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We present a computational method that exploits points of interest (POIs) to generate realistic virtual pedes-
trians for a city model, i.e., a simulated crowd. Our method is validated using mobility traces collected longitudi-
nally from a city-wide free and open Wi-Fi network in downtown Oulu, Finland. Analysing this data, we first
construct a time-varying Origin–Destination matrix that describes how individual pedestrians in our city move
at different times and places. We compare this ground-truth against a random pedestrian model to investigate
how the latter underestimates or overestimates movement at various locations or times of day. By identifying
these deviations, we can calibrate a weightedmodel that uses POIs from OpenStreetMap to adjust the simulated
crowd. Our results show a significant accuracy improvement over the randommodel, while at the same time our
work is readily applicable to simulating crowds in other cities (real and virtual) as long as POI can be defined
spatially.
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1. Introduction

Understanding how humans navigate in urban spaces has been the
interest of scientific disciplines ranging from psychology through civil
engineering to computer science. The specifics of the navigation depend
onhowan individual understands the physical setting inwhich thenav-
igation takes place. How the physical setting is specifically understood
always depends on each individual. However, environments such as cit-
ies contain properties which are more or less common to all individuals
navigating them. Kevin Lynch called “the public image” of a city to its
collective understanding (Lynch, 1960). This public image is the overlap
of the individual images, and according to the study data of Lynch et al.,
this can be described consisting of the following properties: paths, edges,
districts, nodes and landmarks. Paths are the channels through which in-
dividuals move. Edges divide areas physically or metaphorically. Dis-
tricts are geographical medium-to-large areas of the city. Nodes are
strategic points that can be street junctions or other types of crossings
or convergence of paths. Landmarks are distinctive physical points,
which can be observed visually such as churches, parks, skyscrapers or
mountaintops (Lynch, 1960).

The acquisition of spatial knowledge, both metric and qualitative,
begins as soon as an individual starts navigating in a new environment
(Montello, 1998). Through increased exposure and familiarity, the qual-
ity of the spatial knowledge increases, andwith enough exposure, an in-
dividual can connect separately learned places in a larger spatial
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understanding (Montello, 1998). It is suggested that individuals orga-
nise spatial knowledge according to anchor points, salient locations
that form the cognitivemap that the individual uses to navigate. Besides
geographical points, such as landmarks, anchor points can be path seg-
ments, nodes or even distinctive areas, similar to city properties catego-
rized by Lynch (Lynch, 1960), (Golledge&Gärling, 2002). Anchor points
of an individual usually consist of home, work place (or similar) as well
as other locations that are somehow meaningful for the navigation of
said individual. Especially striking locations, such as famous landmarks
might be common to almost every visitor of the city while some anchor
points are shared between various demographics (Couclelis, Golledge,
Gale, & Tobler, 1987; Golledge & Gärling, 2002; Golledge & Spector,
1978).

As individuals navigate between places, they usually associate loca-
tions according to their closest anchor points (Couclelis et al., 1987).
These associations form regions connected to anchor points and indi-
viduals tend to displace these regionswithin the direction of the anchor
points, causing metric distortions in their mental models (Couclelis
et al., 1987). This is related to the findings of human tendency to store
spatial information according to hierarchical categorization (Couclelis
et al., 1987). A largely cited example is the experiment of Stevens and
Coupe (Stevens & Coupe, 1978), where US citizens systematically con-
sidered the city of Reno, Nevada to be east of San Diego, California be-
cause the state of Nevada is associated to being east from California
(Stevens & Coupe, 1978).

The empirical macro-scale analysis performed by Manley et al.
(Manley, Addison, & Cheng, 2015) supports the theory that anchor
points play a dominant role in urban navigation. Their findings from ob-
serving 700,000 minicab routes within London suggest that urban an-
chor points are more suitable for basis of urban travelling models
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instead of cost-minimisation by shortest routes. Accordingly, the
minicab drivers rarely followed route choices given by shortest path
routing methodologies but instead repeatedly established common an-
chors in route choices (Manley, Addison and Cheng, 2015).

As stated in (Golledge & Spector, 1978), while anchor points are
always subjective, groups of people might share some anchor points.
In a city scale this means that, college students might share their
campus as a common anchor point as well as people living in the
same neighbourhood might share anchor points related to that
neighbourhood. However, the work of (Bromley, Tallon, & Thomas,
2003) points out that different demographics can also be segregated ac-
cording to time, at leastwhen examining inner city use. Daytime visitors
of inner city visit different locations than night time visitors and often
belong to different demographics.

In this work, we examine the use of crowdsourced points of interest
(POIs) as a means to generate anchor points into city microsimulations.
The rationale for exploiting POIs as an alternative for such a purpose, is
the ease of which they can be acquired. Our attempt is not to provide a
complete microsimulation system that would provide alternatives to
complete activity-based microsimulation models, such as the social
force model (Helbing & Molnar, 1995). Instead, we study POIs in isola-
tion as time varying inner city anchor points. This can help, for example,
in identifying after-hour crime hotspots (Nelson, Bromley, & Thomas,
2001). Here, temporal data is acquired from a time-varying Origin–Des-
tination (OD) matrix, a result from analysing municipal Wi-Fi network
user data. In addition to examining crowdsourced POIs as anchor
point data, this work contributes to pedestrian microsimulation re-
search by demonstrating how a municipal Wi-Fi network can be used
to simulate granular pedestrian mobility.

2. Related work

2.1. A cursory overview of travel behaviour studies

Simulation of the total flow of pedestrians across a city has been re-
peatedly addressed in research concerning topological studies of street
networks. Space Syntax has been used to describe how andwhy people
move through certain routes within a city (Hillier & Hanson, 1984).
Space Syntax literature suggests that roughly 70% of pedestrian volume
at particular street segments can be predicted from the closeness con-
nectivity metric of the street network, while Jiang and Jia (2011) claim
that a weighted version of PageRank is a more suitable metric. They
also argue that the underlying street network is themost influential fac-
tor in guiding pedestrian movements, and therefore randomly moving
agents and real pedestrians move essentially in a same way through
the same street network. A space syntax study by Lerman and Omer
(2016) combined land use, physical properties of road sections as well
as demographics information with street connectivity to study the rela-
tive contribution of each of the aforementioned dimensions to pedestri-
anmovement. Their findings substantiate the claims of previous studies
(Hillier & Hanson, 1984; Jiang & Jia, 2011); street connectivity was the
most significant contributor to pedestrian movement and can in itself
cause changes in the physical properties of road sections and land use
(Lerman & Omer, 2016).

