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Figure 1: Temporal target selection examples. A player is about to (1) shoot an enemy spaceship in Demon Attack, (2) fire an
arrow towards a balloon in a VR Archery game in The Lab, (3) control the jump of a character onto a waterwheel in Moss,
(4) attack a minion with a finishing shot to get the most gold while minions are hitting each other in Dota 2, and (5) dodge
an enemy’s attack when it is close so that the character can immediately fight back in Elden Ring. The player needs to wait
and hit the input trigger within a limited time window to complete the task successfully. The player estimates how long the
bullet/arrow/jump/attack/dodge takes based on their previous experiences with the game.

ABSTRACT

Temporal target selection requires users to wait and trigger the
selection input within a bounded time window, with a selection
cursor that is expected to be delayed. This task conceptualizes, for
example, a variety of game scenarios such as determining the tim-
ing of shooting a projectile towards a moving object. In this work,
we explore models that predict “when” users typically perform a
selection (i.e., user selection distribution) and their selection error
rates in such tasks. We hypothesize that users react to temporal
factors including “distance”, “width”, and “delay” as how they treat
the corresponding variables in spatial target selection. The derived
models are evaluated in a controlled experiment and an MTurk-
based online study. Our research contributes new knowledge on
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user behavior in temporal target selection tasks and its potential
connection with its spatial correspondence. Our models and conclu-
sions can benefit both users and designers of relevant interactive
applications.
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1 INTRODUCTION

Explainable user models can enhance our understanding of human-
computer interaction behaviors and inform the design of relevant
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applications. This research concerns user behavioral modeling for a
task scenario called temporal target selection. In a temporal target
selection task, a user must wait for a time D; (temporal distance) for
a target to become selectable and trigger the input within a limited
time window W; (temporal width) to select the target successfully.
The selection event happens R; in time after the user input, which
is expected by the user (expected delay).

This task is a conceptualization of many application scenarios.
For example, imagine a player in a first-person archery game aiming
an arrow and firing it when a target is about to reach the crosshair.
The player must anticipate when the target will reach the crosshair
based on its movement (D;) and trigger the selection within a
limited time period (W;) so that the arrow can hit the target. The
arrow needs to travel for a certain time period to reach the target,
so the player must estimate the cursor travel time (R;) based on
previous experiences and take this “delay” into account to trigger
the selection earlier. The temporal factors (D;, Wy, and R;) can even
be encoded in more abstract forms/animations (more in Figure 1).
Note that the task only concerns users’ temporal precision (to hit
the target at the correct timing), while the spatial movement of
the cursor is negligible. Despite being prevalent in games, models
that can explain and predict user behaviors in such tasks are still
under-explored.

To address this challenge, we propose temporal target selection
models that predict user selection distribution (encapsulates “when”
users typically perform a selection) and selection error rate. Our
initial model is based on the hypothesis that the temporal factors
are treated as individual cues for users to decide “when” to exe-
cute the input, as the corresponding spatial factors are used to
decide “where” to execute the input. We conduct our first study
in a controlled VR experiment where we evaluate different model
variants and compare the impact of the corresponding factors in
temporal and spatial target selection. We demonstrate that the pro-
posed models provide accurate prediction results and are robust
under cross-validation tests. We further conduct a second, MTurk-
based online study to explore the generalizability of the models
and conclusions. We show that our models can still provide helpful
estimations in scenarios with more complex visual encoding, larger
parameter ranges, and less-controlled environments. Additionally,
we discover how temporal factors typically influence user behavior.
For example, we found whether the expected delay will push the
selection distribution forward or backward in time depending on
the value of temporal distance.

Our primary contributions include:

e Models for predicting user selection distribution and error
rate in temporal target selection.

e Findings and implications based on two user studies regard-
ing user behavior in temporal target selection.

e Open-source datasets on three different temporal target se-
lection applications collected from our studies.

Our models and conclusions bring new knowledge on human be-
havior in temporal target selection tasks and can benefit both de-
signers and users of relevant applications. For example, without
extensive user testing, game designers can be more confident in
determining the appropriate difficulty levels with the estimated
user selection errors. Players can also better approach challenging
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Figure 2: Spatial demonstration of a temporal target selec-
tion task. The blue rectangle is a target, and the pink circle
represents a cursor. The target takes D; (temporal distance)
to become selectable, and W; (temporal width) to pass the
selectable region. The cursor takes R; (expected delay) to trig-
ger a selection event after user input. The selection is only
successful if the cursor “hits” the target in the selectable re-
gion (i.e., input is triggered within [D; — Ry, D; — Ry + W;]).

game scenarios by understanding how temporal factors typically
influence selection.

