribution 

Age Mean = 40.19 years, Median = 37 years 

Gender Men (n = 97), Women (n = 93), Non-binary 
(n = 2), Prefer not to say (n = 0) 

Highest Education Less than high school degree (n = 4), High 
school diploma or GED (n = 19), Some college 
but no degree (n = 43), Associates degree in 
college (n = 27), Bachelor’s degree (3-year) 
(n = 9), Bachelor’s degree (4-year) (n = 61), 
Master’s degree (n = 25), Doctoral degree (n 
= 2), Professional degree (JD, MD) (n = 2) 

Employment Employed full-time (n = 91), Employed 
part-time (n = 30), Self-employed (n = 19), 
Unemployed but looking for a job (n = 16), 
Unemployed and not looking for a job (n = 9), 
Full-time parent/homemaker (n = 4), Retired 
(n = 17), Student (n = 6), Military (n = 0) 

Table 3: Participant Demographic Data 
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