However, city topology alone is not sufficient to fully describe all
travel behaviour aspects, and therefore travel behaviour has been stud-
ied across multiple disciplines such as geography, urban planning,
transportation and even computer science research.

A land-use approach has been often used in transportation research
since the early 20th century. It describes the characteristics of travel be-
haviour between different types of land use, such as the traffic between
residential zones and industrial zones. Alan M. Voorhees (2013) de-
scribed how travel between different types of origins and destinations
roughly follows gravitational laws, with different types of destinations
generating certain types of “pull” towards the origins. The amount of
the pull in all types of destinations depends on the size of the origin
and destination, as well as the travel time between them. However,
how the theoretical pull is calculated, depends on the type of the travel,
i.e., the types of the origin and the destination (Voorhees, 2013). This
gravitational law is still often revisited in research, such as in the work
of Simini, González, Maritan, and Barabási (2012); their radiation
model can predict mobility patterns using population density as the
only input data, eliminating the need for parameter adjustments. Land
use has a different effect on various aspects of travel behaviour, such
as trip generation, distance travelled and choice of mode (M. G.
Boarnet, Joh, Siembab, Fulton, & Nguyen, 2011). Criticism towards the
effect of land use to travel behaviour has been presented by for example
Boarnet and Sarmiento (1998); Stead (2001) and Ewing, Deanna, and Li
(1996). In any case, transportation planning and land use continue to
meet heavily in research, as seen in (Waddell, Ulfarsson, Franklin, &
Lobb, 2007).

Besides land use, it is possible to also consider smaller-scale segrega-
tion of locations into urban research, while time also plays an important
role. Land use research usually focuses on travel behaviour between, for
example, residential zones, industrial zones and shopping districts.
However, there are also significant differences in the use of inner city lo-
cations according to the time of the day andweek (Bromley et al., 2003).

Activity based models have often been used to estimate Travel Be-
haviour since the 1990s. Suchmodels rely on the fact that people travel
because they have needs, activities to which theymust tend. How these
activities are scheduled, given various conditions, such as household
characteristics, properties of potential destinations and the state of the
transportation network, is what activity based approaches seek to an-
swer. However, activity based approaches have received criticism for
their complexity and intense data requirements (Ettema &
Timmermans, 1997). Activity-based models rely on realistic modelling
on schedules of individuals and households which is not a simple task;
properties such as speed of spatial knowledge acquisition and its role
in scheduling decisions, assigning activities to utilities and interaction
between household members are difficult to model as observed by
(Kay W. Axhausen & Gärling, 1992). Since this observation, studies
have emerged to tackle these problems. For example, the work of
(Arentze & Timmermans, 2005) works in simulating spatial knowledge
acquisition and (Zhang, Timmermans, & Borgers, 2005) model house-
hold interaction. However, intense data requirements of activity-based
models are still a problem. It has been speculatedwhether it is even pos-
sible to gather exhaustive dataset for a truly precise activity based
model (K W. Axhausen, 1998). While large-scale data collection efforts
have beenmade, it is difficult to find a representative set of participants
willing to commit to a long-term data gathering effort (K.W. Axhausen,
Zimmermann, Schönfelder, Rindsfüser, & Haupt, 2002).

Since the 1990s, activity based approaches have been common in
travel behaviour studies. In a 2001 survey, Timmermans categorized
these approaches into: constraints based models, utility-maximizing
models, computational process models and microsimulation models.
Microsimulationmodels – such as ours – attempt to simulate individual
activity patterns according to probability conditions,while the other ap-
proaches infer rules and parameters from empirical data (Timmermans,
Arentze, & Joh, 2002).

Microsimulations can either simulate all aspects of activity based ap-
proaches or concentrate on certain properties. RAMBLAS (Veldhuisen,
Timmermans, & Kapoen, 2000) and TRANSIMS (Nagel & Rickert, 2001)
are examples of microsimulation models that replicate city-wide traffic
according to multiple parameters. There are, however microscopic sim-
ulations that are not activity-based approaches, but simulate pedestrian
activity at the micro-level movement of individual pedestrians concen-
trating only on detailed aspects of pedestrianflow. Thesemodels can ef-
fectively analyse and simulate pedestrian flows and interactions
through narrow spaceswith varying sets of rules such as lanes andpath-
ways, estimate concepts from vehicular traffic such as level of service
and estimate effects of various types of pedestrians, such as the obese
or the elderly, on pedestrian flow (Galiza & Ferreira, 2012; Guo, Wong,
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Huang, Zhang, & Lam, 2010; Helbing, Molnár, Farkas, & Bolay, 2001;
Helbing & Molnar, 1995; K Teknomo, 2002; Kardi Teknomo, 2006).
The recent study conducted by Ronald, Arentze, and Timmermans
(2016) addressed the issue of validating complex transport models,
such as agent-based activity microsimulations. While the authors
experimented with onemodel only, they argue that their suggested ap-
proach to sensitivity testing should be adopted to the validation of com-
plex transport models in general (Ronald et al., 2016).

2.2. Empirical observation

Modern computer science offers various methods for observing pe-
destrian traffic. Broadly speaking, the different data collection methods
can be classified as Direct Observation or Investigation, Scene Analysis,
Proximity Sensing, Continuous Localization Systems, and Sensor Networks
where the latter method can be a combination of any of the previous
methods (Bandini, Federici, & Manzoni, 2007). Direct Observation refers
to observing individuals directly. In Scene Analysis individual pedes-
trians are not tracked, but the behaviour of a crowd is estimated by ob-
serving crowd densities and flows from image or video footage.
Proximity Sensing refers to detecting passing entities using fixed or mo-
bile sensors and Localization Systems in tracking individual entities' loca-
tions continuously using techniques such as GPS.

Computer vision allows for rather accurate tracking and analysis of
crowd behaviour. Jacques Junior et al. (Jacques Junior, Raupp Musse,
Jung, & Junior, 2010) classify computer vision crowd tracking methods
into object-based approaches and holistic approaches. Object-based ap-
proaches focus on tracking individual pedestrians while holistic ap-
proaches treat the crowd as a single entity following a top-down
methodology (Jacques Junior et al., 2010). Although machine vision
techniques are very powerful, their obvious limitation is the restriction
of space. The number and location of cameras limit the spaces that can
be studied.