2 PROBLEM FORMULATION

To formalize the problem, we consider an example scenario illus-
trated in Figure 2. A target (blue rectangle) appears and travels on
a straight line. To select the target, the user must trigger a user
input event which shoots forward a selection cursor (pink circle).
The user’s goal is to time the user input event so that the selec-
tion cursor “collides” with the target, which triggers a successful
selection event. We define the selectable region to be the interval of
time within which a successful selection event can be detected. In
addition, we define the temporal distance D; to be the time it takes
for the target to reach the selectable region and the temporal width
W to be the time the target remains selectable. The expected delay
R; is the amount of time it takes for the cursor to reach the target’s
path, and the user should have an estimation of R; based on existing
experience. To successfully select the target, users must trigger the
user input event within the time interval of [D; — Ry, Dy — Ry + Wr].

Note for each user input event occurring at tjnput, the corre-
sponding selection event (an individual data point of a selection
distribution) is calculated as tinpyt + Rt — D;. The selection distri-
bution is thus relative to the selectable region (by treating the time
that the target first becomes selectable as the origin) rather than
the usual time scale used by the input event that treats the onset
timing of the target as the origin.

In this problem definition, we only consider the case where
the user must decide when to trigger the selection, as opposed to
deciding the spatial position of the selection. In other words, unlike
in a spatial target selection task, the user cannot aim the cursor
with the input device (e.g., a controller) but can only control the
cursor’s onset timing through, for example, a button press. The
upper bound of the input time window (D; — R; + W;) must be
larger than human reaction time (~0.25s), otherwise typical users
would not be able to select the temporal target successfully without
prediction.
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3 RELATED WORK

Our temporal target selection task concerns how temporal factors
like “distance”, “width”, and “delay” may influence “when” users are
likely to perform a selection (i.e., user selection distribution). This
section reviews relevant but different temporal tasks explored in the
literature, considering when users typically launch a selection input.
We then summarize spatial target selection models that focus on
predicting where users typically select a given spatial target with a
certain “distance” and “width”, which inspired our temporal models.
After that, we scrutinize the factor of “delay” in our temporal target
selection task.

3.1 Temporal target selection

In our temporal target selection task, user selection distribution
describes when users typically select a given temporal target; it sum-
marizes the spread of selection events recorded by a computer in the
time domain. Existing literature has studied several relevant but dif-
ferent temporal tasks, including reaction, coincidence-anticipation,
temporal pointing, and interception.

Reaction tasks require users to respond to a stimulus as rapidly
as possible [39]. In these tasks, the onset of the stimulus is unpre-
dictable. The user reacts to the stimulus once it appears (D; = 0),
and the time window for selection is minimal because it must be
executed as fast as possible (W; = 0).

Coincidence anticipation tasks require users to respond when a
moving stimulus coincides with a fixed object [2, 30]. These tasks
expect users to respond at the exact instant of the coincidence
and do not measure the success or failure of a response based on
whether the response is provided within a pre-determined time
window (W; = 0).

Temporal pointing tasks require the selection of a target within
a limited time window with the following prerequisites: (1) the
target appears repetitively in time so that a user forms expectations
on how often the selection should be repeated, and (2) the visual
stimulus is smaller than human reaction time (~ 0.25s) so that the
user does not simply react to it [23-26]. While a temporal pointing
task and our task both require some repetitions of the selection
action for users to form the mental model (R; in our case), the
former expects users to synchronize with some repeating targets,
while our task does not assume this. Furthermore, the expected
delay R; was not considered in temporal pointing tasks.

Interception tasks require a user to capture a moving object with
an intercepting effector (e.g., a hand) [17, 40]. In such tasks, the
effector and the target must coincide at the exact location (spatial)
and time (temporal) for an interception to occur. However, our task
focuses on scenarios where the spatial movements of the effector
are negligible. The additional R; factor was also not acknowledged
in previous interception tasks.