The popularity of mobile phones has provided the research commu-
nity with various alternatives for collecting traffic data (pedestrian and
otherwise). A popular way for tracking an individual with a cell phone
would be using the phones built-in GPS.Work and Tossavainen success-
fully transformed GPS traces into a velocity field describing highway
traffic (Work & Tossavainen, 2008). GPS data was also successfully uti-
lized by Xiao, Juan, and Zhang (2015), who used Bayesian Networks to
distinguish between travel modes fromGPS data. Tracking a large num-
ber of pedestrians using GPS is not a straightforward task because large
numbers of people have to specifically volunteer. However, Wirz,
Franke, Roggen, Mitleton-Kelly, Lukowicz, and Tröster (2012, 2013)
successfully estimated pedestrian movement and crowd densities at
mass events using a subset of event attendees as probeswhovoluntarily
shared their location using a mobile phone application (Wirz et al.,
2012, 2013). The key to success was to convince people to install the re-
quired app by offering benefits such as real-time event related informa-
tion (Wirz et al., 2012, 2013). However, this also suggests that tracking
subsets of a crowd may provide enough information to reconstruct the
movement of the whole crowd.

Other mobile phone related data such as in-network localization
have been harnessed for tracking pedestrian movement at large.
Calabrese et al. have estimated city-wide traffic by recording network
bandwidth usage from signalling events (Calabrese, Colonna, Lovisolo,
Parata, & Ratti, 2011; Calabrese, Pereira, & Lorenzo, 2010). The limita-
tion of in-network localization is the typically large distance between
cell towers ranging from average distance of 250 m to 500 m
(Calabrese et al., 2011, 2010). Another work has investigated using on-
line behaviour as a proxy for studying urban mobility by correlating
urban traffic patterns with online search trends (Kostakos, Juntunen,
Goncalves, Hosio, & Ojala, 2013).

Reflecting on the theoretical background and related research pre-
sented earlier, our contribution is as follows. We show that
crowdsourced POI data can act as a simple data source for estimating
inner city pedestrian traffic. POIs lend themselves easily to the emula-
tion of anchor points. They are salient locations that are known by at
least part of the city population in one way or another. While POIs pri-
marily refer to geographic points, POI frameworks such as the entity-
component model described in (Heikkinen, Okkonen, Karhu, &
Koskela, 2014) allow richer geographic description to POIs such as
lines or polygonal areas, as well as the support for nested POIs. While
it would be possible to model POIs that attempt to emulate anchor
points as closely as possible, for example according to some or all cate-
gories described Lynch (Lynch, 1960), in this work we wish to specifi-
cally focus on crowdsourced POIs. Using crowdsourced POIs we wish
to address the problem of data requirements in activity based models
and provide a simple option to consider in activity based modelling or
other similar travel behaviour simulations.

Our study is a microsimulation model of pedestrianmovement sim-
ilarly to agent navigation in virtual environments. While the POI data
provides a geographical dataset, its pinpoint localisation is more precise
than in land-use studies that rely on zoning. The category information of
each POI acts as a source of activities that the simulated pedestrians pur-
sue within inner city. We complement the activity data with temporal
information obtained from the analysis of the municipal Wi-Fi logs of
our city. This provides a heuristic model for simulating spatio-
temporal inner city activities with minimal data collection effort.
While the proposed model is unable to compete with more specific ac-
tivity basedmodels, we demonstrate that it can provide a more realistic
pedestrian mobility that is explained with only street connectivity and
should be considered as a supplement to data sources in activity-
based models.

3. Modelling crowd movement

The topic of this work is the usage of crowdsourced POIs for travel
behaviour simulation; for this purpose, we present a model called
“The POI model” that simulates pedestrian mobility within the inner
city. However, before we can define the POImodel, wemust first define
twopreliminarymodels,which are called “Theground truthmodel” and
“The random model.” These two models are used to generate temporal
weights for POIs as well as for validation. We begin by describing our
pedestrian simulation environment that defines the city geography as
well as basic pedestrian movement, which is common to all models
we present.

3.1. Pedestrian simulation environment

Our virtual city model describes the city centre of Oulu and covers
approximately 1.5 km × 1.5 km area. This area was chosen for two rea-
sons. Firstly, the area contains the inner city of Oulu with its shopping
and nightlife districts, similarly to what was the focus of the works of
(Bromley et al., 2003) and (Nelson et al., 2001). Secondly, the area has
the densest distribution ofWi-Fi hotspots, allowing us to use dense em-
pirical observations in the basis of our ground truth model. Borrowing
the concept from virtual environments, the geography of the city
model, in which pedestrian agents navigate, is defined as a navigation
mesh (Demyen & Buro, 2006). In our city model, the navigation mesh
is projected to a 2D plane where a single coordinate unit equals one
metre, the negative Y axis points towards north and the positive X
axis points towards east. The navigation mesh defines all the streets
and pedestrian pathways within the modelled area as a triangle mesh.
Although there are tools for defining navigation meshes automatically
in virtual environments, in our case, since the simulated area is relative-
ly small, the mesh was modelled manually with the Blender 3Dmodel-
ling software. The modelling was carried out using the actual map of
Oulu as a reference. Scaling themap so that 1m in themap corresponds
to 1 Blender coordinate unit, the navigation mesh was modelled as a
horizontal plane going through all roads, clearings as well as minor pe-
destrian pathways that exist in the simulated area. The mesh was



Fig. 2. The relation between density and velocity according to Weidmann (1993).
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modelled using as small number of triangles as possible so that the tri-
angles could be efficiently used as nodes with pathfinding algorithms
such as the A* (Hart, Nilsson, & Raphael, 1968). Fig. 1 displays a
screenshot of the modelling process.

The movement of the agents takes place by calculating the path be-
tween origin and destination triangles, (nodes from now on) with the
A* algorithm (Hart et al., 1968). The path is initially calculated through
node centrepoints, after which it is smoothed with a funnel algorithm
(Demyen & Buro, 2006). The funnel algorithm finds the shortest routes
through adjacent nodes, which makes the resulting paths shorter and
more likely to correspond to natural movement on a micro-level as the
agents move through and within nodes. While the navigation mesh acts
as a platform formoving agents across city,we also use its nodes for quan-
tifying street usage and crowdedness, as described later on.

The autonomous agents act as virtual pedestrians in our ground-
truth model. When a pedestrian agent is created, it is assigned a pre-
ferred walking speed chosen randomly between 1.25 m/s and 1.5 m/s
(LaPlante & Kaeser, 2007). Unless interfered by other pedestrian agents,
the agent continues to use this walking speed until removed from the
simulation. Agent location is updated once per simulated second.
Since the population of our simulated city is relatively low, we do not
simulate the effect of crowdedness to walking speed at micro-level
but estimate it as follows: Each node of the navigation mesh upkeeps
their pedestrian density as D = N/A, where N is the number of agents
within a node and A is the area of the node. To simulate the effect of
street crowdedness,we use the pedestrian density-velocity relationship
as described in (Seyfried, Steffen, Klingsch, & Boltes, 2005; Weidmann,
1993) to estimate agent walking speed while walking in proximity of
other agents. The density-velocity relationship diagram identifies four
density-domains with varying changes in the decrease of velocity; ac-
cording to (Seyfried et al., 2005) and (Weidmann, 1993), changes in pe-
destrian dynamics can qualitatively observed between these domains.
The slope of the density-dependent velocity decrease changes at the do-
main edges (as observed by Weidmann (1993)), which are D = 0.7,
D = 2.3 and D = 4.7. The diagram with the domains partitioned has
been reproduced in Fig. 2. We use the domains to estimate the agent
walking speed by treating each domain as a line with a slope m =
y2 − y1 / x2 − x1. We then find the corresponding walking speed
with the linear equation y = mx + b where x is the density within the
node andm the slope of the density-domain inwhich x resides in.Walk-
ing speeds for each pedestrian agent within that node are then adjusted
accordingly.
Fig. 1. Screenshot from the Blender modelling software coupled with a scale bar and a north a
represents a node that defines a walkable area for pedestrian agents. Map data by Google.
Although the model can successfully simulate the movement of
thousands of agents in real-time, some optimizations were introduced
to speed up the simulation for one month's worth of pedestrian traffic
at a time. The density calculation D = N/A is computed only when
there is more than one pedestrian agent in a node. To find the number
of pedestrians' N per node, the closest node centre for each agent is de-
termined. The node centres are found using a kd-tree search
(Maneewongvatana&Mount, 1999). The node of an agent is then deter-
mined by the closest centrepoint. This speeds up the simulation signifi-
cantly in comparison to a point-in-triangle check for each pedestrian
agent during every update. According to our analysis, this optimization
does not significantly reduce accuracy as long as the triangles of the un-
derlying navigationmesh do not contain extremely small angles, i.e. are
closer to equilateral and right shapes than oblique. For this reason, our
simulation ignores triangles with an area less than 1 m to prevent the
agents from getting caught in small oblique “invisible” triangles that
can sometimes result from the triangulation process. Finally, we multi-
ply N by four to take into account the fact that the observations in the
OD matrix reflect roughly one quarter of the total population. While
we admit this is a simplified manner compensate for a smaller number
of agents, we claim that this is sufficient for the purposes of this study,
especially considering the small size and population of our city.

3.2. The ground-truth model

The ground truth model is based on the existence of a rich and de-
tailed Wi-Fi mobility dataset that granularly describes the movement
of individuals across our city. The dataset was generated by quantifying
rrow exemplifying the navigation mesh construction process. The inside of each triangle



Fig. 3. The study area and its immediate surroundings. The exact study area is shownwith a green rectangle. Each red dot marks the location of aWi-Fi hotspot. Map data by Google. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the hourly connectivity and horizontal handover data of municipal Wi-
Fi hotspots. In our case (Oulu, Finland), the network has approximately
1300 access points in 25 km2. This basic analysis resulted in a time-
varying origin–destination (OD) matrix, which describes the volume
of pedestrians transitioning from any given location to any other given
location at 1-h intervals over a large number of days. TheWi-Fi hotspots
are not uniformly distributed across the city. In this paper we base our
analysis on two one-month periods: May 2011 and May 2012, with
each month having approximately 40,000 unique devices, which corre-
spond to approximately 25% of the city population.While theODmatrix
does not distinguish choice of travel mode, considering the simulation
takes place in the inner city, we consider all trips to be made on foot.
This is a simple generalisation we had to make because the mode of
travel cannot be distinguished from the used dataset. A GoogleMaps vi-
sualisation of the study area including the Wi-Fi hotspots is in Fig. 3.

Our OD matrix does not contain any qualitative data about location
types, but a very dense trip volume dataset between geographical
points. Our virtual inner citymodel, which is a 1.5 km times 1.5 km, por-
tion of the actual city, is populated with 249 virtual Wi-Fi access points
(“hotspots” from now on) to act as targets for pedestrian navigation.
The location of these virtual hotspots corresponds to the real-life ones
found in our city, as listed in the ODmatrix. The hotspots were mapped
into the virtual model by simply transforming their GPS coordinates
into the coordinate system of the virtual model. Because many real-
life hotspots exist outside the scope of our virtual model, we filter the
OD matrix data as follows. First we consider origin–destination pairs
of hotspots that are both within the scope of our virtual city model as
observations of how people move within the city. Next, origin–destina-
tion pairs where only one of the hotspots is within the scope of our vir-
tual model are used to describe how agents enter or exit the city. Given
the geographic landscape of our city, we define fourmajor entry/exit di-
rections: Northwest, Northeast, Southeast and Southwest. Effectively,
hotspots within the virtual city model act as targets for agents, whereas
the hotspots outside the scope of themodel, so called entry/exit hotspots,
are used for adding or removing pedestrians from the model.

Since we are modelling the ground truth model on exact empirical
observations only, the agents have no assumed schedules similarly to
activity-based models. We instead mirror the observations of the
inner city mobility into pedestrian agents. Using the OD matrix and
the virtual city model, we are able to model a type of “pull” between
the geographical points within our city. While the theory of Voorhees
(2013) described a gravitational pull between district types, we model a
linear pull between exact inner city locations. However, in our case, the
pull is essentially a probability of thehotspot to be chosen as a destination.
It is defined by adding weights to each hotspot based on the OD matrix
data. The weights are based on trip volume, i.e. howmany times each or-
igin–destination pair was observed within any given 1-h slot in our
dataset. The weights are updated during our simulation according to the
simulated day and time. At the beginning of each simulated hour, each
hotspot gets a list of destination hotspots as a property. Each destination
hotspot is assigned a weight: the number of trips from the origin, as de-
scribed in the OD matrix at the corresponding day and time.