In sum, the temporal target selection task we aim to model has
several unique properties as compared to the temporal tasks studied
by previous research. In our task, (1) a temporal target is needed
(W; > 0); (2) the actual selection event is delayed after user in-
put (R; > 0), and the user has an estimation of the delay; (3) the
minimal time for the user to make a successful selection based on
the visual stimulus (D; + W; — R;) needs to be larger than human
reaction time (~ 0.25s), as typical users will not be able to make a
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successful selection otherwise; and (4) the spatial task requirement
(e.g., moving an effector spatially) is negligible.

3.2 Spatial target selection

Spatial target selection requires users to hit a target (width Ws and
distance Ds) in the spatial domain (e.g., a button on a screen) with
a movable cursor. Numerous models have been proposed to under-
stand user behaviors in such tasks. For example, Fitts’s law and its
descendants [13, 21, 28, 36] are widely applied in HCI research to
predict cursor movement time for selecting a given target.

More relevant to our research are models that predict where users
typically select a given spatial target. This is typically termed user
selection distribution or endpoint distribution, which represents
the spread of cursor positions (or orientations with 3D Raycast-
ing) when the selection is triggered. Early endeavors on selection
distribution and speed-accuracy tradeoff found that the selection
endpoints can be approximated by Gaussian (1D) or bi-variate
Gaussian (2D) distributions [33, 46].

Later works have investigated how different spatial factors like
Ws and Ds may affect user selection distribution of spatial targets
with various input devices/modalities. Grossman and Balakrishnan
[14] and Grossman et al. [15] found that the spread of hit (distribu-
tion standard deviation) increases with Dg by a constant factor for
puck-based input. Bi and colleagues [3-5] demonstrated a strong
linear relationship between the distribution variance and W? for
finger touch input on touchscreens. Yu et al. [50] explored pointing
selection distribution in VR and found both Ws and Dy could play a
role in the mean and variance of the distribution depending on the
input modality (head/hand pointing). Yamanaka and Usuba [48]
later found that there was no apparent benefit of integrating D for
predicting distribution variance in an on-screen-start pointing task
with touchscreens. Huang and colleagues [18, 19, 52] found that
only Wy and target speed would affect the selection distribution
in their mouse input-based moving target selection tasks. These
findings on how spatial factors (i.e., Wy and Ds) may influence user
selection distribution inspired our initial hypothesis for temporal
target selection.

3.3 Latency and Expected Delay

Various channels can defer the actual selection event (as determined
by the computing system) after the user forms a selection inten-
tion. Users’ motor delays caused by, for example, neuromuscular
transmission lags, lie between the selection intention and the user
click action [31, 45]. In addition, the user click action, which is
the rapid movement of the user’s finger pressing the trigger, also
defers the actual input event. Previous research related to spatial
pointing, such as the application of Fitts’s law in HCI [36], usually
assume that the effects of such delays are negligible as compared
to the spatial pointing task itself and do not take these factors into
account.

Another source of the delay comes from end-to-end latency,
which is normally referred to as the unintended total time elapsed
between a user’s initiation act (e.g., a button press) and the sys-
tem’s responses [26]. Multiple factors can contribute to end-to-end
latency in an interactive system, including device delays, network
delays, and processing delays [7, 8, 26, 32, 47]. When end-to-end
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latency reaches a problematic level (i.e., significant latency that is
perceptible by users), it can shift user’s input distribution and affect
user performance [1, 20].

In contrast to previous research, our work focuses on expected
delay (R;), which represents the user-anticipated delay between the
selection action and the actual selection event. Unlike end-to-end
latency, which is usually unexpected or not intended, expected
delays are anticipated by users according to their previous expe-
riences. For example, players have a rough estimate of the bullet
travel speed because they have played with the weapon a few times.

4 HYPOTHESES AND MODELS
4.1 Hypotheses

To investigate how users react to temporal factors including “dis-
tance” (D;), “width” (W;), and “delay” (R;) in temporal target se-
lection, we first took inspiration from relevant findings in spatial
target selection. Specifically, we assume that users’ responses (i.e.,
user selection distribution) are similarly affected by corresponding
variables in spatial and temporal target selection tasks. In this case,
D; and Ds both represent the “distance” before a successful hit. W;
and W; stand for the “width” for a successful hit. We interpret R;
and Ry, as will be illustrated in Section 4.2, as the estimated “dis-
tance” between a nominal target and an actual (but invisible) target.
We treat all temporal factors (D, W, and R;) as individual cues for
users to decide “when” to execute the input, as spatial factors (Ds,
Ws, and Rs) are used to decide “where” to execute the input.