Subsequently, the agents move between the hotspots, picking their
next destination according to their current hotspot and its destination
weights. The next destination is picked with aweighted choice, a random
choice in which destination's probability to be chosen equals its trip
volume's ratio to the sumof trip volumes of all destinations of the current
hotspot. More specifically pðAÞ ¼ TA

TAll
where A is a destination and T refers

to trip volume. The agents are not targeting the exact geographical posi-
tion of the hotspot but pick the destination from 10 randomnodes closest
to the target from navigation mesh. The route is calculated with the A*
pathfinding algorithm and further smoothed with a funnelling algorithm
as previously described. Currently, all the agents are considered to move
individually as we are not identifying group movement from our data.
While previous research has shown that shortest route algorithms are
not optimal for urban traffic modelling (Manley, Addison and Cheng,
2015; Manley, Orr, & Cheng, 2015), it should be noted that in our case,
the trip lengths are quite short meaning that there are rarely multiple
routing options for reaching the next destination.

The entry/exit hotspots are a special case of hotspots that add and re-
move agents from the simulation. The entry/exit hotspots are combina-
tions of actual geographical hotspots that reside outside the virtual
model limits in each ordinal direction. Computationally, they are treated
as single hotspots with trip volumes equal to the sum of the trip volumes
of the actual hotspots. An agent can pick entry/exit nodes similarly to any
other nodes, as a result of a weighted choice. However since entry/exit
nodes don't have exact geographical locations, the agents pick their geo-
graphical destination according to the closest road/sidewalk leading out-
side the virtual city model. An agent can exit the model at any time,
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however new agents can enter the model only when the number of si-
multaneous agents is smaller than the current hourly preferred number
of agents. The preferred number of agents is defined as the sum of all
ODmatrix observations for each particular 1-h slot. The ordinal direction
for the entry of a new agent is picked by a weighted choice according to
the trip volumes from each entry/exit hotspot. The exact geographical lo-
cation of an entry is randomly picked among the roads and sidewalks
leading to the city model from the ordinal direction that is the result of
the weighted choice.
3.3. Using a random model to analyse spatio-temporal location
attractiveness

To investigate the temporal characteristics of pedestrian flows, we
compared the trips generated by our ground truth model to randomly
moving agents at different time segments. Comparison with a random
model allowed us to segregate pedestrian traffic typical to specific
inner city location types in our city from traffic that is generated solely
from street network structure. In this analysis, we used an OD matrix
dataset containing trip volumes from May 2012.

The agent navigation in our random model is simple compared to
the ground truth model. The random agent movement resembles the
purposive movement in agent simulation by Jiang and Jia (2011). The
agents randomly pick their destinations and navigate to them among
a shortest route generated by A* and funnelling algorithms. Each time
an agent reaches its destination, it has a chance of 1 to 10 to pick an
entry/exit node and leave the simulated model. Otherwise the agent
picks the next destination randomly among all the nodes of the naviga-
tionmesh. On entering the virtual model, the agents pick their entry lo-
cation randomly among roads and sidewalks leading to the virtual
model. Beyond this, agents have no assumed schedules. Because the
random model has no data to guide the pedestrian agents, the agent
mobility is essentially guided by street connectivity only (Jiang & Jia,
2011). For being able to properly compare the traffic patterns, the ran-
dom model upkeeps the same number of simultaneous pedestrians as
the ground truth model.

To compare the pedestrian traffic generated by the two models, a
way was needed to quantify the pedestrians' movement across the vir-
tual model. Two common ways to aggregate traffic flows are gate
counting and footprint counting; the former meaning, for example,
counting each time a pedestrian enters a street segmentwhile the latter
refers to counting footprints at fixed time intervals (Jiang & Jia, 2011). In
our footprint analysis, we use the navigationmesh to quantify pedestri-
an flows. The navigation mesh contains thousands of nodes, with area
typically between 10m2 and 40m2. Each time a pedestrian's route goes
through a node, the footprint count of the node is incremented by
one. Our first footprint analysis compared one month's (May 2012)
worth of traffic as generated by the ground truthmodel and the random
model.

In search for temporal patterns in the pedestrian traffic, we further
analysed the agent movement for different time periods. We split the
week into three periods: week (Monday to Thursday), end of week
(Friday and Saturday) and Sunday. This segmentation is culturally de-
rived, since Fridays and Saturdays are usually busier than other days
of the week, while Sundays are typically quieter than other days. This
is due to the fact that 5-dayworkingweeks in Finland are themost com-
mon, making Friday and Saturday popular days for shopping and other
pastime ((OSF) Official Statistics of Finland, 2009). Furthermore, we
split each day into four periods: morning (8:00–10:00), working hours
(11:00–17:00), evening (18:00–22:00) and night (23:00–7:00). Again
this segmentation is culturally derived and differs slightly from the con-
vention typical in other studies. When analysing the pedestrian traffic
with this segmentation, we reset the footprint counts in the beginning
of each time period and finally average the results of each time period.
This results in total of 12 time segments. Currently, seasonal variation
is not considered in the segmentation. All our experiments focus on sim-
ulating the month of May.

Fig. 4a and b use a heatmap visualization to describe footprint anal-
yses forweekenddaytime time segment. This period has especially high
traffic in the centre area and highlightswell the differences between the
models. Fig. 4a shows the analysis for the ground-truth model and
Fig. 4b the random model. Brighter streets have more traffic. Our com-
parison shows that certain densely populated streets have high traffic
in both models.

The average number of pedestrian agents per hour of each time pe-
riod can be seen in Fig. 5. This volume is averaged from thehourly obser-
vations within the OD matrix. As can be seen, the Sunday Night time
segment containsmore traffic than SundayMorningwhile themorning
is more crowded elsewhere in the segmentation. This is most likely due
to Saturday nightlife traffic.

To further quantify the differences between the ground-truth and
random models, we averaged the footprint analyses within each time
period and subtracted one model from the other: i.e. we subtracted
the footprints in the random model from the footprints in the ground-
truth model. This helps us identify the areas where the random model
generates too much or too little traffic. We found that the extent of de-
viation of the randommodel is not constant but fluctuates across differ-
ent time periods.Wewere also able to identify certain types of locations
that according to these differences seem to attract more traffic than
others. Fig. 6a and b show the comparison between the two models
for weekdaymorning andweekday night hours respectively. The colour
scheme is adopted from www.colorbrewer.org (Harrower & Brewer,
2011). Streets in red indicate the randommodel generates too little traf-
fic, green areas are populated too heavily in the random model, while
bright white areas (i.e., closer to the background) matches the
ground-truth model.