The assumption is motivated by Walsh’s A Theory Of Magnitude
(ATOM). ATOM hypothesizes that space and time information are
linked by a common metric for action [43]. A spatial or temporal
event input (e.g., distance and duration) is handled by a shared ana-
logue magnitude system to produce motor output (an estimation
of how fast and how long) [27, 43]. Based on ATOM, a potential
inference is that the corresponding spatial and temporal informa-
tion, as processed by a common mechanism, can similarly influence
perception and response. Evidence of this includes previous studies
that have shown, for example, that discriminating temporal and
spatial magnitude both follow Weber—Fechner’s law, which states
that the just noticeable difference in a stimulus is a constant ratio
of the original stimulus [10, 37, 38].

Based on these hypotheses, we built an initial model that predicts
user selection distribution N (g, %) and error rate E in temporal
target selection based on established literature in spatial target se-
lection. The model takes the temporal width W; (time that a target
remains selectable), temporal distance D; (time for the target to
reach the selectable region after its appearance), and expected de-
lay R; (user-anticipated time for the cursor to reach the selectable
region) as input and produces estimated mean y and standard devia-
tion o of the selection distribution, which is assumed to be Gaussian,
and with error rate E. We detail our modeling process in the fol-
lowing.

4.2 Variable mapping

To establish an initial temporal model based on our hypotheses, we
first examine how spatial and temporal variables correspond to each
other by mapping a 1D spatial target selection task to our temporal
target selection task (see Figure 3). In the temporal task, a user
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Figure 3: An analogy of a temporal target selection task (top)
and a 1D spatial target selection task (bottom). In the tempo-
ral task, the user waits and triggers the input R; before the
arrival of a nominal target to make a successful selection.
In the spatial task, the user moves an input cursor towards
a nominal target and triggers the input R in front of the
nominal target to make a successful selection. In both cases,
the user in fact needs to trigger the input to hit an actual (but
invisible) target that is R; or R; ahead of the nominal target.

triggers the onset of a selection cursor, which is delayed by Ry, to
hit a moving target with temporal width W; and temporal distance
D;. We name the visible moving target as the nominal target. To
select the nominal target successfully, the user must trigger the
input R; earlier in time, so that the delayed selection cursor can
“collide” with the target. This is equivalent to triggering the input
within a bounded time window W; that is always R; ahead of the
selectable region. We name this input time window as the actual
(but invisible) target (see Figure 3 top).

Correspondingly, in the 1D spatial selection task, the user moves
an input cursor to hit an actual (but invisible) target, given a nominal
target with spatial width Wy and spatial distance Ds. The actual
target has width Ws and stays R ahead of the nominal target (see
Figure 3 bottom). With such a formulation, the temporal distance Dy
and temporal width W; are directly mapped onto the spatial distance
D; and spatial width W;. The expected delay R; is reconstructed as
the “distance in time” between the actual and the nominal target
and is mapped onto the “distance in space” R;. In both cases, the
user must estimate this “distance” to hit the actual (but invisible)
target successfully. That is, the temporal task is successful only
if the input is triggered within [D; — Ry, D — Ry + W;], which
has the same successful criterion as the spatial selection task—
the cursor movement amplitude (towards the target) is between
[Ds — Rg, Ds — Rg + Wg]. The user should have a prior estimation
of R; and R based on previous experiences.

Admittedly, we define the abstract spatial selection task mainly
to demonstrate how temporal and spatial factors correspond to
each other, so that we can infer the effect of temporal factors on
selection distributions based on empirical results collected from
spatial target selection research. However, such a spatial selection
task also has practical applications. Existing research has suggested
that the effective input region (the actual but invisible target) can
be shifted from the perceived visual target because of interface
designs [41, 42] or through the use of predictive systems [12, 49, 50].
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4.3 Selection distribution mapping

Based on the assumption that the user responds to the correspond-
ing variables in spatial and temporal target selection tasks in a
similar manner, we explore how user selection distribution may
change according to Ds, W, and R; in the 1D spatial target selec-
tion task, which provides us insights for deriving a model in the
temporal domain.