The busiest region in the ground truth model is the shopping/night-
life district located in the very centre of the city. Other attractors seemed
to be schools and libraries, as well as other points of interest. Suburbs
had the least traffic and the random model typically generates too
much traffic in those areas while underestimating the centre area.

4. Introducing the weighted POI model

Utilizing crowdsourcing, and building on our footprint analysis be-
tween the randommodel and the ground-truth model, we constructed
a “weighted POImodel”. In this model, we substitute theWi-Fi hotspots
of the ground truth model with the crowdsourced POIs collected from
the OpenStreetMap database (www.openstreetmap.org). As in the pre-
viousmodels, the agents have no realistically assumed schedules; in this
case, the mobility is defined only by the location of POIs and their tem-
porally varying attractiveness. The locations of the POIs act as geograph-
ical targets for pedestrian agents similarly to the Wi-Fi hotspots in the
ground truth model. Unlike Wi-Fi hotspots, however, individual POIs
do not possess weights, but their categories do. POI's typically have a
“category” datafield which offers a general one-word description of
the location type such as “restaurant, museum, and park”. In our
model, these categories act as activities for pedestrian agents that
have a different probability to be chosen according to the simulated
day and time. Our model contains a total number of 134 POIs that be-
long in 21 categories. Again, the agents are using shortest routes to nav-
igate between POIs. However, we consider the POIs to act similarly to
anchor points, providing realistic routing in inner city mobility.

Unlike the hotspot weights, the choice of next destination is not af-
fected by the previous place visited; all POIs belonging to the same cat-
egory have an equal chance of being chosen. Similar to the Random
model, the agents have a 1 to 10 chance to exit the virtual model. In ad-
dition, the agents also have a 1 to 10 chance to pick a completely ran-
dom destination. This is to generate traffic into areas, which are not
close to any POIs. Another big difference between the ground truth
model and the POI model is the frequency of weight changes. In the



Fig. 4. Pedestrian footprint analysis with the ground-truth (a) and the random model (b). Brighter streets have more traffic.
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ground truthmodel the each simulated hour has a unique set of weights
while the category changes in the weighted POI model change accord-
ing to the 12 time segments as defined in the footprint analysis. The
next subsection explains in detail how the category weights of the
weighted POI model are defined. An overview of all models can be
seen in Table 1.

4.1. Modelling POI category weights

As previously stated, in footprint analysis we derived the over- and
underestimations of the random model by subtracting the footprints
produced by the random model from the footprints produced by the
ground truth model for each of the 12 time segments. The random
model gave us the attractiveness of locations according to street connec-
tivity only; comparisonwith the ground truthmodel in turn gave us the
temporal variations that showas over- and underestimations of the ran-
dommodel. Using the comparison values we estimate temporal attrac-
tiveness of various location types while attempting to negate the effect
of street connectivity and location centrality. Therefore, for each node of
the navigation mesh, we receive the comparison footprint value Nc=
Ng−Nr where Ng is the number of footprints of a node produced by
the Ground Truth model and Nr the number of footprints produced by
the Randommodel. The average comparison value Pc for each POI is ac-
quired by averaging all comparison footprint values Nc of nodes inside
the 75-m radius of the POI and taking the additive inverse of the result.
Each POI comparison value Pc is then scaled between 0 and 10 according
to the following formula where Pall is a list of all comparison values Pc:

Pw ¼ Pc–min Pallð Þð Þ � 10
max Pallð Þ–min Pallð Þ :

Finally the category weights Cw are acquired by averaging the indi-
vidual scaled POI comparison values Pw that belong to the same
Fig. 5. Average number of pedestrian agents per hour within each time period in the
ground-truth model.
category. The category weights obtained from analysing the May 2012
dataset are shown in Table 2.
4.2. Evaluating the POI model and the random model against the ground
truth model

Similar to the analysis conducted for the Random model, the POI
model was also analysed by performing a footprint analysis by quantify-
ing the agents' passage through navigationmesh nodes. Again, wewere
essentially interested in the over- and underestimations compared
against ground truth data. However, since we used May 2012 data to
train the POI model, we compared the footprints against a ground
truth model using data from May 2011 dataset instead. This was to
gain insight to the generalisability of the POI model. Furthermore, we
also conducted a comparison analysis between the random model and
the ground truthmodel with theMay 2011 dataset to assess the perfor-
mance of the POImodel against the randommodel. As stated previously,
the randommodel has no POI or Wi-Fi data to guide pedestrian agents;
the agents instead pick random locations from the virtual model and
pursue those locations according to shortest possible route. Thus, the
footprints the randommodel generates are essentially determined sole-
ly by the street connectivity of the inner city (Jiang& Jia, 2011). After let-
ting each model simulate one month's worth of pedestrian mobility
according to simulated date and time, we analysed the over- and under-
estimations produced by themodels to evaluate howmuch the generat-
ed footprints deviate from the ground truth overall.

We calculated the deviations as a percentage difference from the foot-
prints produced by the ground truthmodel. The percentage error of a sin-

gle node is calculated as error ¼ j f pg− f pm j
f pg

where fpg is the number of

footprints produced by the ground truth model and fpm is the number
of footprints produced by the model under investigation. The resulting
percentage errors were then averaged across regions of interest. Our
first observation was that the weighted POI model's footprints are closer
to ground truth especially at the POI locations. The total error produced
by the POI model was 34% whereas the Random model produced a 51%
error when measured from inside the radii of the POI hotspots. Outside
the POIs the difference between the models was smaller with the POI
model producing a 47% error and the Randommodel a 51% error. This is
due to the fact that areas where no POIs are defined have no data to
guide pedestrian movement. Thus, the footprints that are generated into
these areas are either caused by the occasional pedestrian with a random
target, pedestrians travelling between POIs, or a pedestrian entering or
exiting the virtual model. Averaged throughout the entire city model,
the POI model produced a 41% error and the Random model a 50%
error. Scatterplots of the entire model's footprints per triangle averaged
through all time segments can be seen in Figs. 7 a (ground-truth model
vs. Random model), b (ground-truth model vs. POI) and c (POI model
vs random model). Investigating the figures as well as the R2 values
contained within, it can be seen that the POI model is statistically closer
to the ground truth when averaged through all time segments. The POI



Fig. 6. Colourmaps visualizing the differences in traffic between the ground-truth and randommodels in theWeekdaymorning time segment a) and theWeekday night time segment b).
The random model does not generate enough traffic at the red areas whereas it creates too much traffic at the green areas. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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model and the Random model, however are quite different from each
other.