Previous literature suggests that the selection distribution of
spatial target selection tasks can be approximated by a Gaussian
distribution N (s, 0'52) [3, 14, 29, 34, 44, 50]. The center of the distri-
bution g is affected by both target width and movement amplitude,
presumably in a linear relationship [50]. Intuitively, a larger and
distant object can shift the center of the selection distribution closer
to the edge of the object. The magnitude of the effect can depend
on the input modality and the variable range tested in the experi-
ments. For example, existing research has shown that it is useful
to add movement amplitude to predict the center of the distribu-
tion with head-based input (a sloppier pointer), but not hand-based
input [48, 50]. To account for all potential effects, it is reasonable
to assume a linear relationship of ys = po + p1(Ds — Rs) + paWs,
where the movement amplitude of the cursor to select the actual
target is represented by (Ds — Rs).

Previous findings have also suggested that the standard deviation
of the distribution o5 can relate linearly to both target width and
movement amplitude [4, 5, 14, 50]. Larger target width enables a
wider possible area for selection (e.g., 0 « W? in Bi et al. [4]),
and larger movement amplitude causes larger variances in ballistic
selection movements (e.g., o o< D in Grossman et al. [14]). Thus,
according to the literature, another linear relationship that can be
established based on the actual movement amplitude (Ds — R;) and
the target width (Ws) is o5 = qo + q1(Ds — Rs) + g2 Ws.

Since there is no existing research on how the distance between
the nominal and the actual target (R;) affects the selection distribu-
tion, so we assume Rg has a linear effect on both yg and o;. Intu-
itively, we hypothesize that a larger Rs can further shift the whole
distribution (ys) and increase the uncertainty in the distribution
(0s). Therefore, we conclude that the selection distribution of the
1D spatial target selection task can be approximated by N (us, 02),
where yi5 and oy can be calculated via Equation 1 and 2. The in-
tercept of both equations (pg and qo) aggregates imprecision and
noise from the input device and the internal human motor control
system.

ps = po + p1(Ds = Rs) + p2Ws + p3Rs 1
o5 = qo + q1(Ds — Rs) + q2Ws + q3Rs @)

In a temporal target selection task, we assume all temporal fac-
tors (Dy, W;, and R;) are treated as individual cues for users to
decide “when” to execute the input, similarly to how spatial factors
(Ds, Ws, and R;) are used to decided “where” to execute the input.
Therefore, to formulate our hypothesized model, we derived two
linear relations (Equation 3 and 4) for the temporal selection distri-
bution NV (y, o) based on the spatial correspondence. Coefficients
including ay, a1, az, a3, bo, b1, b, and b3 must then be empirically
determined.

i =ao +ai(Ds — Ry) + a2 W + asRy (3
o =by+by(Dy —Ry) + byW; + b3Ry (4)
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Figure 4: The relationship between selection distribution
and user input distribution (left). Selection accuracy can be
calculated by integrating a Gaussian distribution (right).

4.4 Selection error rate prediction

Similarly to previous research (e.g., [5]), by plugging y and o into
the probability density function of Gaussian distribution (Equation
5) and taking an integral on the selectable area (Equation 6, Figure
4 right), we can compute the selection error rate.
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where erf(z) is commonly used in Gaussian distribution integra-
tion.

erf(z) = % /0 e tar 7

5 STUDY 1: CONTROLLED EVALUATION

In this study, our goal was to evaluate the hypothesized model
and analyze how temporal factors (D;, Wy, and R;) affect user se-
lection distribution and error rate as compared to their spatial
correspondence. Therefore, we conducted a controlled temporal
target selection experiment in VR. We chose VR because it allowed
us to immerse participants in the experimental environment, and
we could potentially compare our results with a recent study that
investigated head- and controller-based spatial target selection dis-
tribution in VR [50].

5.1 Method

5.1.1  Participants. We recruited 16 participants (8 women, 8 men)
with diverse educational backgrounds from a local university. Their
average age was 23.5 (SD = 2.4). Their self-rated familiarity score
with VR systems was 4.6 on average (SD = 1.0) on a 7-point Likert
scale. All of them had normal or corrected-to-normal vision.

5.1.2  Apparatus and materials. The application was developed
with Unity3D and ran on an Intel Core i7 processor laptop with a
dedicated NVIDIA RTX 2070 graphics card. Participants performed
the experiment with an Oculus Quest 2 headset (featuring 1832
X 1920 pixel resolution per eye) and a right-hand Oculus Touch
controller.
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Figure 5: A demonstration of the experimental environment
in Study 1.

5.1.3  Design. The experiment employed a 3 X 2 X 4 within-subjects
design with three independent variables: TEMPORAL DISTANCE, TEM-
PORAL WIDTH, and ExPECTED DELAY. The levels were chosen as
follows, leading to 24 experimental conditions:

e TEMPORAL DISTANCE (D;): 0.4s, 0.5s, and 0.6s
o TEMPORAL WIDTH (W;): 0.1s and 0.2s
e EXPECTED DELAY (R;): 0.05s, 0.1s, 0.15s, and 0.2s

These parameters were determined from a pilot study with the
aim of not making the task too easy (information-saturated) or too
difficult (faster than reaction time ~ 0.25s), while still covering
a variety of difficulty levels. In the most difficult condition, the
response time for a successful selection (D; + W; — R;) was 0.3s.
In the experiment, the order of R; was counterbalanced across
participants. Within each R, each W; X D; experimental condition
was generated 20 times, and all these generated trials appeared in a
randomized order. This simulated the condition when participants
had a constant estimate of R; in each block and responded to various
targets with different properties (as per W; and Dy).

5.1.4 Task. Participants were asked to hit a blue target moving
leftward along a horizontal line with a sphere (selection cursor)
moving forward. We varied the sphere’s color to distinguish be-
tween different R;, with colors chosen from a colorblind-friendly
palette. Figure 5 illustrates the task environment.

Targets always appeared at the same starting position in the
virtual space py = (0.3,—0.5,1.75). The target speed was adjusted
according to Dy (the time for the target to reach the hittable area),
and the target width was modified based on W; (the time that
the target remained hittable). Similarly, the cursor started at the
same position p;, = (-0.7,-0.5,1.05), and the its speed changed
according to R;. A successful hit was determined when the cursor
front reached the horizontal line and the cursor coincided with the
object. Programmatically, the hit was pre-calculated based on when
participants pressed the selection trigger to avoid latency caused
by collision detection. After the cursor reached the horizontal line,
the animation paused for 0.1s, and quick sound feedback was given
to reflect the correctness of the hit. The subsequent trial was then
randomly generated within the next (0.5s, 1.0s) interval.

5.1.5  Procedure. The whole study lasted approximately 25 min-
utes for each participant. The study was designed to be short to
avoid participant disengagement [51]. Before coming to the lab,
participants filled in a questionnaire to collect their demographic
information. Upon arrival, they were introduced to the experiment
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and signed a consent form. Next, they were invited to wear a VR
headset and were given around 1 minute to familiarize themselves
with the device where they could look around the experimental
environment in VR. They then adjusted their sitting position to
make sure they could see both the cursor and the target. We in-
structed participants to perform the task as accurately as possible.
Each session (4 sessions as per R;) consisted of a warm-up period
and a formal experiment period. During the warm-up, we asked
participants to become familiar with the time for the cursor to
reach the selectable region (R;). After at least 5 practice trials, they
could proceed to the next stage by pressing a controller button if
they could confidently make a selection. The first 10 starting trials
of the formal experiment period were sampled from the D; X W;
conditions uniformly and at random and discarded as practice trials.
Participants took a short break after completing each block, where
they could decide how long to rest and whether to take off the
headset. Participants received a $10 gift voucher after completing
the experiment.

5.2 Results

In total, we collected 7680 data points (16 participants X 3 D; X 2 Wy
X 4 Ry X 20 repetitions) from the experiment. We first removed 40
trials (0.52%) of outliers in which the user input time was above or
below three standard deviations from the mean (mean =+ 3std.) in
each condition. These outliers could be induced by confusion/mind-
wandering of the participants. In the next sections, we present
the results of normality testing, statistically effects of independent
variables, model fitting, and information criterion measures.

5.2.1 Normality of the response distribution. We verified whether
the selection distribution obtained from the experiment followed
a Gaussian distribution as expected. We tested the normality of
each task condition per user (16 participants X 24 conditions) using
Shapiro-Wilk tests with significance level & = .05. We found that
84.4% of the 384 distributions obtained were normally distributed
as in these cases the null hypothesis that the sample came from
a normally distributed population could not be rejected. For the
individual who met the normality distribution at the lowest rate,
70.8% of the conditions were found to be normal. We thus included
all participants’ data for analysis.

5.2.2  Effects of independent variables. We first evaluated the nor-
mality assumption of parametric analysis with Q-Q plots, which
suggested strong fits of normality for all conditions (Q-Q plots
are attached in the supplementary material !). We thus employed
repeated-measures ANOVA (RM-ANOVA, « = 0.05) and general-
ized eta-squared (ryé, an effect size measure) to explore the effects
of temporal factors (D;, W, and R;) on p and o of the selection
distributions. We applied Greenhouse-Geisser correction when the
sphericity assumption was violated, as indicated by Mauchly’s test
for sphericity.