We also inspected the deviations at individual time segments that
were introduced in Section 3.3. The POI model outperformed the ran-
dom model in almost every time segment with the end of the week
morning and Sunday morning being outliers inside POIs and week night
time segment outside. An overview of the comparison between the
two models can be seen in Table 3. We split the evaluation into catego-
ries “inside POIs”, “outside POIs” as well as “Total”. While including POI
areas in the evaluation might be favourable for the performance of the
POImodel, we can gain some insights in the functioning and further im-
provement of themodel this way, as can be later seen when examining
individual POI categories.

Examining two outlier time segments, end of the week morning and
Sunday morning, we identify that the POI model tends to overestimate
the pedestrian traffic whereas the random model is usually more
prone to underestimations. Clear examples are the Casino and Bureau
de change POIs where the overestimations of the weighted POI model
heavily outweigh the underestimations of the Randommodel (see Sup-
plementary Table 1 and Supplementary Table 2 for comparisons of indi-
vidual POI categories at every time segment). Generally, however the
Fig. 7. Scatterplots with trendlines comparing entire citymodel's footprints averaged through al
model vs. POI (R2 = 0.8267), C: POI model vs. random model (R2 = 0.5391).
underestimations of the Randommodel are larger than the POI model's
overestimations making the POI model perform better when averaged
through all time segments as can be seen in Table 4.

When inspecting the individual POI deviations at every time seg-
ment (Supplementary Tables 1 and 2), we found that the POI
model overestimates the Casino and the Bureau de change locations
heavily in almost every time segment. Similarly, these locations are
underestimated by the random model. However, not all locations
heavily underestimated by the random model are in turn
overestimated by the POI model. The Bar and the Fast Food POIs are
such examples.

It is also noteworthy that all three Night time segments are heavily
underestimated in both models. These segments are outliers within
the POImodel which is not as prone to underestimations as the Random
model. Deviations exceeding 100 negative footprints exist only within
the Night time segments in the POI model whereas they are common-
place in the random model (see Supplementary Tables 1 and 2).

The over- and underestimations of individual POI locations as total
can be seen in Table 4. Individual POI locationsdeviations at all time seg-
ments canbe seen at Supplementary Table 1 and Supplementary Table 2
for weighted POI model and random model respectively.
l time segments. A: ground-truthmodel vs. randommodel (R2= 0.7228), B: ground-truth



Fig. 8. Comparison maps showing examples of over- and underestimations made by the POI model (left) and the randommodel (right). The upper half shows the “Sunday Night” time
segment while the lower half shows the “Week Working Hours” time segment.
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Fig. 8a, b, c and d show example heatmaps of the overestimation and
underestimation charts made by the POI model (leftmost figures), as
well as the Randommodel (rightmostfigures) in the centremost district
of the simulated area. The upper half displays the time segment “Week
Working Hours” while the lower half displays the “Sunday Night” time
segment. It can be seen that the POI model brings the very centre of the
shopping district as well as the areas outside of the shopping district
closer to ground truth. However, there are still quite many streets that
are underestimated. The most significant difference to the Random
model is thatwhile the footprints produced by the Randommodel grad-
ually turn from heavy underestimation to overestimationwhile moving
away from the centre, the POImodel is able to somewhat level the devi-
ations according to most distinct location types. An interesting observa-
tion is that when examining the maps visually, it seems that the lower
half, “Week working hours,” is better treated by the POI model than
the upper half “Sunday Night,” when the truth is actually the opposite.
When examining the deviations from ground truth as a whole (see
Table 3), the POI model is much closer to the Random model in the
“Week working hours” segment than in the “Sunday Night” segment.
This is probably due to the POImodel heavily overestimating the centre
part of the district in the former segment.

5. Discussion & conclusion

Our work presents a method to simulate temporal variations of
inner city pedestrian traffic with minimum data collection effort.
Table 1
The differences between the ground truth model, the randommodel and the weighted POI mo

Model Ground truth Random

Dataset OD-matrix derived from
Wi-Fi network analysis

None

Agent attractors 249 Wi-Fi hotspots Random locations
Choice of next
destination in
virtual model

According to destination
weights of last visited
hotspot

Random choice among all the nodes of th
navigation mesh

Weight change
frequency

Hourly None

Exiting city model According to destination
weights of last visited
hotspot

On picking the next destination, agents ha
a 1 to 10 chance of choosing to exit the
virtual model.
Using the weighted POI model we have developed, the varying attrac-
tiveness of various POI categories at various time of day can be used to
calibrate the fluctuations of pedestrian traffic in a random model.
There are various sources for obtaining POIs, or alternatively for simu-
lated cities POIs can simply be defined. The POI categories and their
time-dependent attractiveness can be used to examine the characteris-
tics of different parts of cities.

Of course, the functions of inner city locations change according to
timeof the day and different functions attract people fromvarious social
classes; these city usage characteristics have implications for planning
and safety (Bromley et al., 2003). Currently, we use POI data categories
exactly as they are reported and curated by a community of volunteers.
For example, there are separate categories for bar and pubwhich could
probably be combined. Obviously, we cannot guarantee that the POI
dataset we extracted from OpenStreetMap is optimal for pedestrian
simulation. While the results of the weighted POI model are promising
in replicating the ground truth model's pedestrian flows, it lacks in per-
formance at certain instances. Most notable shortcomings are the occa-
sional overestimations especially of certain category types. Currently
our model relies solely on analysing the pedestrian footprint numbers
and attempting to replicate these footprints through unmodified POI
data. However, the categories can be easilymodified to bemore suitable
for various analytical purposes. For example, the large number of POI
categories could be abstracted into “Shopping,” “Cafes,” “Restaurants,”
“Pubs,” “Nightclubs,” “Cinemas,” and “Theatres” similarly to inner city
classifications in (Bromley et al., 2003). Additionally, the seminal work
del.

POI

Crowdsourced points of interest (POIs)

134 POIs
e Each POI category has probability weights. A category is chosen with a weighted

choice. The destination is then chosen randomly among the POIs of the chosen
category. In addition, agents have 1 in 10 chance of picking a random location.
12 time segments

ve On picking the next destination, agents have a 1 to 10 chance of choosing to exit
the virtual model.



Table 2
POI category weights.