Table 1 summarizes the results from the statistical tests regarding
u and o. Overall, the RM-ANOVA indicated that D;, W;, and R; all
had statistically significant main effects on p. It also revealed inter-
action effects between D; X R; and W; X R;. Another RM-ANOVA
showed that Dy, W;, and D; X R; had significant main effects on
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Table 1: Statistical effects of factors on y (left) and o (right).

Factor dfeffect  dferror F p ’72G Sig? Factor dfeffect  dferror F p UZG Sig?
Dy 1.299 19485 371.835 .000 .802 yes Dy 2 30 293.637 .000 .527 yes

4 1 15 48.422 .000 .116 yes 4 1 15 11.979 .003 .027 yes

Ry 3 45 15993 .000 .162 yes Ry 1.786  26.790 2.378 .082 .021 no

Dy x Wy 2 30 2.804 076 .009 no Dy x Wy 1.266  18.993 1.394 264 .008 no
Dy X Ry 2.888 43316 81.547 .000 .431 yes Dy X Ry 6 90 4564 .000 .046 yes
Wi X Ry 3 45 4.282 .009 .014 yes Wi X Ry 3 45 0.206 892 .002 no
Dy xW, xR, 6 9 0719 635 .005 no Dy XxW, xR, 6 90 1539 175 015 no

0. Pairwise comparison results can be found in the supplementary
material.

The 3D scatter plots in Figure 6 demonstrate the interaction rela-
tionship among D; and R; with regard to y and o. Generally, when
Dy increased, y decreased (selections were performed earlier in the
selection region), while ¢ increased (wider spread of selections).
The speed of the increases/decreases depended on R;—the impact
of D; on both y and ¢ become larger as R; increased.

It is shown from the effect size measures that D; and R; were
predominant cues for determining the center of the distribution g,
and Dy had a large effect on determining the standard deviation of
the distribution o (all r]é > 0.14 as a rule of thumb for a large effect
size [9]).

5.2.3 Model Candidates. In addition to the hypothesized model
introduced in Section 4 (which we call the hyp model), we also
included two model variants derived from our user data for com-
parison. As discussed, the effect magnitude of each temporal factor
on the selection distribution (¢ and o) may vary depending on the
input modality and the tested variable range in the experiment.
Therefore, a simplified model that only incorporates main/simple
effects with a large effect size may provide enough explanation
power for a given task scenario. Thus, we deemed that a temporal
factor should be incorporated into our first comparison model—the
simple model—if it has a large effect size on y or o based on the
collected data (qé > 0.14). In this case, Dy and R; were used for
predicting y, and D; alone was used for estimating o.

While we initially assumed an additive relationship of the tem-
poral factors for determining the selection distribution, we found
a strong interaction effect of D; X R; on y, with a large effect size
being identified from the data (ryzG = 0.431). Therefore, we also
included another model that considered D; X R; interaction for y
prediction on top of the simple model, which we call the interact
model.

5.2.4 Model fitting. We fit the models with the fitlm function
available in MATLAB. The fitting was performed at the population-
level by averaging all participant data for each condition (24 con-
ditions in total). The regression function produced the following
results.

4 =0.300 — 0.489D; + 0.147R;

®
o =—0.025+0.172D;

simple model {

, 4 = 0.063 — 0.014D; + 2.046R; — 3.798D; - R,
interact model
o =-0.025+0.172D;
)

1 =0.278 — 0.489(D; — R;) + 0.145W; — 0.342R;
o =—0.035+0.172(D; — Ry) + 0.047W; + 0.198R;
(10)

hyp model {

5.25 Model Performance. We evaluated model performance with
standard metrics including R? (coefficient of determination), MAE
(mean absolute error), and two additional information criterion
measures (AIC and BIC). Information criteria such as AIC (Akaike’s
information criterion) and BIC (Bayesian information criterion)
evaluate the model fit by applying a penalty to the model complexity
(i.e., the number of parameters). Generally, a lower information
criterion value indicates a better model.

Table 2 summarizes the model performance of the three model
variants. Overall, all models achieved good fit for p and o estima-
tion (all R? > 0.80). With the simple model as the baseline, the
results sugges