Category Week End of the week Sunday

Morning Work Evening Night Morning Work Evening Night Morning Work Evening Night

Fast food 4 5 6 6 5 5 6 5 4 5 5 5
Place of worship 5 6 5 0 6 6 6 0 5 6 6 1
Cafe 3 4 4 4 4 4 4 3 3 4 3 3
ATM 5 6 5 1 6 6 6 0 5 5 6 2
Hospice 5 6 5 0 6 6 6 0 5 6 6 2
Theatre 6 7 6 2 6 7 6 2 6 6 6 3
Restaurant 5 6 6 5 6 6 6 4 5 6 6 4
Gym 7 7 6 1 7 7 7 1 7 7 6 2
Cinema 4 5 6 5 5 6 6 3 4 5 5 4
Car rental 5 6 5 1 5 6 6 0 5 5 6 2
Townhall 5 6 6 1 6 6 6 1 5 6 5 2
Pub 4 5 5 4 5 5 5 4 4 5 5 4
Nightclub 5 6 6 7 5 6 6 5 5 6 6 5
Library 5 6 6 1 6 6 7 1 5 7 6 2
Parking 5 5 5 4 5 6 6 3 4 5 5 4
Bar 4 5 5 7 5 5 6 8 3 5 4 7
Casino 0 1 1 6 1 1 1 2 0 1 1 0
Pharmacy 4 4 4 4 4 5 4 2 4 4 4 2
Hospital 5 6 6 4 6 6 6 2 6 6 6 3
Bank 3 4 4 4 4 4 4 3 3 4 4 3
Bureau de change 0 0 0 5 0 0 0 3 0 0 0 2

127M. Pouke et al. / Computers, Environment and Urban Systems 57 (2016) 118–129
of Lynch (1960) offers a categorization that can be utilized if POIs are
not defined literally only as geographical points but as areas as well. In
this case, the POI categories could follow Lynch's list of city elements:
“paths,” “edges,” “districts,” “nodes” and “landmarks.” As for
crowdsourced data, contemporary social media as well as specialized
sites offer numerous sources for POI data besides OpenStreetMap.

Whilewemade an attempt to negate the effect of street connectivity
using the randommodel and ground truthmodel comparison values for
POI weights, the results suggest that some of the POI model shortcom-
ings can be attributed to location centrality. A good example is, the out-
lying category type bureau de change, which consists of a single POI
residing at very central location within the Oulu city as well as close
proximity to other popular POI's. The large number of footprints the
generalmodel produceswithin the category is probably due to the loca-
tion than the attractiveness of the category itself. The effect of POIs with
categories at very central locations could be thus reinterpreted. Perhaps,
previous findings in macroscopic studies (Hillier & Hanson, 1984; Jiang
& Jia, 2011) could be leveraged further to automatically classify loca-
tions that are naturally attractive due to the street structure of the
city. This information could be used to negate the effect of overestima-
tion at central locations more effectively and thus further improve the
weighted POI model.

5.1. Future work

Our work presents opportunities for further studies. The most criti-
cal drawback is that it is difficult to validate our model against the
ground truth model in other cities. This is due to the fact that large
open municipal Wi-Fi networks are rare at this time. Even though the
weights we presented might not yield optimum results for all cities as
Table 3
Average deviation (percentage difference from the footprints produced by the ground truth mo
better model are in bold.

Location Model Week End of the w

Morning Work Evening Night Morning

Inside POIs Random 0.41 0.43 0.52 0.75 0.36
POI 0.39 0.37 0.28 0.52 0.41

Outside POIS Random 0.48 0.51 0.52 0.58 0.44
POI 0.42 0.45 0.50 0.63 0.40

Total Random 0.45 0.47 0.51 0.66 0.39
POI 0.40 0.40 0.40 0.58 0.38
they are, we believe that our findings can be used as rough heuristics
for inner city usage analysis. Estimating the required changes to the
POIweights for different cities is an interesting topic for future research.

Ourwork acts as an example on howmodern societies contain abun-
dant, sometimes unexpected data sources. It is interesting to further in-
vestigate whether the POI model can be combined with other data
sources or into more complete activity-based models. For instance, do
POIs generate somewhat realistic traffic independently, and can more
realistic results be obtained by incorporating our POI model into a com-
plete activity-based system.

There are possibilities to improve the POI model in isolation as well.
The current model does not consider distance when choosing the spe-
cific POI among the chosen category. However, favouring closer POIs
over further ones might increase the realism of the model. It would
also be interesting to model POIs according to the anchor point theory,
for example, using path nodes as POIs as described in Lynch (Lynch,
1960). A comparison between modelled POIs vs crowdsourced POIs
would bring new knowledge.

Currently, the OD matrix consists solely of data collected from mu-
nicipal Wi-Fi usage. Even though the density of the Wi-Fi network in
our city allows for rather accurate tracking of pedestrians, combining
other trackingmethodsmight further increase the realismof the ground
truth model.

Finally, in our current model pedestrians simply use the shortest
routes to move between locations. Incorporating simulated human be-
haviour at the micro level could further increase the realism of both
models. Similarly, the addition of simulated public transport would in-
crease the realismof themodel in larger cities. Ourmodel currently sim-
ulates an area that is comparatively small and independent of public
transportation. The OD matrix however, does contain long distance
del) from the ground-truth model when compared to the other models. The results of the

eek Sunday Total

Work Evening Night Morning Work Evening Night

0.43 0.48 0.69 0.35 0.38 0.44 0.65 0.51
0.33 0.30 0.39 0.38 0.36 0.36 0.30 0.34
0.49 0.55 0.61 0.46 0.45 0.53 0.64 0.52
0.42 0.46 0.56 0.44 0.45 0.47 0.49 0.47
0.45 0.50 0.64 0.42 0.41 0.48 0.62 0.50
0.36 0.36 0.48 0.41 0.40 0.41 0.39 0.41



Table 4
Weighted POI model and Random model over- and underestimations at Individual POI locations averaged through all time segments. The results of the better performing model are in
bold.

Model Fast food Place of worship Cafe ATM Hospice Theatre Restaurant Gym Cinema Car rental Townhall

Random −132 45 −100 7 17 −38 −90 −2 −79 2 −24
POI −10 11 37 9 3 −22 −14 −31 1 12 −2

Model Pub Nightclub Library Parking Bar Casino Pharmacy Hospital Bank Bureau de change

Random −79 −108 −19 −57 −186 −202 −117 −26 −128 −242
POI −12 −45 −31 −8 −8 139 40 −9 48 153
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origin–destination data as well. Such information can be used for the
simulation of public transportation in future research.
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